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Norms and Convergence

» We wish to have a norm which tells us how ‘flat a manifold is’.

» We also want subsets of complete flat manifolds to still have
non-zero norm.

» We will use a family of norms depending on a ‘scale’
parameter r.

» We also want such norms to be defined for subsets of
Riemannian manifolds as well.



Definition:Let A be a subset of M. The C™% norm on the scale r
of A, denoted by
|AC (M, g)llcme,r

is < Q,if we can find charts:
¢s: UsCM— B,(0)CR", sel

so that

(n1) For each p € A, there exists s € [ so that B%e,gr(p) C Us.
(n2) |Dsl,[Dpst| < €.

(n3) g5t 0 dellcmira < B(n, Q,r).

(n4)

nd) rU+eDi((ps1)*g)|la < Q for all multi-indices j satisfying
0<[jf<m.

Note that the above definition only requires g to be C™. If
a =0, then we replace C™1@ with C™*1 and || - ||o with || - lo.



It turns out that (n2) + (n4) = (n3), however we will keep (n3)
as a property.

Example: Suppose (M, g) is a complete flat Riemannian manifold.
Then ||(M, g)||cma , = 0 for each r < inj(M, g).

In particular, [|(R", gstd)||cme,, = 0 for each m, o, r.

Later on, we will show that if ||(M, g)||cme, = 0 for all m,a, r
then (M, g) = (R", gstd)-

Next, we wish to describe C™“ convergence of a sequence of
Riemannian manifolds.



Definition: Let (M;, g;, pi), i € NU{oco} be a sequence of pointed
Riemannian manifolds of the same dimension. We say (M;, g;, p;)
converges to (Mso, 800, Poo) in the pointed C™%-topology, written
as: o

(Mi, g1, pi) < (Moo, g0, Poo),

if for each R > 0, there exists a domain Q C Bgr(ps) and
embeddings F; : Q — M;, i > 1, so that
1. Fi(Q2) D Br, for each i,
" cma
2. F'gi — g.
3. Fi(pso) = pi for each i.

When the manifolds are closed, we have that F; is a
diffeomorphism for R large enough. In this case, one can show that
the choice of basepoints p; does not matter, and so we can also
talk about unpointed convergence.



Proposition: Let A C M be precompact. Then
1 A C (M.g)llcmeer = A C (M, X2g)l|cre s for each r > 0.
2. The function r — ||A C (M, g)||cm.« , is continuous.
3. If (M;, gi, pi) i (Mso, 80, Poo) then for every precompact

domain Ay C My, there exists precompact domains A; C M;
for each i € N so that

HA,‘HCm,aJ — HAOOHCm,a’r, ¥ r>0.
If M is closed for each i € NU {oo} then we can assume
A; = M; for each i € NU {o0}.
Proof of 1. If we replace g with A2g, then we replace the charts ¢

by
(bi\ Usc M — B)\r(o) - Rn7 d)?(X) = )\d)s(X)

The same conditions (n1)-(n4) still hold.



Proof of 2. We wish to show: the function

r—||AC (M,g)||cme,r is continuous. Instead of scaling r, we
will replace ¢s with ¢2 (without changing the metric g).. This
corresponds to replacing r with Ar. So we only need to show
continuous dependence on A. Suppose

N(r) = HA - (Mag)HC’"vo‘,r S Q
Then
N(AP) = [|A C (M, g)[[cme rr < max{Q + [log(\)], @ A2},

This is enough to show continuous dependence on A (Exercise).



Proof of 3. We need to show: If (M, gi, pi) iy (Moo, 8005 Poo)
then for every precompact domain A,, C M., there exists
precompact domains A; C M; for each i € N so that

[Aillcmea,r — || Accllcmar, ¥ r > 0. (1)

First of all, we need to construct these domains A;. By definition,
there is a domain 2 D A so that for all large / we have smooth
embeddings F; : 2 — M; satisfying Fg; — g in C™ on €.
We define A; := Fi(Ax). For Q > ||Ax C (M, g)l|cma,r, choose
charts ¢s : Us C Moo — B,(0) C R” covering A satisfying
(n1)-(n4). Define

is == s o F 1 Fi(Us) C M;i — B,(0) C R".
Then, ¢; ¢ satisfies (n1)-(n4)with A replaced by A; and Q replaced

by Q; where Q; — Q. (Exercise). This is enough to prove
Equation (1). (Exercise).



