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Critical Point Theory

I We will first talk about critical point theory.

I This will be used throughout the chapter.

I We wish to understand gradients of distance functions which
might not be smooth.



We begin with the following observation.

Lemma: Let f : M −→ R be a smooth proper function. Let
M≤r := f −1([−∞, r ]) for each r ∈ R. Suppose that f has no
critical values in the interval [a, b]. Then M≤a and M≤b are
diffeomorphic. Also, there is a deformation retraction from M≤b to
M≤a, and hence the inclusion map

M≤a ↪→ M≤b

is a homotopy equivalence.

Proof: The key idea of the proof is to “flow” M≤b down to M≤a
using ∇f . Choose a smooth compactly supported bump function
ψ : M −→ R equal to 1 along f −1([a, b]). Define

X = ψ · ∇f
|∇f |2

.



Proof continued. Since X has compact support, its flow F t is well
defined. Our deformation retraction is then defined to be:

rt : M≤b −→ M≤a

rt(p) :=

{
p if p ∈ M≤a
F t(a−f (p))(p) if p ∈ M≤b −M≤a.

Note that we used the fact that the function is proper in an
essential way. If f wasn’t proper then this lemma is false.



We wish to generalize the lemma above to functions which are not
C 1. We will work exclusively with distance functions.

Lemma (Exercise). Suppose (M, g) is complete and let K ⊂ M be
a compact set. Then the distance function:

r : M −→ [0,∞)

r(x) = d(x ,K ) = min{d(x , p) : p ∈ K}

is proper.



Problem: The distance function r may not be smooth.

However, we wish to show that it still has a “gradient”.

Definition:A segment is a continuous path σ : [0, l ] −→ M
satisfying

length(σ) = d(σ(0), σ(l)).

Definition: For x ∈ M, we define Γ(x ,K ) or Γ(x) to be the set of
unit vectors v ∈ TxM so that −v is tangent to a segment starting
at x and ending at a point in K and so that the length of this
segment is r(x).

Example: If x is smooth at x , then Γ(x ,K ) = {∇r}.

Definition: We say that r is regular or non-critical at x if Γ(x ,K )
is contained inside an open hemisphere of the unit sphere in TxM.
In other words, if there exists a unit vector v ∈ TxM so that the
angle between v and any vector in Γ(x ,K ) is less than π/2.



Definition:Let α ≥ 0. We say that x ∈ M is an α-regular point of
r if there exists v ∈ TxM so that the angle between v and any
vector in Γ(x ,K ) is < α.

Note that v may not necessarily be in Γ(x ,K ).

Definition: We define Gαr(x) to be the set of such vectors v . I.e.

Gαr(x) = {v ∈ TxM : ∠(v ,w) < α, ∀ w ∈ Γ(x ,K )}.



Proposition: Let K ⊂ M be compact. Then:

1. Γ(x ,K ) is compact for each x ∈ M.

2. The set of α regular points is open in M.

3. Gαr(x) is convex for all α ≤ π/2.

4. Let U ⊂ M be the set of α-regular points in M. Then there is
a vector field X on U satisfying

X (x) ∈ Gαr(x), |X (x)| = 1, ∀ x ∈ U.

Furthermore, if γ is an integral curve of X , then

r(γ(t))− r(γ(s)) > cos(α)(t − s), ∀ s < t.

Definition: We will call X a gradient-like vector field for r .



Proof of 1. We wish to show that Γ(x ,K ) is compact. Let (vi )i∈N
be elements of Γ(x ,K ). Let l = r(x). Let

σi : [0, l ] −→ M, i ∈ N

be a sequence of segments from x to K so that −vi = σ̇i for each
i . Since the the unit sphere in TxM is compact, we have vi
converges to a vector v ∈ TxM (after passing to a subsequence).
Let

σ∞ : [0, l ] −→ M, σ∞(t) := expx(−tv).

Then since exp is continuous,

lim
i→∞

σi (l) = σ∞(l).

Since K is closed, σ∞(l) ∈ K , which implies that v ∈ Γ(x ,K ).
Hence Γ(x ,K ) is sequentially compact.



Proof of 2. We wish to show that the set U of α-regular points is
open. We will do this by showing that M −U is closed. Let (xi )i∈N
be points in M − U, and suppose xi → x∞ for some x∞ ∈ M. We
wish to show x∞ /∈ U. More precisely, we need to show that for
each w ∈ Tx∞M, there exists v ∈ Γ(x ,K ) so that ∠(v ,w) ≥ α.

