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I Definition: A bounded domain Ω ⊂ Rn is a connected open
subset which is bounded.

I We define C 0(Ω,Rk) to be the normed vector space of
bounded continuous functions u : Ω −→ Rk with norm

‖u‖C0 = sup
x∈Ω
|u(x)|.

I Lemma: (C 0(Ω,Rk), ‖ · ‖C0) is a Banach space.



I We can also define the Banach space:

(Cm(Ω,Rk), ‖ · ‖k)

consisting of Cm functions u : Ω −→ R, whose derivatives up
to order m are bounded and with norm

‖u‖Cm :=
∑
|i |≤m

sup
Ω
|∂ iu|.

I The problem with this space is that Cm(Ω,Rk) is not a closed
subspace of Cm−1(Ω,Rk).

I For example f (x) = |x | is in the closure of

C 1([−1, 1],R) ⊂ C 0([−1, 1],R).



I For each α ∈ (0, 1], define the Cα-pseudonorm of
u : Ω −→ Rk to be:

‖u‖α := sup
x ,y∈Ω,x 6=y

|u(x)− u(y)|
|x − y |α

.

I For α = 1 this is the best Lipschiz constant of u.

I We define the Hölder space Cm,α(Ω,Rk) as the space of
functions in Cm(Ω,Rk) whose derivatives up to order m have
finite Cα-pseudonorm. We have the following norm:

‖u‖Cm,α = ‖u‖Cm +
∑
|i |=m

‖∂ iu‖α

on this space.

I Sometimes we write ‖u‖Cm,α,Ω if we need to highlight the
domain.



Lemma: (Cm,α(Ω,Rk), ‖ · ‖Cm,α) is a Banach space. Also for
β < α, the inclusion map Cm,α(Ω,Rk) ↪→ Cm,β(Ω,Rk) is
compact. I.e. closed bounded sets map to compact sets.

Proof The general case follows from the m = 0 case (Exercise).
Let (ui )i∈N be a Cauchy sequence in Cα(Ω,Rk). Since it is Cauchy
in C 0, ui → u for some u ∈ C 0(Ω,Rk). For each x 6= y , we have

|ui (x)− ui (y)|
|x − y |α

−→ |u(x)− u(y)|
|x − y |α

.

Since the left hand side is uniformly bounded, u ∈ Cα(Ω,Rk).

We now need to show ui
Cα−→ u. Let ε > 0. Choose N > 0 so that

|ui (x)− uj(x)− (ui (y)− uj(y))|
|x − y |α

≤ ε, ∀ i , j ≥ N, x , y ∈ Ω.

Letting j →∞, we get: Choose N > 0 so that

|ui (x)− u(x)− (ui (y)− u(y))|
|x − y |α

≤ ε, ∀ i ≥ N, x , y ∈ Ω

and so ui
Cα−→ u.



Proof continued.. We now need to show: for β < α, the
inclusion map Cm,α(Ω,Rk) ↪→ Cm,β(Ω,Rk) is compact. Let
(ui )i∈N be a bounded sequence in Cα(Ω,Rk). It is equicontinuous

in C 0(Ω,Rk), and so ui
C0

−→ u ∈ C 0(Ω,Rk) after passing to a
subsequence by Arezela-Ascoli. Let vi := ui − u. Then for each
x , y ∈ Ω,

|vi (x)− vi (y)

|x − y |β
=

(
|vi (x)− vi (y)

|x − y |α

)β/α
· |vi (x)− vi (y)|1−β/α

and so
‖vi‖β ≤ (‖vi‖α)β/α · (2‖vi‖C0)1−β/α.

This converges to 0 as i →∞ since β < α ≤ 1, ui
C0

−→ u and

(‖vi‖α)i∈N is bounded. Hence ui
Cβ−→ u.



Elliptic Estimates

I Consider a second order linear differential operator on
functions Ω −→ R. This is an operator of the form:

L(u) = aij∂i∂ju + bi∂iu

where (aij)ni ,j=1, (bi )ni=1 are Cα functions Ω −→ R satisfying

aij = aji .

