
Harmonic Norms and Ricci Curvature

MAT 569

April 28, 2020



The Harmonic Norm

Let A ⊂ M be a subset. The harmonic norm, denoted by

‖A ⊂ ‖harmCm,α,r

is defined in the same way as ‖A ⊂ ‖harmCm,α,r but we replace
condition (n3) with the condition that φs is harmonic with respect
to the Riemannian metric.

Let us spell out this definition in detail as a reminder.



Definition:Let A be a subset of M. The Harmonic Cm,α-norm on
the scale r of A, denoted by

‖A ⊂ (M, g)‖harmCm,α,r

is ≤ Q,if we can find charts:

φs : Us ⊂ M −→ Br (0) ⊂ Rn, s ∈ I

so that

(h1) For each p ∈ A, there exists s ∈ I so that B 1
10
e−Q r (p) ⊂ Us .

(h2) |Dφs |, |Dφ−1s | ≤ eQ .

(h3) φs is harmonic with respect to the Riemannian metric.
Equivalently, in local coordinates from this chart:

1
√
gst
∂i
(√

gst · g ij
)

= 0.

(h4) r |j |+α‖D j((φ−1s )∗g)‖α ≤ Q for all multi-indices j satisfying
0 ≤ |j | ≤ m.

Note that the above definition only requires φs to be Cm+1,α and
g to be Cm,α.



Definition: Any chart satisfying (h1)-(h4) is called a
(h1)-(h4)-chart.

Since (n2) + (n4) =⇒ (n3), we have that each (h1)-(h4)-chart is
a (n1)-(n4)-chart. Hence we get the following lemma:

Lemma: Let 0 < r1 < r2, n,m ∈ N, α ∈ (0, 1]. We have

‖A ⊂ (M, g)‖Cm,α,r ≤ ‖A ⊂ (M, g)‖harmCm,α,r



Therefore we get the following corollary of the fundamental
theorem of convergence theory:

Corollary: Let Q > 0, n ≥ 2, m ≥ 0, α ∈ (0, 1] and r > 0.
Consider the class of complete, pointed Riemannian n-manifolds
(M, g , p) satisfying

‖A ⊂ (M, g)‖harmCm,α,r ≤ Q.

This class is closed in the pointed Cm,α-topology and compact in
the pointed Cm,β-topology for all β < α.

Proof: The only thing to check here is that harmonic charts
converge to harmonic charts. This is fairly straightforward.



Proposition (M. Anderson, 1990) Suppose A ⊂ M is precompact.
Then

1. ‖A ⊂ (M, g)‖harmCm,α,r = ‖A ⊂ (M, λ2g)‖harmCm,α,λr for each r > 0.

2. The function r −→ ‖A ⊂ (M, g)‖harmCm,α,r is continuous. Also if
m ≥ 1 then this function tends to 0 as r → 0.

3. If (Mi , gi , pi )
Cm,α

−→ (M∞, g∞, p∞), then for every precompact
domain A∞ ⊂ M∞, there exists precompact domains Ai ⊂ Mi

for each i ∈ N so that

‖Ai ⊂ (Mi , gi )‖harmCm,α,r −→ ‖A∞ ⊂ (M∞, g∞)‖harmCm,α,r , ∀ r > 0.

If Mi is closed for each i ∈ N ∪ {∞} then we can assume
Ai = Mi for each i ∈ N ∪ {∞}.

4. ‖A ⊂ (M, g)‖harmCm,α,r = supp∈A ‖{p} ⊂ (M, g)‖harmCm,α,r .



Proof: 1. and the first part of 2. are proven in exactly the same
way as we did for ‖ · ‖Cm,α,r .

Now we need to show that if m ≥ 1 then the function

r −→ ‖A ⊂ (M, g)‖harmCm,α,r

converges to 0 as r → 0.

This is done by constructing appropriate harmonic coordinate
charts near each p ∈ M. We construct such charts in the same
way we did earlier. By using the exponential map, we start with a
smooth chart (with coordinates y) so that gij = δij and ∂kgij = 0
at p. On a small ball Br (p), around p, we solve the Dirichlet
problem:

∆xk = 0, xk |∂Br (0) = yk |∂Br (0).