Therefore, fix w ∈ Tx∞M. Choose wi ∈ TxiM so that wi → w as
i →∞. Then, there exists vi ∈ Γ(x ,K ) so that ∠(vi ,wi ) ≥ α.
After passing to a subsequence, vi → v ∈ Tx∞M. Also,

∠(v ,w) ≥ lim inf
i→∞

∠(vi ,wi ).

Finally, (by a similar proof to 1.), ∪x∈MΓ(x < K ) is closed in TM,
and hence v ∈ Γ(x∞,K ).



Proof of 3.

We wish to show that Gαr(x) is convex if α ≤ π/2.

The open cone

Cα(w) = {v ∈ TxM : ∠(v ,w) < α}

is convex for each w ∈ TxM. Hence

Gαr(x) = ∩w∈Γ(x ,K)Cα(w)

is convex.



Proof of 4. Let U ⊂ M be the set of α-regular points of r . We
wish to show that there exists a vector field X over U so that
X (x) ∈ Gαr(x) for each x ∈ U and so that

r(γ(t))− r(γ(s)) > cos(α)(t − s), ∀ s < t

for each integral curve γ of X .

For each p ∈ U, choose vp ∈ Gαr(x). Choose a vector field Vp on
M so that Vp|p = vp. Since ∪x∈UGαr(x) is open in the unit sphere
bundle of M (by a similar proof to 2.), there is a neighborhood
Up ⊂ M of p so that Vp(x) ∈ Gαr(x) for each x ∈ Up. Let
(Upi )i∈N be a locally finite subcover of (Up)p∈U . Let (λi )i∈N be a
partition of unity subordinate to this subcover. Define

V1 =
∑
i∈N

λiVpi .

X := V1(x)/|V1(x)|.

Then since Gαr(x) is convex for each x ∈ U by 3., X (x) ∈ Gαr(x)
for each x ∈ U.



Proof of 4. continued. We now need to show

r(γ(t))− r(γ(s)) > cos(α)(t − s), ∀ s < t (1)

for each integral curve γ of X . We only need to prove this for
s = 0 and t ≤ 0 small.

Let γ̌ : [0, l ] −→ M be a segment from x to K of length l = r(x).
Let γ : [−ε, 0] −→ M be an integral curve of X . Then

r(γ̌(t))− r(γ̌(s)) ≥ t − s, ∀ 0 ≤ s < t.

Also,
d(γ(−t), γ̌(t)) > sin(α)(t)

for t ≤ 0 sufficiently small since ∠(γ̇(0),− ˙̌γ(0)) < α. Equation (1)
with s = 0, t ≤ 0 now follows from the triangle inequality.



Corollary: Let K ⊂ M be a compact submanifold and suppose
(M, g) is complete. Suppose r(x) = d(x ,K ) is regular on M − K .
Then M is diffeomorphic to the normal bundle of K . In particular,
if K = {p}, then M is diffeomorphic to Rn.

Proof. Let X be the vector field on U = M − K be as in 4. Also,
since r is smooth near K , we can (by using bump functions)
assume X = ∇r near K . Let

ν(K ) = {v ∈ TM|K : v ⊥ TK}

be the normal bundle of K . Let

exp : ν(K ) −→ M

be the exponential map.



Proof continued.
Then the curves

t → exp(tv), v ∈ ν(K )

are tangent to X near K . Therefore, for each unit vector
v ∈ ν(K ), there is a unique integral curve

γv : (0,∞) −→ M

of X satisfying
lim
t→0

γ̇v (t) = v .

Define
F : ν(K ) −→ M,

F (v) :=

{
p if v = 0
γv/|v |(|v |) if v 6= 0

∀ v ∈ ν(K ) ∩ TpM, p ∈ K .

This is a diffeomorphism (Exercise).



We now wish to find conditions ensuring that r is regular.

Definition: A hinge consists of two geodesic segments

σ1 : [0, l1] −→ M, σ2 : [0, l2] −→ M

satisfying σ1(l1) = σ2(0). All such segments will be parameterized
by arc length. The interior angle α of this hinge is:

α := π − ∠(σ̇1(l1), σ̇2(0)).

Definition: A triangle consists of three segments that meet
pairwise at three different points. All such segments will be
parameterized by arc length.