I L is elliptic if (aij) is positive definite.

I Let us fix λ > 0 so that all eigenvalues of (aij) are in [−λ, λ]
and so that

‖aij‖α ≤ λ−1, ‖bj‖α ≤ λ−1.



I Theorem: Let Ω ⊂ Rn be an open domain of diameter ≤ D
and K ⊂ Ω a subdomain satisfying d(K , ∂Ω) > δ for some
δ > 0. Let α ∈ (0, 1). Then there is a constant
C = C (n, α, λ, δ,D) satisfying

‖u‖C2,α,K ≤ C (‖Lu‖Cα,Ω + ‖u‖Cα,Ω)

‖u‖C1,α,K ≤ C
(
‖Lu‖C0,Ω + ‖u‖Cα,Ω

)
Furthermore, if Ω has a smooth boundary and u = φ on ∂Ω,
then there exists C = C (n, α, λ,D) so that:

‖u‖C2,α,Ω ≤ C
(
‖Lu‖Cα,Ω + ‖φ‖C2,α,∂Ω

)
.

I We won’t prove this theorem. However, we will give some
ideas of the proof.



I The first step is to prove it in the case L = ∆.

I The second idea is that aij “look” constant near each point in
Ω and hence we we can use the previous step when bi and f
are zero.

I Finally one can rewrite the equation as:

Lu = aij∂i∂ju + bi∂iu = ∂i (a
ij∂ju).

Then we have integration by parts:∫
Ω

(∂i (a
ij∂ju))h = −

∫
Ω
aij∂ju∂ih

if h|∂Ω = 0. One can then use the previous step.



I Corollary: Suppose, in addition,

‖aij‖Cm,α ≤ λ−1, ‖bj‖Cm,α ≤ λ−1,

then there is a constant C = C (n,m, α, λ, δ,D) so that

‖u‖Cm+2,α,K ≤ C (‖Lu‖Cm,α,Ω + ‖u‖Cα,Ω)

and on a domain with smooth boundary (as above):

‖u‖Cm+2,α,Ω ≤ C
(
‖Lu‖Cm,α,Ω + ‖φ‖Cm+2,α,∂Ω

)
.



I Theorem: Let Ω ⊂ Rn be a bounded domain with smooth
boundary. Then the Dirichlet problem:

Lu = f , u|∂Ω = φ

has a unique solution u ∈ C 2,α(Ω) if f ∈ Cα(Ω) and
φ ∈ C 2,α(∂Ω).

I The uniqueness is straightforward from the estimates above
(Exercise). However, existence is harder.



Harmonic Coordinates

I Definition: A Harmonic corrdinate system is a coordinate
system (x1, · · · , xn) where x i is a Harmonic function with
respect to the Laplacian on (M, g).

I Theorem: For any point p ∈ M, there is a harmonic
coordinate system U −→ Rn satisfying U 3 p.

I Proof:. Start with a coordinate system y = (y1, · · · , yn)
centered at our given point and let gij = g( ∂

∂yi
, ∂
∂yj

) be our

metric. We need to find a coordinate transformation y → x so
that

∆xk =
1√

det gij
∂i

(√
det gij · g ij · ∂jxk

)
= 0.

To do this, let Bε(0) be a small ball in the chart y and solve
the Diriclet problem:

∆xk = 0, xk |∂Bε(0) = yk |∂Bε(0).



Proof continued: We need to show that xk are coordinates for
ε > 0 small enough. We will use the Schauder estimates above to
do this. We have:

‖x − y‖C2,α,Bε(0) ≤

C
(
‖∆(x − y)‖Cα,Bε(0) +

∥∥(x − y)|∂Bε(0)

∥∥
C2,α,∂Bε(0)

)
= C‖∆y‖Cα,Bε(0).

