Hölder Spaces and Schauder Estimates

MAT 569

April 7, 2020

- Definition: A bounded domain $\Omega \subset \mathbb{R}^{n}$ is a connected open subset which is bounded.
- We define $C^{0}\left(\Omega, \mathbb{R}^{k}\right)$ to be the normed vector space of bounded continuous functions $u: \Omega \longrightarrow \mathbb{R}^{k}$ with norm

$$
\|u\|_{C^{0}}=\sup _{x \in \Omega}|u(x)| .
$$

- Lemma: $\left(C^{0}\left(\Omega, \mathbb{R}^{k}\right),\|\cdot\|_{C^{0}}\right)$ is a Banach space.
- We can also define the Banach space:

$$
\left(C^{m}\left(\Omega, \mathbb{R}^{k}\right),\|\cdot\|_{k}\right)
$$

consisting of C^{m} functions $u: \Omega \longrightarrow \mathbb{R}$, whose derivatives up to order m are bounded and with norm

$$
\|u\|_{C^{m}}:=\sum_{|i| \leq m} \sup _{\Omega}\left|\partial^{i} u\right| .
$$

- The problem with this space is that $C^{m}\left(\Omega, \mathbb{R}^{k}\right)$ is not a closed subspace of $C^{m-1}\left(\Omega, \mathbb{R}^{k}\right)$.
- For example $f(x)=|x|$ is in the closure of

$$
C^{1}([-1,1], \mathbb{R}) \subset C^{0}([-1,1], \mathbb{R})
$$

- For each $\alpha \in(0,1]$, define the C^{α}-pseudonorm of $u: \Omega \longrightarrow \mathbb{R}^{k}$ to be:

$$
\|u\|_{\alpha}:=\sup _{x, y \in \Omega, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} .
$$

- For $\alpha=1$ this is the best Lipschiz constant of u.
- We define the Hölder space $C^{m, \alpha}\left(\Omega, \mathbb{R}^{k}\right)$ as the space of functions in $C^{m}\left(\Omega, \mathbb{R}^{k}\right)$ whose derivatives up to order m have finite C^{α}-pseudonorm. We have the following norm:

$$
\|u\|_{C^{m, \alpha}}=\|u\|_{C^{m}}+\sum_{|i|=m}\left\|\partial^{i} u\right\|_{\alpha}
$$

on this space.

- Sometimes we write $\|u\|_{C^{m, \alpha}, \Omega}$ if we need to highlight the domain.

Lemma: $\left(C^{m, \alpha}\left(\Omega, \mathbb{R}^{k}\right),\|\cdot\|_{C^{m, \alpha}}\right)$ is a Banach space. Also for $\beta<\alpha$, the inclusion map $C^{m, \alpha}\left(\Omega, \mathbb{R}^{k}\right) \hookrightarrow C^{m, \beta}\left(\Omega, \mathbb{R}^{k}\right)$ is compact. I.e. closed bounded sets map to compact sets.

Proof The general case follows from the $m=0$ case (Exercise). Let $\left(u_{i}\right)_{i \in \mathbb{N}}$ be a Cauchy sequence in $C^{\alpha}\left(\Omega, \mathbb{R}^{k}\right)$. Since it is Cauchy in $C^{0}, u_{i} \rightarrow u$ for some $u \in C^{0}\left(\Omega, \mathbb{R}^{k}\right)$. For each $x \neq y$, we have

$$
\frac{\left|u_{i}(x)-u_{i}(y)\right|}{|x-y|^{\alpha}} \longrightarrow \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}
$$

Since the left hand side is uniformly bounded, $u \in C^{\alpha}\left(\Omega, \mathbb{R}^{k}\right)$. We now need to show $u_{i} \xrightarrow{C^{\alpha}} u$. Let $\epsilon>0$. Choose $N>0$ so that

$$
\frac{\left|u_{i}(x)-u_{j}(x)-\left(u_{i}(y)-u_{j}(y)\right)\right|}{|x-y|^{\alpha}} \leq \epsilon, \quad \forall i, j \geq N, x, y \in \Omega .
$$

Letting $j \rightarrow \infty$, we get: Choose $N>0$ so that

$$
\frac{\left|u_{i}(x)-u(x)-\left(u_{i}(y)-u(y)\right)\right|}{|x-y|^{\alpha}} \leq \epsilon, \quad \forall i \geq N, x, y \in \Omega
$$

and so $u_{i} \xrightarrow{C^{\alpha}} u$.