» We now wish to have an Arzela-Ascoli type theorem using the
norms || - ||cm.a , on manifolds.

» Definition: For Q >0, n>2, m>0, a € (0,1] and r > 0,
define M™%(n, Q, r) to be the class of complete, pointed
Riemannian n-manifolds (M, g, p) satisfying
(M, g)|cme,r < Q. The manifolds here are C™“-manifolds.

l.e. transition functions are C™“.

» Theorem: (Fundamental Theorem of Convergence Theory)
M™(n, Q, r) is sequentially compact in the pointed
C™B-topology for all 3 < .



Proof. The proof will proceed in 4 stages:
Step 1 Setup and comments on charts.
Step 2 M' := M™%*(n, Q, r) is precompact in the pointed
Gromov-Hausdorff topology.
Step 3 M’ is closed in the pointed Gromov-Hausdorff topology.

Step 4 Showing that any Gromov-Hausdorff convergent sequence in
M’ in fact convergences in the C™P-topology (after passing
to a subsequence).

We will now give some details of the proof. However there will be
many other details that we will skip.



Proof of Step 1. Setup. Write M" := M™%(n, Q,r). Fix K > Q.
We will call a chart for a manifold in M’ satisfying (n1)-(n4) with
Q replaced by K an (n1)-(n4)-chart. It is sufficient for us to show
that limit spaces exists for each K > Q.

Claim 0: Every (nl1)-(n4)-chart ¢ : U C M — B,(0) C R”
satisfies

a. d(¢7(x1), ¢ (%)) < fxi — xel,

b. d(¢7(x1), ¢ (x2)) = min(e™ |31 — xe|, e (2r — x| — |xal))
where d is the distance measured in M, and |- | is the Euclidean
norm in the chart.

Proof of Claim 0: The condition (n2): |[D¢~1| < eK, together
with the convexity of B,(0) gives us a. If there is a line segment in
U of length equal to d(¢~1(x1), (x2)) joining ¢~*(x1) and
#"Y(x2), then the condition (n2): |D¢~1| < e K tells us

d(¢7 (x), ¢ (x)) < e Klx — xo

proving b.



Proof continued:

Now suppose that a segment o : [0,1] — M leaves U. Choose
t1 <t in (0,1) so that o|jg ) and 0|, 17 lie in U and so that
o(ti) ¢ U fori=1,2. Then

(¢ (x1), 67 (%)) = L(0) = L(oljo,n)) + L(o (1)

(n2)
> e K(L(¢o0olo,)) + L(# 0 0l(,1)))

> e K (2r — x| — |xe)

This proves b.



Proof of Step 2. Recall that we now wish to prove that M’ is
precompact in the pointed Gromov-Hausdorff topology. We will
use Gromov's Theorem to do this. Before we prove this, we need
to prove some claims.

Claim 1: Let 6 = %e_Kr. Then each d-ball in M can be covered
N = N(n, K, r) balls of radius §/4 for each M € M.

Proof of Claim 1. Every d-ball is contained in some (n1)-(n4)-chart
¢:UC M — B,(0) C R". We have bounds on the derivatives of
®, ¢~ and hence the metric on U and the flat metric on B,(0) are
not too different. This gives us our bound N (Exercise: fill in
details). QED for Claim 1.



Claim 2: Every ball B(x;/-§/2) C M, | € N can be covered by N/
balls of radius 6/4.

Proof of Claim 2: We prove this by induction on /. By Claim 1,
this is true for / = 1. Now suppose (by induction), Bj.5/»(x) is
covered by Bs/4(x1), -+, Bs/a(xp1)- Then

B(111)5/2(x) = Bisjats/2x is covered by Bs(x1), -, Bs(xy1) (by
the triangle inequality). Each Bs(x;) is covered by N balls of radius
/4, and hence B(;;1y5/2(x) is covered by N - N! = N'*1 balls of
radius §/4. QED for Claim 2.

We will now use Claim 2 combined with Gromov's compactness

result to show that M’ is precompact in the pointed
Gromov-Hausdorff topology.



