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Norms and Convergence

I We wish to have a norm which tells us how ‘flat a manifold is’.

I We also want subsets of complete flat manifolds to still have
non-zero norm.

I We will use a family of norms depending on a ‘scale’
parameter r .

I We also want such norms to be defined for subsets of
Riemannian manifolds as well.



Definition:Let A be a subset of M. The Cm,α norm on the scale r
of A, denoted by

‖A ⊂ (M, g)‖Cm,α,r

is ≤ Q,if we can find charts:

φs : Us ⊂ M −→ Br (0) ⊂ Rn, s ∈ I

so that

(n1) For each p ∈ A, there exists s ∈ I so that B 1
10
e−Q r (p) ⊂ Us .

(n2) |Dφs |, |Dφ−1s | ≤ eQ .

(n3) ‖φ−1s ◦ φt‖Cm+1,α ≤ f3(n,Q, r).

(n4) r |j |+α‖D j((φ−1s )∗g)‖α ≤ Q for all multi-indices j satisfying
0 ≤ |j | ≤ m.

Note that the above definition only requires g to be Cm,α. If
α = 0, then we replace Cm+1,α with Cm+1 and ‖ · ‖α with ‖ · ‖0.



It turns out that (n2) + (n4) =⇒ (n3), however we will keep (n3)
as a property.

Example: Suppose (M, g) is a complete flat Riemannian manifold.
Then ‖(M, g)‖Cm,α,r = 0 for each r ≤ inj(M, g).

In particular, ‖(Rn, gstd)‖Cm,α,r = 0 for each m, α, r .

Later on, we will show that if ‖(M, g)‖Cm,α,r = 0 for all m, α, r
then (M, g) = (Rn, gstd).

Next, we wish to describe Cm,α convergence of a sequence of
Riemannian manifolds.



Definition: Let (Mi , gi , pi ), i ∈ N ∪ {∞} be a sequence of pointed
Riemannian manifolds of the same dimension. We say (Mi , gi , pi )
converges to (M∞, g∞, p∞) in the pointed Cm,α-topology, written
as:

(Mi , gi , pi )
Cm,α

−→ (M∞, g∞, p∞),

if for each R > 0, there exists a domain Ω ⊂ BR(p∞) and
embeddings Fi : Ω −→ Mi , i � 1, so that

1. Fi (Ω) ⊃ BR,pi for each i ,

2. F ∗i gi
Cm,α

−→ g .

3. Fi (p∞) = pi for each i .

When the manifolds are closed, we have that Fi is a
diffeomorphism for R large enough. In this case, one can show that
the choice of basepoints pi does not matter, and so we can also
talk about unpointed convergence.



Proposition: Let A ⊂ M be precompact. Then

1. ‖A ⊂ (M, g)‖Cm,α,r = ‖A ⊂ (M, λ2g)‖Cm,α,λr for each r > 0.

2. The function r −→ ‖A ⊂ (M, g)‖Cm,α,r is continuous.

3. If (Mi , gi , pi )
Cm,α

−→ (M∞, g∞, p∞), then for every precompact
domain A∞ ⊂ M∞, there exists precompact domains Ai ⊂ Mi

for each i ∈ N so that

‖Ai‖Cm,α,r −→ ‖A∞‖Cm,α,r , ∀ r > 0.

If Mi is closed for each i ∈ N ∪ {∞} then we can assume
Ai = Mi for each i ∈ N ∪ {∞}.

Proof of 1. If we replace g with λ2g , then we replace the charts φs
by

φλs : Us ⊂ M −→ Bλr (0) ⊂ Rn, φλs (x) := λφs(x).

The same conditions (n1)-(n4) still hold.



Proof of 2. We wish to show: the function
r −→ ‖A ⊂ (M, g)‖Cm,α,r is continuous. Instead of scaling r , we
will replace φs with φλs (without changing the metric g).. This
corresponds to replacing r with λr . So we only need to show
continuous dependence on λ. Suppose

N(r) := ‖A ⊂ (M, g)‖Cm,α,r ≤ Q.