One then uses elliptic estimates to get appropriate bounds
(h1)-(h4).



Proof of 3. We wish to show: If (Mi , gi , pi )
Cm,α

−→ (M∞, g∞, p∞),
then for every precompact domain A∞ ⊂ M∞, there exists
precompact domains Ai ⊂ Mi for each i ∈ N so that

‖Ai ⊂ (Mi , gi )‖harmCm,α,r −→ ‖A∞ ⊂ (M∞, g∞)‖harmCm,α,r , ∀ r > 0.

First of all we need to construct Ai . This is done in the same way
as before. Let is recall these steps: By definition, there is a domain
Ω ⊃ A so that for all large i we have smooth embeddings
Fi : Ω −→ Mi satisfying F ∗i gi −→ g∞ in Cm,α on Ω. We define
Ai := Fi (A∞).



Proof of 3. continued.
Let Q > ‖A∞ ⊂ (M∞, g)‖Cm,α,r . Because the norm is continuous
with respect to r , there exists ε > 0 so that

‖A∞ ⊂ (M∞, g∞)‖Cm,α,r+ε < Q

Now choose charts φs : Us ⊂ M∞ −→ Br+ε(0) ⊂ Rn covering A∞
satisfying (h1)-(h4) with r replaced by r + ε. Define

Uis := Fi (φ
−1
s (Br+ε/2(0))).

Define
φ′is := φs ◦ F−1i : Uis ⊂ Mi −→ Br (0) ⊂ Rn.

These charts are NOT harmonic. We have to solve a Dirichlet
problem and use elliptic estimates to perturb φ′is so that they
become harmonic with the right properties. Here we have shrunk
r + ε to r + ε/2 so that ∂Uis has a smooth boundary.



Proof of 3. continued. We now solve the Dirichlet problem:

φis : Uis −→ Rn,

∆giφis = 0,

φis = φ′is along ∂Uis .

We now need to show that φis ,s ∈ N is a (h1)-(h4)-atlas for i
sufficiently large. To do this we need to compare

φis ◦ Fi ◦ φ−1∞s

with the identity map I . Note that these maps agree on
∂Br+ε/2(0). Define g(is) := (φ−1is )∗gi for each i ∈ N ∪ {∞}. In
local coordinates:

∆g(is) = gkl
(is)∂k∂l +

1√
det g(is)

∂k

(√
det g(is) · gkl

(is)

)
∂l .



Proof of 3. continued.
Since m ≥ 1, we get a Cα bound on the term:

1√
det g(is)

∂k

(√
det g(is) · gkl

(is)

)
.

Hence elliptic estimates give us:

‖I − φis ◦ Fi ◦ φ−1∞s‖Cm+1,α

≤ C‖∆g(is)(I − φis ◦ Fi ◦ φ
−1
∞s)‖Cm−1,α

= C‖∆g(is) I‖Cm−1,α .

Now

‖∆g(is) I‖Cm−1,α =

∥∥∥∥∥ 1√
det g(is)

∂k

(√
det g(is) · gkl

(is)

)∥∥∥∥∥
Cm−1,α

−→

∥∥∥∥∥ 1√
det g(∞s)

∂k

(√
det g(is) · gkl

(is)

)∥∥∥∥∥
Cm−1,α

= ‖∆g(∞s)I‖Cm−1,α
= 0.



Proof of 3. continued. Hence φis become (h1)− (h4)-coordinates
for large i . Hence

‖Ai ⊂ (M, g)‖harmCm,α,r < Q

for large i . (some details of the proof might be missing, so we refer
to Peterson).

Proof of 4. We wish to show:
‖A ⊂ (M, g)‖harmCm,α,r = supp∈A ‖{p} ⊂ (M, g)‖harmCm,α,r . Since there is
no transition function condition (n3), we have the following
property:

‖A ∪ B ⊂ (M, g)‖harmCm,α,r

= max
{
‖A ⊂ (M, g)‖harmCm,α,r , ‖B ⊂ (M, g)‖harmCm,α,r

}
.