Proof continued.. We now need to show: for $\beta<\alpha$, the inclusion map $C^{m, \alpha}\left(\Omega, \mathbb{R}^{k}\right) \hookrightarrow C^{m, \beta}\left(\Omega, \mathbb{R}^{k}\right)$ is compact. Let $\left(u_{i}\right)_{i \in \mathbb{N}}$ be a bounded sequence in $C^{\alpha}\left(\Omega, \mathbb{R}^{k}\right)$. It is equicontinuous in $C^{0}\left(\Omega, \mathbb{R}^{k}\right)$, and so $u_{i} \xrightarrow{C^{0}} u \in C^{0}\left(\Omega, \mathbb{R}^{k}\right)$ after passing to a subsequence by Arezela-Ascoli. Let $v_{i}:=u_{i}-u$. Then for each $x, y \in \Omega$,

$$
\frac{\mid v_{i}(x)-v_{i}(y)}{|x-y|^{\beta}}=\left(\frac{\mid v_{i}(x)-v_{i}(y)}{|x-y|^{\alpha}}\right)^{\beta / \alpha} \cdot\left|v_{i}(x)-v_{i}(y)\right|^{1-\beta / \alpha}
$$

and so

$$
\left\|v_{i}\right\|_{\beta} \leq\left(\left\|v_{i}\right\|_{\alpha}\right)^{\beta / \alpha} \cdot\left(2\left\|v_{i}\right\|_{C^{0}}\right)^{1-\beta / \alpha}
$$

This converges to 0 as $i \rightarrow \infty$ since $\beta<\alpha \leq 1, u_{i} \xrightarrow{C^{0}} u$ and $\left(\left\|v_{i}\right\|_{\alpha}\right)_{i \in \mathbb{N}}$ is bounded. Hence $u_{i} \xrightarrow{C^{\beta}} u$.

Elliptic Estimates

- Consider a second order linear differential operator on functions $\Omega \longrightarrow \mathbb{R}$. This is an operator of the form:

$$
L(u)=a^{i j} \partial_{i} \partial_{j} u+b^{i} \partial_{i} u
$$

where $\left(a^{i j}\right)_{i, j=1}^{n},\left(b^{i}\right)_{i=1}^{n}$ are C^{α} functions $\Omega \longrightarrow \mathbb{R}$ satisfying $a^{i j}=a^{i j}$.

- L is elliptic if $\left(a^{i j}\right)$ is positive definite.
- Let us fix $\lambda>0$ so that all eigenvalues of $\left(a^{i j}\right)$ are in $[-\lambda, \lambda]$ and so that

$$
\left\|a^{i j}\right\|_{\alpha} \leq \lambda^{-1}, \quad\left\|b^{j}\right\|_{\alpha} \leq \lambda^{-1}
$$

- Theorem: Let $\Omega \subset \mathbb{R}^{n}$ be an open domain of diameter $\leq D$ and $K \subset \Omega$ a subdomain satisfying $d(K, \partial \Omega)>\delta$ for some $\delta>0$. Let $\alpha \in(0,1)$. Then there is a constant $C=C(n, \alpha, \lambda, \delta, D)$ satisfying

$$
\begin{aligned}
& \|u\|_{C^{2, \alpha}, K} \leq C\left(\|L u\|_{C^{\alpha}, \Omega}+\|u\|_{C^{\alpha}, \Omega}\right) \\
& \|u\|_{C^{1, \alpha}, K} \leq C\left(\|L u\|_{C^{0}, \Omega}+\|u\|_{C^{\alpha}, \Omega}\right)
\end{aligned}
$$