Then

N(λr) := ‖A ⊂ (M, g)‖Cm,α,λr ≤ max{Q + | log(λ)|,Q · λ2}.

This is enough to show continuous dependence on λ (Exercise).



Proof of 3. We need to show: If (Mi , gi , pi )
Cm,α

−→ (M∞, g∞, p∞),
then for every precompact domain A∞ ⊂ M∞, there exists
precompact domains Ai ⊂ Mi for each i ∈ N so that

‖Ai‖Cm,α,r −→ ‖A∞‖Cm,α,r , ∀ r > 0. (1)

First of all, we need to construct these domains Ai . By definition,
there is a domain Ω ⊃ A so that for all large i we have smooth
embeddings Fi : Ω −→ Mi satisfying F ∗i gi −→ g in Cm,α on Ω.
We define Ai := Fi (A∞). For Q > ‖A∞ ⊂ (M∞, g)‖Cm,α,r , choose
charts φs : Us ⊂ M∞ −→ Br (0) ⊂ Rn covering A∞ satisfying
(n1)-(n4). Define

φi ,s := φs ◦ F−1i : Fi (Us) ⊂ Mi −→ Br (0) ⊂ Rn.

Then, φi ,s satisfies (n1)-(n4)with A replaced by Ai and Q replaced
by Qi where Qi −→ Q. (Exercise). This is enough to prove
Equation (1). (Exercise).



I We now wish to have an Arzela-Ascoli type theorem using the
norms ‖ · ‖Cm,α,r on manifolds.

I Definition: For Q > 0, n ≥ 2, m ≥ 0, α ∈ (0, 1] and r > 0,
define Mm,α(n,Q, r) to be the class of complete, pointed
Riemannian n-manifolds (M, g , p) satisfying
‖(M, g)‖Cm,α,r ≤ Q. The manifolds here are Cm,α-manifolds.
I.e. transition functions are Cm,α.

I Theorem: (Fundamental Theorem of Convergence Theory)
Mm,α(n,Q, r) is sequentially compact in the pointed
Cm,β-topology for all β < α.



Proof: The proof will proceed in 4 stages:

Step 1 Setup and comments on charts.

Step 2 M′ :=Mm,α(n,Q, r) is precompact in the pointed
Gromov-Hausdorff topology.

Step 3 M′ is closed in the pointed Gromov-Hausdorff topology.

Step 4 Showing that any Gromov-Hausdorff convergent sequence in
M′ in fact convergences in the Cm,β-topology (after passing
to a subsequence).

We will now give some details of the proof. However there will be
many other details that we will skip.



Proof of Step 1. Setup. Write M′ :=Mm,α(n,Q, r). Fix K > Q.
We will call a chart for a manifold in M′ satisfying (n1)-(n4) with
Q replaced by K an (n1)-(n4)-chart. It is sufficient for us to show
that limit spaces exists for each K > Q.

Claim 0: Every (n1)-(n4)-chart φ : U ⊂ M −→ Br (0) ⊂ Rn

satisfies

a. d(φ−1(x1), φ−1(x2)) ≤ eK |x1 − x2|,
b. d(φ−1(x1), φ−1(x2)) ≥ min(e−K |x1 − x2|, e−K (2r − |x1| − |x2|))

where d is the distance measured in M, and | · | is the Euclidean
norm in the chart.

Proof of Claim 0: The condition (n2): |Dφ−1| ≤ eK , together
with the convexity of Br (0) gives us a. If there is a line segment in
U of length equal to d(φ−1(x1), φ−1(x2)) joining φ−1(x1) and
φ−1(x2), then the condition (n2): |Dφ−1| ≤ e−K tells us

d(φ−1(x1), φ−1(x2)) ≤ e−K |x1 − x2|

proving b.