Definition: A generalized hinge/triangle is defined in the same
way as a hinge and a triangle above, except that segments are
replaced by geodesics. (For instance, we could have a “triangle”
consisting of three geodesic loops).



Definition: Let (M̌, ǧ) be another Riemannian manifold. Suppose
we have a hinge in (M, g). Then a comparison hinge in (M̌, ǧ) is a
hinge in (M̌, ǧ) so that the corresponding segments have the same
length and so that both hinges have the same interior angle.

Definition. Similarly, suppose we have a triangle in (M, g).
Suppose that the segments of this triangle have lengths l1, l2, l3
respectively.Then a comparison triangle in (M̌, ǧ) is a triangle in
(M̌, ǧ) so that the three segments of this triangle have lengths
l1, l2, l3 respectively.



Lemma: Suppose (M, g) is a complete Riemannian manifold
satisfying sec(M, g) ≥ k. Then every hinge in (M, g) has a
comparison hinge in Sn

k . Similarly every triangle in (M, g) has a
comparison triangle in Sn

k .

Proof. We will use Myers’ theorem:

Theorem (Myers): If k > 0 then

diam(M, g) ≤ π/
√
k = diam(Sn

k ).

Since Sn
k has infinite diameter for k ≤ 0, we have:

Corollary: diam(M, g) ≤ diam(Sn
k ) for all k .



Proof continued. Now suppose we have a hinge in (M, g)
consisting of two segments, σ1 from p to q and σ2 from q to r .
Let α be its interior angle. Now the corollary above allows us to
choose p, q ∈ Sn

k so that d(p, q) = d(p, q). Let σ1 be a unit speed
geodesic from p to q in Sn

k . Also we can take the unique length
d(q, r) geodesic σ2 in Sn

k from q of angle α from σ1 at q. Then
σ1, σ2 is our comparison hinge, well, almost.

This is true if k ≤ 0 or diam(M, g) < diam(Sn
k ). However, if

diam(M, g) = diam(Sn
k ) and k > 0 then this hinge might be

degenerate. However, in this case, we can use the following
theorem instead:

Theorem (Cheng). Let (M, g) be a complete Riemannian
manifold satisfying Ric(M, g) ≥ (n − 1)k > 0 and
diam(M, g) = diam(Sn

k ). Then (M, g) is isometric to Sn
k .

Note that if sec = k then Ric = (n − 1)k (Exercise).



Proof continued. Now let us consider the triangle case. Suppose
we have a triangle in (M, g) with vertices p, q, r . The corollary
above allows us to choose p, q ∈ Sn

k so that d(p, q) = d(p, q).
Now consider the two spheres

∂Bd(p,r)(p), ∂Bd(q,r)(q).

Hence these two spheres intersect by the triangle inequality. We let
r be an intersection point these spheres, this gives us our
comparison triangle p, q, r . Again, there is the possibility that this
triangle is degenerate, but this only happens when k > 0 and
diam(M, g) = diam(Sn

k ), and Cheng’s theorem above deals with
this.



Theorem (Toponogov, 1959). Let (M, g) be a complete
Riemannian manifold satisfying sec(M, g) ≥ k . Then

1. For any hinge in (M, g) with vertices p, q, r and any
comparison hinge in Sn

k with vertices p, q, r , we have
d(p, r) ≤ d(p, r).

2. For any triangle T in (M, g) and any comparison triangle T ′

in Sn
k , we have that the interior angles of T are ≥ the interior

angles of T ′.

Before we prove this theorem, we need a preliminary proposition
and lemma.



Proposition (Law of cosines). Let T be a triangle in Sn
k with side

lengths a, b, c . Let α be the angle opposite to a. Then

1. If k = 0,
a2 = b2 + c2 − 2bc cos(α).

2. If k = −1, then

cos(a) = cosh(b) cosh(c)− sinh(b) sinh(c) cos(α).

3. If k = 1, then

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(α).



Proof: The key idea is the same in all three cases. We start with a
point p ∈ Sn

k and a unit speed segment

σ : [0, c] −→ Sn
k .

We then investigate the distance functions

r : Sn
k −→ R, r(x) := d(p, q)

and
r ◦ σ : [0, c] −→ R.

Proof of 1. I.e. k = 0 case. We consider the function

φ : [0, c] −→ R, φ(t) :=
1

2
r(σ(t))2 =

1

2
|p − σ(t)|2.

We now need to compute the first and second derivatives of φ.



Proof of 1. continued.
First we compute:

∇1

2
r2 = r∇r .