Furthermore, if Ω has a smooth boundary and $u=\phi$ on $\partial \Omega$, then there exists $C=C(n, \alpha, \lambda, D)$ so that:

$$
\|u\|_{C^{2, \alpha}, \Omega} \leq C\left(\|L u\|_{C^{\alpha}, \Omega}+\|\phi\|_{C^{2, \alpha}, \partial \Omega}\right) .
$$

- We won't prove this theorem. However, we will give some ideas of the proof.
- The first step is to prove it in the case $L=\Delta$.
- The second idea is that $a^{i j}$ "look" constant near each point in Ω and hence we we can use the previous step when b^{i} and f are zero.
- Finally one can rewrite the equation as:

$$
L u=a^{i j} \partial_{i} \partial_{j} u+b^{i} \partial_{i} u=\partial_{i}\left(a^{i j} \partial_{j} u\right)
$$

Then we have integration by parts:

$$
\int_{\Omega}\left(\partial_{i}\left(a^{i j} \partial_{j} u\right)\right) h=-\int_{\Omega} a^{i j} \partial_{j} u \partial_{i} h
$$

if $\left.h\right|_{\partial \Omega}=0$. One can then use the previous step.

- Corollary: Suppose, in addition,

$$
\left\|a^{i j}\right\|_{C^{m, \alpha}} \leq \lambda^{-1}, \quad\left\|b^{j}\right\|_{C^{m, \alpha}} \leq \lambda^{-1}
$$

then there is a constant $C=C(n, m, \alpha, \lambda, \delta, D)$ so that

$$
\|u\|_{C^{m+2, \alpha}, K} \leq C\left(\|L u\|_{C^{m, \alpha}, \Omega}+\|u\|_{C^{\alpha}, \Omega}\right)
$$

and on a domain with smooth boundary (as above):

$$
\|u\|_{C^{m+2, \alpha}, \Omega} \leq C\left(\|L u\|_{C^{m, \alpha}, \Omega}+\|\phi\|_{C^{m+2, \alpha}, \partial \Omega}\right)
$$

- Theorem: Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Then the Dirichlet problem:

$$
L u=f,\left.\quad u\right|_{\partial \Omega}=\phi
$$

has a unique solution $u \in C^{2, \alpha}(\Omega)$ if $f \in C^{\alpha}(\Omega)$ and $\phi \in C^{2, \alpha}(\partial \Omega)$.

- The uniqueness is straightforward from the estimates above (Exercise). However, existence is harder.

Harmonic Coordinates

- Definition: A Harmonic corrdinate system is a coordinate system $\left(x^{1}, \cdots, x^{n}\right)$ where x^{i} is a Harmonic function with respect to the Laplacian on (M, g).
- Theorem: For any point $p \in M$, there is a harmonic coordinate system $U \longrightarrow \mathbb{R}^{n}$ satisfying $U \ni p$.
- Proof: Start with a coordinate system $y=\left(y^{1}, \cdots, y^{n}\right)$ centered at our given point and let $g_{i j}=g\left(\frac{\partial}{\partial y_{i}}, \frac{\partial}{\partial y_{j}}\right)$ be our metric. We need to find a coordinate transformation $y \rightarrow x$ so that

$$
\Delta x^{k}=\frac{1}{\sqrt{\operatorname{det} g_{i j}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{i j}} \cdot g^{i j} \cdot \partial_{j} x^{k}\right)=0
$$

To do this, let $B_{\epsilon}(0)$ be a small ball in the chart y and solve the Diriclet problem:

$$
\Delta x^{k}=0,\left.\quad x^{k}\right|_{\partial B_{\epsilon}(0)}=\left.y^{k}\right|_{\partial B_{\epsilon}(0)} .
$$