Proof continued:
Now suppose that a segment σ : [0, 1] −→ M leaves U. Choose
t1 < t2 in (0, 1) so that σ|[0,t1) and σ|(t2,1] lie in U and so that
σ(ti ) /∈ U for i = 1, 2. Then

d(φ−1(x1), φ−1(x2)) = L(σ) ≥ L(σ|[0,t1)) + L(σ|(t2,1])

(n2)

≥ e−K (L(φ ◦ σ|[0,t1)) + L(φ ◦ σ|(t2,1]))

≥ e−K (2r − |x1| − |x2|)

This proves b.



Proof of Step 2. Recall that we now wish to prove that M′ is
precompact in the pointed Gromov-Hausdorff topology. We will
use Gromov’s Theorem to do this. Before we prove this, we need
to prove some claims.

Claim 1: Let δ = 1
10e
−K r . Then each δ-ball in M can be covered

N = N(n,K , r) balls of radius δ/4 for each M ∈M′.
Proof of Claim 1: Every δ-ball is contained in some (n1)-(n4)-chart
φ : U ⊂ M −→ Br (0) ⊂ Rn. We have bounds on the derivatives of
φ, φ−1 and hence the metric on U and the flat metric on Br (0) are
not too different. This gives us our bound N (Exercise: fill in
details). QED for Claim 1.



Claim 2: Every ball B(x ; l · δ/2) ⊂ M, l ∈ N can be covered by N l

balls of radius δ/4.

Proof of Claim 2: We prove this by induction on l . By Claim 1,
this is true for l = 1. Now suppose (by induction), Bl ·δ/2(x) is
covered by Bδ/4(x1), · · · ,Bδ/4(xN l ). Then
B(l+1)δ/2(x) = Blδ/2+δ/2x is covered by Bδ(x1), · · · ,Bδ(xN l ) (by
the triangle inequality). Each Bδ(xi ) is covered by N balls of radius
δ/4, and hence B(l+1)δ/2(x) is covered by N · N l = N l+1 balls of
radius δ/4. QED for Claim 2.

We will now use Claim 2 combined with Gromov’s compactness
result to show that M′ is precompact in the pointed
Gromov-Hausdorff topology.



To show that M′ is precompact, it is sufficient to show that the
radius R balls:

BR(p) ⊂ M, (M, g , p) ∈M′

are precompact with respect to the Gromov-Hausdorff topology.
By Gromov’s theorem, it is sufficient to show that for each ε > 0,
there exists N(ε) = N(ε,R,K , r , n) with the property that each
BR(p) as above contains at most N(ε) disjoint ε-balls. We will do
this by considering volume. Let Bε(x1), · · · ,Bε(xs) be disjoint balls
in BR(p). Choose l ∈ N so that

l · δ/2 < R ≤ (l + 1) · δ/2.

Then

volBR(p)
Claim 2
≤ (N l+1) · (max volume of a δ/4− ball)

≤ (N l+1) · (max volume of a (n1)-(n4)-chart)

≤ N l+1enKvolBR(0)

≤ V (R) = V (R, n,K , r).



Proof continued. Now if ε < r , then each Bε(xi ) lies inside some
(n1)-(n4)-chart φ : BR(0) −→ U ⊂ M. Hence φ−1(Bε(xi ))
contains an e−K ε-ball in BR(0). Hence

volBε(xi ) ≥ e−2nKvolBε(0).

Hence
V (R) ≥ volBR(p)

≥
∑
i

volBε(xi )

≥ se−2nKvolBε(0).

Rearranging the above equation gives:

s ≤ N(ε) := V (R)e2nK (volBε(0))−1.

Hence M′ is precompact in the pointed Gromov-Hausdorff
topology.



Proof of Step 3: We now wish to show M′ :=Mm,α(n,Q, r) is
closed in the pointed Gromov-Hausdorff topology. Let (Mi , gi , pi )
be a sequence in M′ converging in the Gromov-Hausdorff topology
to (M∞, g∞, p∞). We wish to show (M∞, g∞, p∞) is in fact a
pointed Riemannian manifold inside M′. First of all, we will
construct continuous maps

φ∞s : U∞s ⊂ M∞ −→ BR(0) ⊂ Rn, s ∈ N

satisfying (n3):
φ−1∞s ◦ φ∞t

is a Cm,α-map satisfying

‖φ−1∞s ◦ φ∞t‖Cm+1,α ≤ f3(n,K , r).