Hess
1

2
r2 =

∑
i

dx idx i .

Hence

φ′(t) = g(σ̇,∇1

2
r2).

φ′′(t) = Hess
1

2
r2(σ̇, σ̇) = 1.

We let b = d(p, σ(0)) and α the interior angle between σ and the
segment joining p and σ(0). Then

cos(π − α) = − cos(α) = g(σ̇,∇r).



Proof of 1. continued. Now we integrate φ′′ = 1, giving us:

φ(t) = φ(0) + φ′(0)t +
1

2
t2

=
1

2
b2 − b cos(α)t +

1

2
t2.

We now get the law of cosines by setting t = c .

To recap, we proved this identity by solving the initial value
problem:

φ′′ = 1

φ(0) = b

φ′(0) = −b cos(α)



Proof of 2. This is the case k = −1. In this case, we consider the
function:

φ : [0, c] −→ R, φ(t) = cosh(r ◦ σ(t))− 1.

Then
φ′(t) = sinh(r ◦ σ(t))g(∇r , σ̇),

φ′′(t) = cosh(r ◦ σ(t)) = φ(t) + 1.

We now solve the initial value problem

φ′′ − φ = 1

φ(0) = cosh(b)− 1

φ′(0) = − sinh(b) cos(α).

Solving this set of equations and setting t = 1 and a = d(p, σ(c))
gives us our identity.



Proof of 3. This is the case k = 1. In this case, we consider the
function:

φ : [0, c] −→ R, φ(t) = 2− cos(r ◦ σ(t)).

Then we arrive at the initial value problem

φ′′ + φ = 1

φ(0) = 1− cos(b)

φ′(0) = − sin(b) cos(α).

Solving this set of equations and setting t = 1 and a = d(p, σ(c))
gives us our identity.



Lemma: Let (M, g) be a complete Riemannian manifold satisfying
sec(M, g) ≥ k . Let p ∈ M and r(x) = d(x , p). Then:

1. If k = 0 then Hessr0 ≤ g where r0 = 1
2 r

2. (in the support
sense).

2. If k = −1 then Hessr−1 ≤ (cosh(r))g = (r−1 + 1)g where
r−1 = cosh(r)− 1.

3. If k = 1 then Hessr1 ≤ cos(r)g = (−r1 + 1)g where
r1 = 1− cos(r).

Proof. Omitted. See Lemma 57 of Peterson.



Let us now prove Toponogov’s theorem part 1. Here is the
statement we wish to prove:

Theorem (Toponogov, 1959). Let (M, g) be a complete
Riemannian manifold satisfying sec(M, g) ≥ k . Then

1. For any hinge in (M, g) with vertices p, q, r and any
comparison hinge in Sn

k with vertices p, q, r , we have
d(p, r) ≤ d(p, r).

Setup: Let
σ : [0, l ] −→ M

σ : [0, l ] −→ Sn
k

be the unit speed segments from q to r and q to r respectively.



Proof of Toponogov Theorem part 1. continued.
Define

r : M −→ R, r(x) := d(p, x)

r : M −→ R, r(x) := d(p, x)

where d and d are the distance functions on (M, g) and Sn
k

respectively. It is sufficient for us to show

φ′(t) ≤ φ′(t)

for each t ∈ [0, l ] where

φ(t) = f (r ◦ σ(t)), φ = f (r ◦ σ(t))

and where f : R −→ R is an appropriate increasing function.



Proof of Toponogov Theorem part 1. continued.

This function f will be:

a) f (x) = 1
2x

2 if k = 0.

b) f (x) = cosh(x)− 1 if k = −1.

c) f (x) = 1− cos(x) if k = 1.

Now suppose k = 0. Then the previous proposition and lemma tell
us:

φ′′ ≤ 1, φ
′′

= 1.

φ′(0) = φ
′
(0)

and hence φ′(t) ≤ φ′(t) giving us our result for k = 0.

Note: Technically, φ may not be differentiable at t = 0. As a
result, we might have perturb this segment slightly towards p. The
details are on Peterson page 343.



Proof of Toponogov Theorem part 1. continued.
If k = −1, then a similar argument holds.

φ′′ ≤ φ+ 1, φ
′′

= φ+ 1.

φ′(0) = φ
′
(0)

When k = 1, there are smoe additional difficulties, I think due to
the fact that φ may not be differentiable everywhere. The details
are resolved on page 345 of Peterson. I think (!) the same
argument would work if we assumed that φ is differentiable.



