Homework

- (1) (Page 229 Exercise 2). Let $\mathfrak{t} \subset \mathfrak{iso}(M, g)$ be an abelian subalgebra corresponding to the torus subgroup $T^k \subset \operatorname{Iso}(M, g)$. Let $\mathfrak{p} \subset \mathfrak{t}$ be the set of Killing fields whose flow generates a circle action. Show that \mathfrak{p} is a vector space over \mathbb{Q} of dimension k.
- (2) (Page 229 Exercise 4). Given two killing fields X, Y, develop a formula for $\Delta g(X, Y)$. Use this to give a formula for the Ricci curvature in a frame consisting of Killing fields.
- (3) (Page 230 Exercise 11). Let (M, g) be an n-dimensional Riemannian manifold which is isometric to (ℝⁿ, g_{std}) outside a compact set. Suppose also that Ric(M, g) ≥ 0. Show that (M, g) = (ℝⁿ, g_{std}). *Hint:* See Corollary 19 in Chapter 6 of Peterson.
- (4) Show that $d_{\text{GH}}(X,Y) \geq \frac{1}{2} |\operatorname{diam}(X) \operatorname{diam}(Y)|$. Therefore, compute the Gromov-Hausdorff distance between $X = S_r$ and $Y = S_R$ for r, R > 0 where S_x is the sphere of radius x in \mathbb{R}^n for each x > 0, with chord metric (I.e. the distance between two points is realized by a straight line in \mathbb{R}^n).
- (5) (Peterson Page 331 Exercise 7). Let C be a class of closed Riemannian manifolds which is compact in the $C^{m,\alpha}$ topology. Show that there exists a function f(r) satisfying $f(r) \to 0$ as $r \to 0$ so that $||(M,g)||_{C^{m,\alpha},r} \leq f(r)$ for each (M,g) in C.

Definition: The *conjugate radius* at a point $p \in M$ is defined to be the supremum over all r > 0 so that the exponential map

$$\exp: \{ v \in T_p M : |v| < r \} \longrightarrow M$$

is an immersion. The *conjugate radius* conj.rad(M, g) of (M, g) is the supremum over all $p \in M$ of the conjugate radius of p.

(6) (Peterson Page 332, Exercise 11). Let $r_0, \Lambda, v > 0$. Consider the class of complete pointed Riemannian *n*-manifolds (M, g, p) satisfying

$$\operatorname{conj.rad}(M, g) \ge r_0$$
$$|\operatorname{Ric}(M, g)| \le \Lambda$$
$$\operatorname{Vol}B_1(q) \ge v, \ \forall \ q \in M.$$

Using the techniques from Cheeger's lemma (Lemma 51 from Peterson), show that the injectivity radius is bounded below. Conclude that the class of such manifolds is precompact in the $C^{1,\alpha}$ -topology.