After that we will show that these are (n1)-(n4)-charts.



Proof of Step 3 continued. We will in fact construct φ−1∞s first. To
construct φ−1∞s , choose a countable collection of (n1)-(n4)-charts

φis : Uis ⊂ Mi −→ Br (0) ⊂ Rn, s ∈ N

covering Mi for each i ∈ N. By (n2), φ−1is has bounded Lipschiz
constant and hence φ−1is , i ∈ N are equicontinuous - in the
Gromov-Hausdorff sense. Hence, after passing to a subsequence,

φ−1is
dGH−→ φ−1∞s for some maps:

φ−1∞s : BR(0) −→ M∞, s ∈ N.

by the Gromov-Hausdorff extension of Arzela-Ascoli stated earlier.
(Some details are missing here - for instance Claim 0 a. must be
used here.)



Proof of Step 3 continued. Now Claim 0 b. tells us
d(φ−1is (x1), φ−1is (x2)) ≥ min(e−K |x1 − x2|, e−K (2r − |x1| − |x2|)) for
each i , s ∈ N. As a result, one can show (Exercise), that φ−1∞s is an
injective map for each s ∈ N. Hence we have well defined maps:

φis : Uis ⊂ Mi −→ Br (0) ⊂ Rn, s ∈ N

This also means that we can talk about transition maps φ−1∞s ◦φ∞t .



Proof of Step 3 continued. Since

‖φ−1is ◦ φit‖Cm+1,α ≤ f3(n,K , r)

for each i , s ∈ N by (n3), we have by another compactness
argument that φ∞s satisfies (n3) (stated earlier). Also

φ−1is ◦ φit
Cm,β

−→ φ−1∞s ◦ φ∞t

for each s, t ∈ N. (I have omitted some details here - see
Peterson.). It is also fairly straightforward to show φ∞s satisfies
(n1).



Proof of Step 3 continued. Hence we have shown (M∞, d∞, p∞) is
a Cm,α manifold with special charts φ∞s , s ∈ N. We now need to
construct an appropriate Riemannian metric on this manifold. To
do this, we consider the metric gis := (φ−1is )∗gi for each i , s ∈ N.
Now, φis and gis satisfy (n2) and (n4) respectively. Hence these
derivative bounds ensure that

gis
Cm,β

−→ g∞s

for some metric g∞s . These locally defined metrics patch together
to give us a Riemannian metric g∞ on M∞. Also, locally, the
distance metric induced by g∞s should coincide with d∞
(Exercise). Finally it is fairly straightforward to show that φ∞s ,
s ∈ N satisfies (n1)-(n4), however we won’t spell out the details
here. QED for Step 3.



Proof of Step 4. We now need to show

(Mi , gi , pi )
Cm,β

−→ (M∞, g∞, p∞).

Definition: We say two maps F1,F2 between subsets of M∞ and
Mi are Cm,β-close if all their coordinate compositions

φis ◦ F1 ◦ φ−1∞t , φis ◦ F2 ◦ φ−1∞t

are Cm,β-close.

Define
fis := φ−1is ◦ φ∞s : U∞s −→ Uis

for each s ∈ N. Then fis , fit converge to each other in the
Cm,β-topology as i →∞ for each s, t ∈ N. Also

f ∗is g∞|U∞s −→ gi |Uis

in the Cm,β sense (after pre and post composing with chart maps).



Proof of Step 4. continued.
Therefore, it is sufficient for us to construct maps

Fil : Ω∞l := ∪ls=1U∞s −→ Ωil := ∪ls=1Uis

that get closer to fis as i →∞ in the Cm,β sense for each
s = 1, · · · , l (as in the Definition above). We will construct Fil by
induction on l . Choose a Cm+1,β partition of unity (λs)s∈N
subordinate to (U∞s)s∈N.