Proof continued: We need to show that x^{k} are coordinates for $\epsilon>0$ small enough. We will use the Schauder estimates above to do this. We have:

$$
\begin{gathered}
\|x-y\|_{C^{2, \alpha}, B_{\epsilon}(0)} \leq \\
C\left(\|\Delta(x-y)\|_{C^{\alpha}, B_{\epsilon}(0)}+\left\|\left.(x-y)\right|_{\partial B_{\epsilon}(0)}\right\|_{C^{2, \alpha}, \partial B_{\epsilon}(0)}\right) \\
=C\|\Delta y\|_{C^{\alpha}, B_{\epsilon}(0)} .
\end{gathered}
$$

If we can show

$$
\|\Delta y\|_{C^{\alpha}, B_{\epsilon}(0)} \rightarrow 0, \text { as } \epsilon \rightarrow 0
$$

then this would be enough to show that x is a coordinate system near 0 . We only need to do this when $\alpha<1$. To do this, we will assume that $y^{k}=\exp \circ z^{k}$ for each k where z^{1}, \cdots, z^{k} are orthogonal linear coordinates on $T_{p} M$. In this coordinate system, Δ is equal to the flat Laplacian at 0 . Hence $\Delta y=0$ at 0 and so the equation above holds for $\alpha<1$ since y is smooth.

- Lemma: Let $x: U \longrightarrow \mathbb{R}^{n}$ be a harmonic coordinate system on (M, g). Then for each smooth function u on U,

1. $\Delta u=g^{i j} \partial_{i} \partial_{j} u$.
2. There is a universal analytic expression $Q(g, \partial g)$ that is polynomial in g, quadratic in ∂g and with a denominator depending on $\sqrt{\operatorname{det} g_{i j}}$ so that:

$$
\frac{1}{2} \Delta g_{i j}+Q(g, \partial g)=-\mathrm{Ric}_{i j} .
$$

$\operatorname{Ric}_{i j}=\operatorname{Ric}\left(\partial_{i}, \partial_{j}\right)$.

- Proof of 1. $0=\Delta x^{k}=\frac{1}{\sqrt{\operatorname{det} g_{s t}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{s t}} \cdot g^{i j} \cdot \partial_{j} x^{k}\right)$

$$
\begin{gathered}
=g^{i j} \partial_{i} \partial_{j} x^{k}+\frac{1}{\sqrt{\operatorname{det} g_{s t}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{s t}} \cdot g^{i j}\right) \cdot \partial_{j} x^{k} \\
=0+\frac{1}{\sqrt{\operatorname{det} g_{s t}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{s t}} \cdot g^{i j}\right) \cdot \delta_{j}^{k} \\
\frac{1}{\sqrt{\operatorname{det} g_{s t}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{s t}} \cdot g^{i k}\right) .
\end{gathered}
$$

Proof of 1. continued. From the previous slide we have:

$$
0=\frac{1}{\sqrt{\operatorname{det} g_{s t}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{s t}} \cdot g^{i k}\right)
$$

Hence

$$
\begin{gathered}
\Delta u=\frac{1}{\sqrt{\operatorname{det} g_{s t}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{s t}} \cdot g^{i j} \cdot \partial_{j} u\right) \\
=g^{i j} \partial_{i} \partial_{j} u+\frac{1}{\sqrt{\operatorname{det} g_{s t}}} \partial_{i}\left(\sqrt{\operatorname{det} g_{s t}} \cdot g^{i j}\right) \cdot \partial_{j} u \\
=g^{i j} \partial_{i} \partial_{j} u .
\end{gathered}
$$

Proof of 2.
Since x^{k} is harmonic for each k, we can use the Bochner formula:

$$
\frac{1}{2} \Delta g\left(\nabla x^{k}, \nabla x^{k}\right)=\Delta\left(\frac{1}{2}\left|x^{k}\right|^{2}\right)=\left|\operatorname{Hess}\left(x^{k}\right)\right|^{2}+\operatorname{Ric}\left(\nabla x^{k}, \nabla x^{k}\right)
$$