We now wish to apply the ideas above.

Theorem (Berger 1962, Grove-Shiohama 1977) Suppose (M, g) is
closed, sec(M, g) ≥ 1 and diam(M, g) > π/2. Then M is
homeomorphic to a sphere.

Proof: It is sufficient for us to show that M − {point} is Rn.
Choose points p, q so that d(p, q) > π/2. Let

r : M −→ R, r(x) := d(p, x).

We will show that the only critical point of r is q (away from
p).By the previous results, this will show that M − {q} = Rn since
we will have a gradient like vector field for r away from p and q.



Proof continued.
Let x ∈ M − {p, q} and let α be the angle between any two
geodesics from x to p and q.

Claim: α > π/2.

Proof of Claim: Suppose not, then set b = d(p, x) and
c = d(x , q) and d = d(p, q). The hinge version of Toponogov’s
theorem along with the law of cosines tells us:

0 > cos(d) ≥ cos(b) cos(c) + sin(b) sin(c) cos(α)

≥ cos(b) cos(c).

Hence cos(b) cos(c) have opposite signs. If cos(b) ∈ (0, 1), then
cos(d) > cos(c) and so c > d = diam(M) giving us a
contradiction. Similarly if cos(c) ∈ (0, 1). QED for Claim.



Proof continued. To construct our gradient-like vector field, it is
sufficient to show that M − {p, q} consists of π/2-regular points of
r (by an earlier theorem in these slides).

In other words, the set Γ(x , {p}), which is the set of unit vectors
v ∈ Tx tangent to the endpoint of a segment from p to x , has
angle at most π/2 with some vector vx ∈ TxM.

However, by the Claim above, if we choose vx to be tangent to
the initial point of any geodesic from x to q, then vx has the
property we want.



The Soul Theorem

The goal of this section is to show:

Theorem (Cheeger-Gromoll-Meyer, 1969,1972). Let (M, g) be a
complete non-compact Riemannian manifold satisfying
sec(M, g) ≥ 0. Then M contains a totally geodesic submanifold
S ⊂ M so that M is diffeomorphic to the normal bundle of S . If
sec(M, g) > 0 then S is a point, and so M is diffeomorphic to Rn.

Definition: The soul of (M, g) is the submanifold S above.



Before we prove this theorem, we will use a less ambitious result
with a similar proof.

Lemma (Gromov’s critical point estimate 1981). Suppose (M, g)
is a complete Riemannian manifold of non-negative sectional
curvature and let p ∈ M. Let r(x) = d(x , p) be the distance
function from p. Then there exists a constant R > 0 so that every
point outside BR(p) is a regular point of r . As a result, (M, g) is
homotopic to a compact manifold with boundary.

Proof. Suppose (for a contradiction) r has a sequence of critical
points pk , k ∈ N satisfying pk →∞. After passing to a
subsequence, we can assume

r(pk+1) ≥ 2r(pk), ∀ k . (2)

Let σk be a segment from p to pk of length r(pk).



Claim: The angle between any two segments σk and σk+l is
≥ 1/6.

Proof of Claim. Suppose (for a contradiction) there exists k, l so
that the angle between σk and σk+l is ≥ 1/6. The hinge version of
Toponogov’s theorem together with the law of cosines tells us:

d(pk , pk+l)
2 < (d(p, pk+l))2+(d(pk , p))2−2d(p, pk+l)d(pk , p) cos(1/6)

≤
(
d(p, pk+l)−

3

4
d(pk , p)

)2

.

Since pk is not a critical point of r , we can find a segment s from
pk to pk+l and possibly change the segment σk so that the angle
between σk and s is ≤ π/2.



Proof of Claim continued.
Hence by Toponogov’s theorem and the law of cosines:

d(pk , pk+l)
2 < (d(pk , p))2 + (d(p, pk+l))2

≤ (d(pk , p))2 +

(
d(p, pk+l)−

3

4
d(pk , p)

)2

.

=
25

16
(d(pk , p))2 + (d(p, pk+l))2 − 3

2
d(p, pk+l)d(pk , p)

Hence

d(p, pk+l) ≤
25

16
(d(pk , p))2.

But this gives us a contradiction, since by Equation 2, we have

d(p, pk+1) ≥ d(p, pk+1) ≥ 2d(pk , p).

QED for Claim.



Proof of Gromov’s lemma continued.