To show that M’ is precompact, it is sufficient to show that the
radius R balls:

BR(p)CM7 (M,g,p)EMI

are precompact with respect to the Gromov-Hausdorff topology.
By Gromov's theorem, it is sufficient to show that for each ¢ > 0,
there exists N(e) = N(e, R, K, r,n) with the property that each
Br(p) as above contains at most N(e) disjoint e-balls. We will do
this by considering volume. Let Bc(x1),- - , B«(xs) be disjoint balls
in Br(p). Choose / € N so that

1-6/2<R<(I+1)-5/2.

Then

Claim 2 I+1
volBr(p) < (N't')-(max volume of a /4 — ball)

< (N1 . (max volume of a (n1)-(n4)-chart)
< N'*1e"™KyolBR(0)
< V(R) = V(R,n,K,r).



Proof continued. Now if € < r, then each B.(x;) lies inside some
(n1)-(n4)-chart ¢ : Bg(0) — U C M. Hence ¢~ 1(Bc(x;))
contains an e Xe-ball in Bg(0). Hence

volB.(x;) > e~2"KvolB.(0).

Hence
V(R) > volBgr(p)

> Z vol B(x;)
> se~2"Kvol B.(0).
Rearranging the above equation gives:
s < N(e) := V(R)e* K (vol B.(0)) L.

Hence M’ is precompact in the pointed Gromov-Hausdorff
topology.



Proof of Step 3: We now wish to show M’ := M™*(n, Q,r) is
closed in the pointed Gromov-Hausdorff topology. Let (M;, gi, pi)
be a sequence in M’ converging in the Gromov-Hausdorff topology
t0 (Moo, 8o, Poo). We wish to show (Muo, 8o, Poo) is in fact a
pointed Riemannian manifold inside M’. First of all, we will
construct continuous maps

Poos : Usws € Mo — Br(0) CR", s €N

satisfying (n3):
¢><;15 O Poot
is a C™“-map satisfying

ok © Poot|| cmira < B(n, K, ).

After that we will show that these are (n1)-(n4)-charts.



Proof of Step 3 continued. We will in fact construct ¢ L first. To

construct ¢5L, choose a countable collection of (n1)-(n4)-charts

¢is : Us € Mj — B,(0) CR", se N

covering M; for each i € N. By (n2), ¢." has bounded Lipschiz
constant and hence gbls , I € N are equicontinuous - in the
Gromov-Hausdorff sense. Hence, after passing to a subsequence,

qﬁ;l o, $=L for some maps:
bk Br(0) — My, s € N.

by the Gromov-Hausdorff extension of Arzela-Ascoli stated earlier.
(Some details are missing here - for instance Claim 0 a. must be
used here.)



Proof of Step 3 continued. Now Claim 0 b. tells us
d(651(0). 05 (x2)) > min(e~|xq — xal, K (2r — |xa] — [xal)) for
each i,s € N. As a result, one can show (Exercise), that ¢ L is an
injective map for each s € N. Hence we have well defined maps:

¢is : Us € Mj — B,(0) CR", se N

This also means that we can talk about transition maps ¢ 2L o doot.



Proof of Step 3 continued. Since
955" 0 Gitllcmra < f3(n, K, 1)

for each i,s € N by (n3), we have by another compactness
argument that ¢.os satisfies (n3) (stated earlier). Also

-1 cmB g
¢j5 o ¢it — ¢oos o qboot

for each s, t € N. (I have omitted some details here - see
Peterson.). It is also fairly straightforward to show ¢ satisfies

(n1).



Proof of Step 3 continued. Hence we have shown (My, dx, Poo) is
a C™% manifold with special charts ¢os, s € N. We now need to
construct an appropriate Riemannian metric on this manifold. To
do this, we consider the metric g;s := ((bgl)*g,- for each i,s € N.
Now, ¢js and gis satisfy (n2) and (n4) respectively. Hence these
derivative bounds ensure that

cmB
8is — 8oos

for some metric goos. These locally defined metrics patch together
to give us a Riemannian metric g, on M. Also, locally, the
distance metric induced by g.os should coincide with d
(Exercise). Finally it is fairly straightforward to show that ¢os,

s € N satisfies (n1)-(n4), however we won't spell out the details
here. QED for Step 3.