If we can show

‖∆y‖Cα,Bε(0) → 0, as ε→ 0

then this would be enough to show that x is a coordinate system
near 0. We only need to do this when α < 1. To do this, we will
assume that yk = exp ◦zk for each k where z1, · · · , zk are
orthogonal linear coordinates on TpM. In this coordinate system,
∆ is equal to the flat Laplacian at 0. Hence ∆y = 0 at 0 and so
the equation above holds for α < 1 since y is smooth.



I Lemma: Let x : U −→ Rn be a harmonic coordinate system
on (M, g). Then for each smooth function u on U,

1. ∆u = g ij∂i∂ju.
2. There is a universal analytic expression Q(g , ∂g) that is

polynomial in g , quadratic in ∂g and with a denominator
depending on

√
det gij so that:

1

2
∆gij + Q(g , ∂g) = −Ricij .

Ricij = Ric(∂i , ∂j).

I Proof of 1. 0 = ∆xk = 1√
det gst

∂i
(√

det gst · g ij · ∂jxk
)

= g ij∂i∂jx
k +

1√
det gst

∂i

(√
det gst · g ij

)
· ∂jxk

= 0 +
1√

det gst
∂i

(√
det gst · g ij

)
· δkj

1√
det gst

∂i

(√
det gst · g ik

)
.



Proof of 1. continued. From the previous slide we have:

0 =
1√

det gst
∂i

(√
det gst · g ik

)
.

Hence

∆u =
1√

det gst
∂i

(√
det gst · g ij · ∂ju

)
= g ij∂i∂ju +

1√
det gst

∂i

(√
det gst · g ij

)
· ∂ju

= g ij∂i∂ju.

Proof of 2.
Since xk is harmonic for each k, we can use the Bochner formula:

1

2
∆g(∇xk ,∇xk) = ∆

(
1

2
|xk |2

)
= |Hess(xk)|2 + Ric(∇xk ,∇xk).

Polarizing this quadratic expression gives:

1

2
∆g(∇x i ,∇x j)− g(Hessx i ,Hessxk) = Ric(∇x i ,∇x j).



Proof of 2. continued.
Now ∇xk = g ij∂jx

k∂i = g ik∂i .Hence g(∇x i ,∇x j) = g ij . and so:

1

2
∆g ij − g(Hessx i ,Hessxk) = Ric(∇x i ,∇x j)

Hence

1

2
∆g ij − g(Hessx i ,Hessxk) = g ik · Ric(∂i , ∂l) · g lj .

Since gik · gkj = δji , we get

0 = ∆(gik · gkj) =

(∆gik)gkj + 2
∑
k

g(∇gik ,∇gkl) + gik∆gkj

(∆gik)gkj + 2(∇gik) · (∇gkl) + gik∆gkj

(here we we can assume that gij is the standard metric at the
origin.)



Proof of 2. continued.

By combining the previous two equations, we get

∆gij = −2(∇gij)(∇gkl)glj − gik(∆gkl)glj

= −2(∇gij)(∇gkl)glj − 2(∇gik)g(Hessxk ,Hessx l)glj

−2(∇gik)(∇gks)Ric(∂s , ∂t)g
tlglj

= −2(∇gij)(∇gkl)glj − 2(∇gik)g(Hessxk ,Hessx l)glj − 2Ric(∂i , ∂j)

= −2Qij(g , ∂g)− 2Ricij .

Hence
1

2
∆gij + Qij(g , ∂g) = −Ricij .



Let us consider this formula when we have an Einstein metric:

Ricij = (n − 1)kgij .

In this case:
1

2
gij = −(n − 1)kgij − Q(g , ∂g).

Now if g is only C 1,α, the formula above makes sense (I.e. using
weak derivatives).So if g is C 1,α, then the LHS is Cα, and so g is
in fact C 2,α.Repeating this argument tells us that g is C k,α for
each k and so g is smooth. Conclusion:

Corollary: Suppose g is a C 1,α metric satisfying Einstein’s
equations and we have a smooth harmonic coordinate system
(xk)k=1,··· ,n, then g is also a smooth metric.