Now the Claim gives us a contradiction as follows: Each vector
σ̇k ∈ TpM is a unit vector and the angle between any two of them
is ≥ 1/6. Hence we can cover the unit sphere in TpM with an
infinite collection of disjoint balls of radius 1/6. Contradiction.



Definition: A subset A ⊂ M is totally convex if every geodesic
starting and ending on A is contained in A.

Definition: A function f : M −→ R is concave if the Hessian is
non-positive everywhere (in the weak sense).

Lemma: If f : M −→ R is a concave, then every superlevel set

M≥a := {x ∈ M : f (x) ≥ a}

is totally convex.

Proof: For any geodesic γ, we have that f ◦ γ has non-positive
weak second derivative. Hence f ◦ γ is a concave function. On any
compact interval, the minimum of this function is obtained at its
endpoints.



Busemann functions.
Let γ : [0,∞) −→ M be a unit speed ray. Define

bt(x) := d(x , γ(t))− t.

Proposition:

1. For any x ∈ M, the function

t −→ bt(x)

is decreasing, and bounded in absolute value by d(x , γ(0)).

2. |bt(x)− bt(y)| ≤ d(x , y).

3. ∆bt(x) ≤ n−1
bt+t everywhere.

The proof is found in Peterson section 3.4.



The proposition above tells us that the functions bt : M −→ R,
t ∈ R are

I pointwise decreasing as t increases.

I equicontinuous.

Hence bt
C0

−→ bγ for some C 0 function

bγ : M −→ R.

Definition: bγ is called the Busemann function associated to the
ray γ.



Lemma: Let (M, g) be a complete non-compact Riemannian
manifold satisfying sec(M, g) ≥ 0. Let γα, α ∈ I be the collection
of all unit speed rays emanating from a point p ∈ M.Then

f = inf
α∈I

bγα

is proper and concave.

We will skip the proof for reasons of time. This is Lemma 59 in
Peterson.



Lemma: Let A ⊂ M be totally convex. Then A can be written as
a disjoint union A = IntA t ∂A so that IntA is a submanifold of M
and so that the following property holds: For each x ∈ ∂A, there
exists a vector vx ∈ TxM satisfying the following property: Let
γ : [0, a] −→ A be a geodesic satisfying:

1. γ(0) = x ,

2. γ(a) ∈ IntA

Then ∠(w , γ̇(0)) < π/2.

Definition: IntA is called the interior of A and ∂A is called the
boundary of A.

This is NOT the topological interior and boundary.



Proof of Lemma: We will use the following fact (from the
convexity radius estimate in Chapter 6):

Fact: There is a positive function ε : M −→ (0,∞), so that the
distance function rp(x) = d(x , p) is smooth and strictly convex on
Bε(p)(x).

We will start be defining IntA. Find the largest integer k so that A
contains a submanifold of dimension k (not necessarily properly
embedded). We define IntA to be the union of all such
submanifolds and ∂A := A− IntA.



Claim 1: IntA is a submanifold of M.

Proof of Claim 1. Let p ∈ IntA and let Np be a small submanifold
in A containing p. We can assume Np ∩ Bδ(p) = Np for some
0 < δ < ε(p) small (to be chosen later). Suppose (for a
contradiction) Bδ(p) ∩ A 6= Np. Let q ∈ Bδ(p) ∩ A− Np. Choose
δ > 0 small enough so that δ < injq. Hence every point in Np can
be connected to q be a unique segment Bδ(p). The union of such
segments is contained in A by definition. Also this union contains
a k + 1-dimensional submanifold giving us a contradiction. QED
for Claim.



Claim 2: IntA is dense in A. In fact, for each segment
σ : [0, l ] −→ A satisfying σ(0) ∈ ∂A, σ(l) ∈ IntA, we have
σ(0, l) ⊂ IntA.

Proof of Claim 2: Let N ⊂ IntA be a small k − 1 dimensional
submanifold orthogonal to σ(l). Consider the union of all segments
starting at σ(0) and ending at a point in N. Then N − σ(0) is a
k-submanifold of A, giving us our conclusion. QED for Claim 2.

We now wish to show the supporting hyperplane property:
For each x ∈ ∂A, there exists a vector vx ∈ TxM satisfying the
following property: Let γ : [0, a] −→ A be a geodesic satisfying:

1. γ(0) = x ,

2. γ(a) ∈ IntA

Then ∠(w , γ̇(0)) < π/2.