Proof of Step 4. We now need to show

cmB
(Mivgia pl) — (Moovgooa poo)
Definition: We say two maps F1, F» between subsets of M, and
M; are C™P-close if all their coordinate compositions

$is 0 F1o¢o, disoFaodl

are C™P_close.

Define
fis = it © hoos : Unos — Uss

for each s € N. Then f;, fi; converge to each other in the
C™B-topology as i — oo for each s, t € N. Also

f—I:gOO|Uoos — gi’Uis

in the C™# sense (after pre and post composing with chart maps).



Proof of Step 4. continued.
Therefore, it is sufficient for us to construct maps

Fii: Qo) i= Ué:l Usos — Q) = Uéle,'s

that get closer to fis as i — oo in the C™P sense for each
s=1,---,/ (as in the Definition above). We will construct Fj; by
induction on /. Choose a C™ 18 partition of unity (As)sen
subordinate to (Usos)sen-

For I = 1, we define F;; := f;1. Now suppose that we have
constructed Fiy. If Usg(111) N Qoo = 0, we define

F,'/(X) if x € Qo)
finvr) if x € Usry)-

Figrr1)(x) = {



Proof of Step 4. continued. Now suppose Uo(j41) N Qoo # 0, we
do the following: Define

/

)\glizz sy Aspi= Z As.

s=1 s=I+1

Define Fi(jy1) : Qoogr1) — Qigg1),
Fitrry(x) ==

Siien) © (A1(x) - Gir) © figrra) (%) + A<i(x) - Biray © Fir) -

The claim is that F;(;;1) gets closer to fis in the C™P sense as
i — oo for each s € N. We will not give the details here, but refer
to Peterson (page 315). O



Corollary: The norm ||A C (M, g)||cm.e,, for compact A is always
realized by (n1)-(n4)-charts

¢s: UsCM— B,(0) CR" seN
with Q replaced by ||A C (M, g)|/cma.r.
Proof. Choose (nl)-(n4)-charts

Q. UcM—B(0)CR", seN

for each Q > ||[A C (M, g)||cma . By the proof of the
fundamental theorem, these charts have a limit as
Q—[AC (M, g)llcma,

OJ



Corollary: If ||(M, g)||cme,, = 0 for some r > 0 then M is a flat
manifold. If ||[(M, g)||cma , =0 for all r > 0, then

(M, g) = (R”, gsta).

Proof. The proof even works when m = « = 0. By Claim 0, part
a (page 11), M can be covered by charts

¢:UC M — B,(0) C R" satisfying:

a. d(¢(x1), ¢ (%)) < e9x1 — xel,

b. d(¢71(x1), 07 (x2)) > min(e=P|xy — x2|, e~ (2r — |x1| — |x2|))
where d is the distance metric on M for each @ > 0. Now let

Q — 0 and use Arzela-Ascoli on ¢~1. This gives us maps

¢! By (0) — M:

a. d(¢> Hx), 07 (%)) < |xi — xal,

b. d(¢~*(x1), ¢~ (x2)) = min(|x1 — xel, (2r — [xa| = |xel)).
Hence ¢~ is an isometry onto its image (at least near 0) and
hence ¢ is a well defined flat chart. Hence M is locally flat.



Alternative Norms

Properties (n1)-(n4)can be replaced by the following properties:
We have charts

¢s: UsCM— B,(0)CR", sel

so that

(n1") The Lebesgue number of (Us)ses is fi(n, Q, r). Recall that a
cover has Lebesgue number A if any ball of radius A sits inside
an element of this cover.

(n2) |Dos|, Dot < fa(n, @),

(n3v) ||¢s_1 ° ¢t||C"’+1’a < f3(n7 Q7 r)'

(n4") rUHO‘HDJ((ngs_l)*g)Ha < fa(n, Q) for all multi-indices j
satisfying 0 < |j| < m

where f; are continuous functions, fi(n, 00, r) =0 and f(n,0) = 1.



For the fundamental theorem of convergence, we have assumed
a > 0. However, if m = a =0, then M°(n, @, r) (the class of
complete, pointed Riemannian n-manifolds satisfying

(M, g)llco, < Q),is only precompact in the pointed
Gromov-Hausdorff topology. Also the characterization of flatness
still holds.