Hence the norm is realized locally and we get our result.



The good thing about harmonic coordinates is that the metric
seems to be controlled by the Ricci curvature.

Lemma (Anderson 1990) Suppose that |Ric(M, g)| ≤ Λ. Let
r1 < r2, K ≥ ‖A ⊂ (M, g)‖harmC1,r2

, and let α ∈ (0, 1). Then there is

a constant C = C (n, α,K , r1, r2,Λ) so that

‖A ⊂ (M, g)‖harmC1,α,r1
≤ C .

Moreover, if g is an Einstein metric, I.e. Ric = kg , then for each
m ∈ Z, there is a constant C = C (n, α,K , r1, r2,Λ,m) so that

‖A ⊂ (M, g)‖harmCm+1,α,r1
≤ C .



Proof: We need to bound gij in a fixed harmonic coordinate chart.
To do this we will use the formula:

∆gij = −2Ricij − 2Q(g , ∂g) (1)

combined with elliptic estimates. First, recall that ∆gij = g ij∂i∂j .
Hence we can use the elliptic estimate:

‖gij‖C1,α,B(0,r1) ≤ C
(
‖∆gij‖C0,B(0,r2) + ‖gij‖Cα,B(0,r2)

)
for some C = C (n, α,K , r1, r2). Also, by Equation (1) and our
assumption |Ric| ≤ Λ, we get

‖∆gij‖C0,B(0,r2) ≤ 2Λ‖gij‖C0,B(0,r2) + Ĉ‖gij‖C1,B(0,r2).

Hence by combining the previous two displayed equations:

‖gij‖C1,α,B(0,r1) ≤ C (2Λ + Ĉ + 1)‖gij‖C1,B(0,r2).

Hence we get a bound on ‖A ⊂ (M, g)‖harmC1,α,r1
from

‖A ⊂ (M, g)‖harmC1,r2
.



Proof continued: Now consider the case where g is an Einstein
metric. We will use a boostrap method.

Since Ric = kg , we get C 1,α bounds on Ric from the C 1,α bounds
on g demonstrated above. Hence by Equation (1), we get a Cα

bound of ∆gij from ‖gij‖C1,α . Hence by elliptic estimates:

‖gij‖C2,α,B(0,r1) ≤ C
(
‖∆gij‖Cα,B(0,r2) + ‖gij‖Cα,B(0,r2)

)
for some C = C (n, α,K , r1, r2). This is

≤ C · C ′ · ‖gij‖C1,α,Br2 (0)
.

Hence ∆gij is bounded in C 2,α and using the same argument, we
get C 3,α bounds for gij . We continue by induction until we get a
Cm+1,α bound of gij .



By combining the above lemma with the fundamental theorem of
convergence, we get:

Corollary. Let n ≥ 2, Q, r ,Λ ∈ (0,∞). Then the class of pointed
Riemannian n-manifolds (M, g , p) satisfying

‖(M, g)‖harmC1,r ≤ Q,

|Ric| ≤ Λ

is precompact in the pointed C 1,α-topology for any α ∈ (0, 1).



We now have stronger convergence theorems (when using
harmonic norm).

Theorem (Anderson). Let n ≥ 2, α ∈ (0, 1) and Λ, i0,Q > 0.
Then there exists r = r(n, α,Λ, i0,Q) so that for any complete
Riemannian manifold (M, g) satisfying

|Ric| ≤ Λ,

inj ≥ i0,

we have
‖(M, g)‖harmC1,α,r ≤ Q.



Proof. We argue by contradiction. Therefore, suppose there exists
Q > 0 and a sequence of complete Riemannian Riemannian
manifolds (Mi , gi ),i ∈ N so that

|Ric(Mi , gi )| ≤ Λ,

inj(Mi , gi ) ≥ i0,

‖(M, g)‖harmC1,α,i−1 > Q.

Since the harmonic norm is a continuous function of scale, we can
find ri ∈ (0, i−1) so that

‖(M, g)‖harmC1,α,ri
= Q.