Proof continued.
Define the tangent cone at x ∈ ∂A to be:

CxA := {v ∈ TxM : expx(tv) ∈ IntA, for some t > 0}.

This is a cone. We will show:

1. This cone is open inside some linear subspace T ⊂ TxM.

2. This cone is not equal to T . In fact, once we have shown the
openness property, we just need to show that T does not
contain a line.

These two properties then tell us that the cone must be contained
inside a half space:

{v ∈ TxM : L(v) > 0}

where L : TxM −→ R is some linear function and this will prove
our supporting hyperplane property.



Proof continued. We define T ⊂ TxM to be the intersection of all
linear subspaces of TxM containing CxA. Let exp : T −→ M be
the exponential map. Let C = exp−1(IntA ∩ Bη(x)) where η > 0 is
very small. Then C is a k-dimensional submanifold of T which is
convex. Hence it must be an open subset of a linear subspace T ′.
The closure of C is exp−1(A ∩ Bη(x)) by Claim 2. Hence T = T ′

and CxA is an open subset of T .

Finally we need to show that CxA ⊂ TxM does not contain a line.
If it did, then exp−1(IntA ∩ Bη(x)) would be an open subset of T
containing 0. The submanifold exp(small neighborhood of 0 in T )
would then be contained in A and so x ∈ IntA giving us a
contradiction.



Lemma: Let (M, g) satisfy sec(M, g) ≥ 0. Let A be totally
convex and let

r : M −→ R, r(x) = d(x , ∂A).

Then r is concave in A and strictly concave if sec > 0.

We will not prove this because of time considerations. This is
lemma 62 in Peterson.



We are now ready to prove the soul theorem. Here is the
statement we wish to prove.

Theorem (Cheeger-Gromoll-Meyer, 1969,1972). Let (M, g) be a
complete non-compact Riemannian manifold satisfying
sec(M, g) ≥ 0. Then M contains a totally geodesic submanifold
S ⊂ M so that M is diffeomorphic to the normal bundle of S . If
sec(M, g) > 0 then S is a point, and so M is diffeomorphic to Rn.

Proof. Let f : M −→ R be the concave function constructed from
Busemann functions above. Let

C1 := {x ∈ M : f (x) = max f }.

Since f is proper and concave (by a lemma above), we have that
C1 is convex. Also by the previous lemma, C1 must be a point if
sec > 0 (since f must be strictly concave in this case).



Proof continued.

We now construct a finite (or possibly infinite) sequence of subsets:

C1 ⊃ C2 ⊃ C3 · · ·

by induction as follows: We have already constructed C1. Suppose
we have constructed C1 ⊃ · · · ⊃ Ck . If ∂Ck = ∅, we stop our
sequence. Otherwise, we consider the concave function

fk : Ck −→ R, fk(y) := d(y , ∂Ck)

(this is concave by the previous lemma). We define Ck+1 to be the
maximum set of this function.



Proof continued.

Claim: dim IntCk > dim IntCk+1.

Proof of Claim. If not, then IntCk+1 is an open subset of IntCk .
Let p ∈ IntCk+1 and consider a segment σ from p to ∂Ck of length
fk(p). Now fk ◦ σ|Ck+1

must be constant (as Ck+1 is is the
maximum set of fk). However, this is impossible as the distance
from σ(t) to ∂Ck must decrease along this segment.
Contradiction. QED for Claim.

As a result of the above claim, we have finite sequence:

C1 ⊃ · · · ⊃ Cm.

Since ∂Cm = ∅, we get that Cm is a closed submanifold of M.



Proof continued.
Consider the function:

h : M −→ R, h(y) = d(y ,Cm).

Claim. h has no critical points outside Cm.

The proof of this claim will finish the proof of our theorem, with
the Soul S equal to Cm.

Proof of Claim. (I am not 100 percent sure this argument is
correct). Define Cm+1 = ∅ and C0 = M. Also define f0 := f . We
will show that h has no critical points inside Ck − Ck+1. Suppose
we have a segment connecting a point y ∈ M − Cm to Cm of
length h(y). Then since Ck+1 is totally convex, we have that the
distance function to Ck+1 strictly decreases along this segment.
Also the superlevel set E := f −1

k ([fk(y),∞)) is strictly convex
inside Ck . Hence Γ(y ,Cm) is contained in the tangent cone CyE of
E . This is an open cone contained in a half space (see earlier),
hence y is a regular point.