Polarizing this quadratic expression gives:

$$
\frac{1}{2} \Delta g\left(\nabla x^{i}, \nabla x^{j}\right)-g\left(\operatorname{Hess} x^{i}, \operatorname{Hess} x^{k}\right)=\operatorname{Ric}\left(\nabla x^{i}, \nabla x^{j}\right) .
$$

Proof of 2. continued.
Now $\nabla x^{k}=g^{i j} \partial_{j} x^{k} \partial_{i}=g^{i k} \partial_{i}$. Hence $g\left(\nabla x^{i}, \nabla x^{j}\right)=g^{i j}$. and so:

$$
\frac{1}{2} \Delta g^{i j}-g\left(\operatorname{Hess}^{i}, \operatorname{Hess} x^{k}\right)=\operatorname{Ric}\left(\nabla x^{i}, \nabla x^{j}\right)
$$

Hence

$$
\frac{1}{2} \Delta g^{i j}-g\left(\operatorname{Hess}^{i}, \operatorname{Hess} x^{k}\right)=g^{i k} \cdot \operatorname{Ric}\left(\partial_{i}, \partial_{l}\right) \cdot g^{l j}
$$

Since $g_{i k} \cdot g^{k j}=\delta_{i}^{j}$, we get

$$
\begin{gathered}
0=\Delta\left(g_{i k} \cdot g^{k j}\right)= \\
\left(\Delta g_{i k}\right) g^{k j}+2 \sum_{k} g\left(\nabla g_{i k}, \nabla g^{k l}\right)+g_{i k} \Delta g^{k j} \\
\left(\Delta g_{i k}\right) g^{k j}+2\left(\nabla g_{i k}\right) \cdot\left(\nabla g^{k l}\right)+g_{i k} \Delta g^{k j}
\end{gathered}
$$

(here we we can assume that $g_{i j}$ is the standard metric at the origin.)

Proof of 2. continued.

By combining the previous two equations, we get

$$
\begin{gathered}
\Delta g_{i j}=-2\left(\nabla g_{i j}\right)\left(\nabla g^{k l}\right) g_{l j}-g_{i k}\left(\Delta g^{k l}\right) g_{l j} \\
=-2\left(\nabla g_{i j}\right)\left(\nabla g^{k l}\right) g_{l j}-2\left(\nabla g_{i k}\right) g\left(\operatorname{Hess} x^{k}, \operatorname{Hessx} x^{\prime}\right) g_{l j} \\
-2\left(\nabla g_{i k}\right)\left(\nabla g^{k s}\right) \operatorname{Ric}\left(\partial_{s}, \partial_{t}\right) g^{t l} g_{l j} \\
=-2\left(\nabla g_{i j}\right)\left(\nabla g^{k l}\right) g_{l j}-2\left(\nabla g_{i k}\right) g\left(\operatorname{Hess} x^{k}, \operatorname{Hess} x^{\prime}\right) g_{l j}-2 \operatorname{Ric}\left(\partial_{i}, \partial_{j}\right) \\
=-2 Q_{i j}(g, \partial g)-2 \operatorname{Ric}_{i j} .
\end{gathered}
$$

Hence

$$
\frac{1}{2} \Delta g_{i j}+Q_{i j}(g, \partial g)=-\mathrm{Ric}_{i j}
$$

Let us consider this formula when we have an Einstein metric:

$$
\operatorname{Ric}_{i j}=(n-1) k g_{i j}
$$

In this case:

$$
\frac{1}{2} g_{i j}=-(n-1) k g_{i j}-Q(g, \partial g)
$$

Now if g is only $C^{1, \alpha}$, the formula above makes sense (I.e. using weak derivatives).So if g is $C^{1, \alpha}$, then the LHS is C^{α}, and so g is in fact $C^{2, \alpha}$. Repeating this argument tells us that g is $C^{k, \alpha}$ for each k and so g is smooth. Conclusion:

Corollary: Suppose g is a $C^{1, \alpha}$ metric satisfying Einstein's equations and we have a smooth harmonic coordinate system $\left(x^{k}\right)_{k=1, \cdots, n}$, then g is also a smooth metric.