Now rescale the manifolds: g i = r−1i gi . Then (Mi , g i ) satisfies:

|Ric(Mi , g i )| ≤ riΛ,

inj(Mi , gi ) ≥ r−1i i0, ‖(M, g)‖harmC1,α,1 = Q.



Proof continued. By M. Anderson’s 1990 proposition part 4., we
can choose pi ∈ Mi so that:

‖pi ∈ (M, g)‖harmC1,α,1 ∈ [Q/2,Q].

Now by the previous lemma (Anderson 1990), the C 1,γ-norm (with
respect to some r) is bounded for each γ ∈ (0, 1). In particular this
is true for each γ ∈ (α, 1). Hence by the fundamental theorem of
convergence,

(Mi , g i , pi )
C1,α

−→ (M∞, g∞, p∞)

for some pointed Riemannian manifold (M∞, g∞, p∞) of class
C 1,γ . Since the C 1,α norm is continuous with respect to the
pointed C 1,α-topology, we also have:

‖p∞ ∈ (M∞, g∞)‖harmC1,α,1 ∈ [Q/2,Q].



Claim: (M∞, g∞) = (Rn, gstd).

Note that if we can prove this claim then we are done, because this
contradicts the following fact:

‖p∞ ∈ (M∞, g∞)‖harmC1,α,1 ∈ [Q/2,Q].

Proof of Claim: The manifolds in the sequence (Mi , g i ), i ∈ N are
covered by harmonic coordinate charts that converge to harmonic
charts of (M∞, g∞). In such charts, the metric satisfies:

1

2
∆gkl + Q(g , ∂g) = −Rickl .

Also, |Rickl | ≤ riΛ. Since ri → 0 as i →∞, we get

1

2
∆gkl + Q(g , ∂g) = 0

in the limiting harmonic coordinate chart of (M∞, g∞).



Proof of Claim continued.

Hence (M∞, g∞) is a weak solution to the Einstein equation
Ric = 0. The manifold itself admits as smooth coordinate chart,
since it is C 1 (we won’t prove this.) Hence it can be covered by
smooth harmonic coordinate charts and so by the last lemma of
the Schader estimate slides, the metric must also be smooth since
it satisfies the Einstein equation.

Also inj(M i , g i )→∞ as i →∞, and any geodesic in (M∞, g∞) is
a limit of geodesics of (Mi , g i ), i ∈ N (in the C 0

loc sense). One can
then use this fact to show inj(M∞, g∞) =∞. Then claim now
follows from the Cheegar-Gromoll splitting theorem (proven
Chapter 9 of Peterson).

QED for Claim and QED for the proof of our proposition.



We get the following immediate corollary of the theorem above
combined with the fundamental theorem of compactness.

Corollary: (Anderson 1990). Let n ≥ 2, α ∈ (0, 1),
Λ,D, i ∈ (0,∞). The class of closed Riemannian n-manifolds
satisfying

|Ric| ≤ Λ

diam ≤ D

inj ≥ i

is precompact in the C 1,α-topology.. Hence there are only finitely
many diffeomorphism types of such manifolds.



The proof of the theorem above relied on a characterization of
(Rn, gstd) via the splitting theorem. Instead, one can also use
volume comparison results instead.

Theorem: (Exercise 5 in Chapter 9 of Peterson). Every complete
pointed Riemannian manifold (M, g , p) satisfying

Ric(M, g) ≥ 0

lim
r→∞

volBr (p)

ωnrn
= 1,

where ωn is the volume of the unit ball in (Rn, gstd), is equal to
(Rn, gstd).



Anderson has the following related result.

Lemma: (Anderson 1990). For each n ≥ 2, there exists a constant
ε = ε(n) > 0, so that if (M, g , p) is a complete Ricci flat pointed
Riemannian manifold satisfying

volBr (p) ≥ (ωn − ε)rn, ∀ r > 0, (2)

then it is equal to (Rn, gstd).

Proof: First of all, we replace ε with εωn so that Equation (2)
becomes:

volBr (p) ≥ (1− ε)ωnr
n, ∀ r > 0.