For l = 1, we define Fi1 := fi1. Now suppose that we have
constructed Fil . If U∞(l+1) ∩ Ω∞l = ∅, we define

Fi(l+1)(x) :=

{
Fil(x) if x ∈ Ω∞l

fi(l+1) if x ∈ U∞(l+1).



Proof of Step 4. continued. Now suppose U∞(l+1) ∩ Ω∞l 6= ∅, we
do the following: Define

λ≤l :=
l∑

s=1

λs , λ>l :=
∞∑

s=l+1

λs .

Define Fi(l+1) : Ω∞(l+1) −→ Ωi(l+1),

Fi(l+1)(x) :=

φ−1i(l+1) ◦
(
λ>l(x) · φi(l+1) ◦ fi(l+1)(x) + λ≤l(x) · φi(l+1) ◦ Fil

)
.

The claim is that Fi(l+1) gets closer to fis in the Cm,β sense as
i →∞ for each s ∈ N. We will not give the details here, but refer
to Peterson (page 315).



Corollary: The norm ‖A ⊂ (M, g)‖Cm,α,r for compact A is always
realized by (n1)-(n4)-charts

φs : Us ⊂ M −→ Br (0) ⊂ Rn, s ∈ N

with Q replaced by ‖A ⊂ (M, g)‖Cm,α,r .

Proof: Choose (n1)-(n4)-charts

φQs : UQ
s ⊂ M −→ Br (0) ⊂ Rn, s ∈ N

for each Q > ‖A ⊂ (M, g)‖Cm,α,r . By the proof of the
fundamental theorem, these charts have a limit as
Q → ‖A ⊂ (M, g)‖Cm,α,r .



Corollary: If ‖(M, g)‖Cm,α,r = 0 for some r > 0 then M is a flat
manifold. If ‖(M, g)‖Cm,α,r = 0 for all r > 0, then
(M, g) = (Rn, gstd).

Proof: The proof even works when m = α = 0. By Claim 0, part
a (page 11), M can be covered by charts
φ : U ⊂ M −→ Br (0) ⊂ Rn satisfying:

a. d(φ−1(x1), φ−1(x2)) ≤ eQ |x1 − x2|,
b. d(φ−1(x1), φ−1(x2)) ≥ min(e−Q |x1 − x2|, e−Q(2r − |x1| − |x2|))

where d is the distance metric on M for each Q > 0. Now let
Q → 0 and use Arzela-Ascoli on φ−1. This gives us maps
φ−1 : Br (0) −→ M:

a. d(φ−1(x1), φ−1(x2)) ≤ |x1 − x2|,
b. d(φ−1(x1), φ−1(x2)) ≥ min(|x1 − x2|, (2r − |x1| − |x2|)).

Hence φ−1 is an isometry onto its image (at least near 0) and
hence φ is a well defined flat chart. Hence M is locally flat.



Alternative Norms

Properties (n1)-(n4)can be replaced by the following properties:
We have charts

φs : Us ⊂ M −→ Br (0) ⊂ Rn, s ∈ I

so that

(n1’) The Lebesgue number of (Us)s∈I is f1(n,Q, r). Recall that a
cover has Lebesgue number λ if any ball of radius λ sits inside
an element of this cover.

(n2’) |Dφs |, |Dφ−1s | ≤ f2(n,Q).

(n3’) ‖φ−1s ◦ φt‖Cm+1,α ≤ f3(n,Q, r).

(n4’) r |j |+α‖D j((φ−1s )∗g)‖α ≤ f4(n,Q) for all multi-indices j
satisfying 0 ≤ |j | ≤ m

where fi are continuous functions, f1(n,∞, r) = 0 and f2(n, 0) = 1.



For the fundamental theorem of convergence, we have assumed
α > 0. However, if m = α = 0, then M0(n,Q, r) (the class of
complete, pointed Riemannian n-manifolds satisfying
‖(M, g)‖C0,r ≤ Q),is only precompact in the pointed
Gromov-Hausdorff topology. Also the characterization of flatness
still holds.