This statement is equivalent to the statement:

lim
r→∞

volBr (p)

ωnrn
≥ (1− ε) (3)

by the Bishop-Cheeger-Gromov volume comparison lemma stated
at the end of the slides on Gromov-Hausdorff convergence.



Proof continued: Also the above statement is true for some point
p iff it is true for all points p ∈ M. Also if we rescale the metric
then Equation (3) holds for this new metic iff it holds for the hold
metric.

Now suppose (for a contradiction) that the statement of our
lemma is false. Then, for each i ∈ N, we can find pointed Ricci flat
manifolds (Mi , gi ) so that

lim
r→∞

volBr (pi )

ωnrn
≥ (1− i−1)

‖(Mi , gi )‖harmC1,α,r 6= 0, ∀ r > 0.

(Recall that the harmonic norm vanishes only for flat manifolds by
an earlier lemma).



Proof continued.
By scaling the metrics gi to g i and replacing the basepoints pi
with qi , we can assume:

lim
r→∞

volBr (qi )

ωnrn
≥ (1− i−1)

‖(Mi , gi )‖harmC1,α,1 ≤ 1.

‖qi ∈ (Mi , gi )‖harmC1,α,1 ∈ [0.5, 1].

From the earlier Theorem by Anderson, a subsequence converges in
the C 1,α-topology to a Ricci flat pointed manifold (M∞, g∞, q∞).



Proof continued.

Since Ric = 0, we can use one of the earlier lemmas by Anderson
to show that these manifolds in fact converge in the
Cm,α-topology after passing to a subsequence. Hence:

lim
r→∞

volBr (q∞)

ωnrn
≥ 1

Such a limit is also ≤ 1 by Bishop-Cheeger-Gromov volume
comparison lemma.
Hence by the previous lemma, (M∞, g∞) = (Rn, gstd). But this is
impossible since the harmonic norm is continuous, and we assumed:

‖qi ∈ (Mi , gi )‖harmC1,α,1 ∈ [0.5, 1] ∀ i ∈ N.



Corollary: Let n ≥ 2, −∞ < λ ≤ Λ <∞, and let D, i0 ∈ (0,∞).
Then there exists δ = δ(n, λ · i20 ) so that the class of closed
Riemannian manifolds satisfying:

(n − 1)Λ ≥ Ric ≥ (n − 1)λ,

diam ≤ D

volBi0(p) ≥ (1− δ)v(n, λ, i0),

where v(n, k, r) is the volume of the radius r ball in the symmetric
space Sn

k , is precompact in the C 1,α-topology for any α ∈ (0, 1).
Hence there are only finitely many diffeomorphism types of such
manifolds.



Proof. The proof is similar to the previous theorem with the
injectivity radius bound . Suppose (for a contradiction), there
exists Q > 0 and a sequence of complete pointed Riemannian
manifolds (Mi , gi , pi ),i ∈ N so that

(n − 1)Λ ≥ Ric(Mi , gi ) ≥ (n − 1)λ,

diam(Mi , gi ) ≤ D

volBi0(pi ) ≥ (1− δ)v(n, λ, i0),

‖(Mi , gi )‖harmC1,α,i−1 > Q

for some Q > 0. Choose ri ∈ (0, i−1) so that:

‖(Mi , gi )‖harmC1,α,ri
= Q.

Now rescale the manifolds g i = r−1i gi .



Proof continued. Then,

ri (n − 1)Λ ≥ Ric(Mi , g i ) ≥ ri (n − 1)λ,

diam(Mi , g i ) ≤ r−1i D

volg i
Br (pi ) ≥ (1− δ)v(n, λ · ri , i0 · r

−1/2
i ),

‖(Mi , g i )‖harmC1,α,1 = Q

For large enough i and for r < i0 · r−1i , we then have:

volg i
Br (pi ) ≥ (1− δ)v(n, λ · ri , r) ∼ (1− δ)ωnr

n.

We can adjust our base points pi so that

‖qi ∈ (Mi , gi )‖‖harmC1,α,1 ∈ [Q/2,Q].



Proof continued
.
Now by the fundamental theorem of convergence,

(Mi , g i , pi )
C1,α

−→ (M∞, g∞, p∞)

for some pointed Riemannian manifold (M∞, g∞, p∞) of class
C 1,γ , γ ∈ (α, 1).

Claim: (M∞, g∞) = (Rn, gstd).

If this claim holds, then we get a contradiction since

‖p∞ ∈ (M∞, g∞)‖harmC1,α,1 ∈ [Q/2,Q].

Proof of Claim: The limit space (M∞, g∞) has trivial Ricci
curvature and volume bound:

volg∞Br (p∞) ≥ (1− δ)ωnr
n, ∀ r > 0.

By the exercise earlier, this means that (M∞, g∞) = (Rn, gstd).
QED for Claim. QED for our corollary.



We now wish to apply some of these compactness results. We will
prove some pinching results. I.e. statements of the form: if some
curvature like quantity is sufficiently close to the curvature of some
space, then it is diffeomorphic to such a space.

We will start out with Ricci pinching.



Theorem: Let n ≥ 2, i0,D ∈ (0,∞) and λ ∈ R. Then there exists
ε = ε(n, λ,D, i0) > 0 so that any closed Riemannian (M, g)
manifold satisfying

diam(M, g) ≤ D

inj(M, g) ≥ i0

|Ric(M, g)− λg | ≤ ε

is C 1,α-close to an Einstein metric with Einstein constant λ.

Note that the injectivity radius condition can also be replaced by a
volume condition using the previous compactness result.



Proof.Suppose (for a contradiction), there exists a sequence
(Mi , gi ), i ∈ N satisfying

diam(Mi , gi ) ≤ D

inj(Mi , gi ) ≥ i0

|Ric(Mi , gi )− λgi | ≤ 1/i .

And gi is not C 1,α close to an Einstein metric with Einstein
constant λ. By Anderson’s compactness theorem,

(Mi , gi )
C1,α

−→ (M∞, g∞).

for some (M∞, g∞). Now by using harmonic coordinate charts, we
have that g∞ satisfies:

1

2
∆g∞ + Q(g∞, ∂g∞) = −λg∞

in a weak sense. Hence the limiting space is Einstein with Einstein
constant λ. Contradiction.



Theorem: n ≥ 2, v ,D ∈ (0,∞) and λ ∈ R. Then there exists
ε = ε(n, λ,D, i) > 0 so that any closed Riemannian (M, g)
manifold satisfying

diam(M, g) ≤ D

vol(M, g) ≥ v

| sec(M, g)− λ| ≤ ε

is C 1,α-close to a metric of constant curvature.



Proof. Let (Mi , gi ), i ∈ N satisfy:

diam(Mi , gi ) ≤ D

vol(Mi , gi ) ≥ v

| sec(Mi , gi )− λ| ≤ 1/i .

Now by a Lemma by Cheeger (page 9 on previous set of slides),
the sectional curvature condition tells us that the injectivity radius
is bounded below. Hence the previous theorem combined with one
of Anderson’s compactness results (and comparing Ricci and
Sectional curvature) tells us that (after passing to a subsequence),

(Mi , gi )
C1,α

−→ (M∞, g∞)

where (M∞, g∞) is Einstein. We now need to show that (M∞, g∞)
in fact has constant curvature.



Proof continued.
Let p∞ ∈ M∞, Choose pi ∈ Mi so that pi → p∞ (under
identification via appropriate C 1,α converging harmonic charts).
Write gi = dr2 + gr ,i in polar coordinates for each i ∈ N ∪ {∞}.
Then gr ,i converge to gr ,∞. From chapter 6 of Peterson (Theorem
27 on page 175),

sn2
λ+εi

(r)ds2n−1 ≤ gr ,i ≤ sn2
λ−εi (r)ds2n−1

where

I εi → 0 as i →∞,

I snκ is a smooth function smoothly depending on κ, (snκ is
defined on page 12 of Peterson).

I ds2n−1 is the metric on the unit sphere in Rn. Hence we get:

sn2
λ(r)ds2n−1 ≤ gr ,∞ ≤ sn2

λ(r)ds2n−1.

Hence the limit metric has constant curvature.


