Convergence

MAT 569

April 9, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Gromov-Hausdorff Distance

▶ Definition. Let (X, d) be a metric space and let A, B ⊂ X be subsets. The *distance* between A and B is defined to be:

$$d(A,B) := \inf \{ d(a,b) : a \in A, b \in B \}.$$

▶ Definition. For *ϵ* > 0, the *ϵ*-neighborhood of A is defined to be

$$B_{\epsilon}(A) := \{x \in X : d(x,A) < \epsilon\}.$$

Definition. The Hausdorff distance between A and B is defined to be:

$$d_H(A,B) := \inf\{\epsilon > 0 : A \subset B_{\epsilon}(B), B \subset B_{\epsilon}(A)\}.$$

▶ Lemma: (*Exercise*). Suppose A, B are compact. Then the Hausdorff distance between A and B is 0 if and only if A = B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The Hausdorff distance can be infinite. E.g. Consider two different lines in ℝ².
- ▶ However, it is finite if A and B are compact (Exercise).

- We will be mainly interested in compact metric spaces. We will also sometimes be interested in *proper metric spaces*: I.e. balls are relatively compact.
- ▶ Definition. Let (X, d_X), (Y, d_Y) be metric spaces. An admissible metric on the disjoint union X ⊔ Y, is a metric d satisfying d|_X = d_X, d|_Y = d_Y. In other words, a metric on X ⊔ Y in which X and Y are isometric subspaces.

Definition. Let X and Y be metric spaces. The Gromov-Hausdorff distance between X and Y is defined to be:

$$d_{\mathsf{GH}}(X,Y) := \inf \left\{ d_H(X,Y) : egin{array}{c} \operatorname{admissible metrics} \ d \ \operatorname{on} \ X \sqcup Y \end{array}
ight\}$$

Lemma. d_{GH}(X, X) = 0. Proof: Let ε > 0 Consider the topological space [0, ε] × X with the product metric. Consider the subspace {0, ε} × X = X ⊔ X. The Gromov-Hausdorff distance between these two copies of X is ε > 0.

Example: Let A, B be finite sets equipped with the *discrete metric* (I.e. the unique metric satisfying d(x, y) = 1 if $x \neq y$). Then $d_{GH}(A, B)$ is equal to 1 if and only if $A \neq B$.

In other words, the Gromov-Hausdorff metric on the the set of (metric isomorphism classes) of finite sets with the discrete metric is the discrete metric.

Why? Consider a metric d on $A \sqcup B$ and suppose |A| < |B|. Suppose every point $a \in A$ is within distance ϵ of a point $b_a \in B$ for some $\epsilon > 0$. Now let $b \in B - \bigcup_{a \in A} \{b_a\}$. Then by the triangle inequality, $d_H(A, b) \ge 1 - \epsilon$.

Example (Exercise). If X is a metric space and $Y = \{y\}$ is a single point then

$$d_{\mathsf{GH}}(X,Y) = \mathsf{rad}(X)$$

where rad(X) is the radius of the smallest ball covering X

$$\operatorname{rad}(X) = \inf_{x \in X} \sup_{y \in Y} d(X, y).$$

Example: (Exercise) $d_{GH}([0,1], \mathbb{R}/\mathbb{Z}) \ge 1/4$. Why? Suppose that the distance is l < 1/4. Then for each $x \in [0,1]$ there exists $y_x \in \mathbb{R}/\mathbb{Z}$ whose distance is at most l' < 1/4. Then $d(y_0, y_1) \le 1/2$ and so by the triangle inequality d(0,1) < 1 in [0,1] giving us a contradiction. **Lemma:** $d_{GH}(X, Y)$ is equal to the infimum *I* over all metric spaces *Z* of $d_H(X, Y)$ where *X* and *Y* are isometric subsets of *Z*.

Proof: $d_{GH}(X, Y) \ge I$ since we can choose (Z, d) to be $X \sqcup Y$. Conversely consider some metric space (Z, d) and consider $d_H(X, Y)$. Let $\epsilon > 0$ and consider the space $[0, \epsilon] \times Z$. The induced metric on

$$X \sqcup Y = \{0\} \times X \sqcup \{\epsilon\} \times Y \subset [0,\epsilon] \times Z$$

is admissible. Hence $d_{GH}(X, Y) \leq I + \epsilon$ for each $\epsilon > 0$.

• **Definition:** The *diameter* of a metric space X is

$$\operatorname{diam}(X) := \sup_{x,y \in X} d(x,y).$$

• Lemma: Let X, Y be metric spaces. Then

$$d_{\mathsf{GH}}(X,Y) \leq D := rac{1}{2} \min(\mathsf{diam}(X),\mathsf{diam}(Y)).$$

Proof: We need to construct an appropriate admissible metric on $X \sqcup Y$. Define the distance between $x \in X$ and $y \in Y$ to be D/2. This gives us an admissible metric on $X \sqcup Y$ and hence our inequality.

Definition: We let \mathcal{M} be the collection of isometry classes of compact metric spaces.

Note that $\mathcal M$ is a set. This is because compact metric spaces have cardinality at most $\mathbb R$

(Why? any such space is determined by a countable dense subset and the collection of all metrics on a countable metric space at worst a countable number of copies of \mathbb{R}).

Goal: Show that (\mathcal{M}, d_{GH}) is a metric space.

Lemma: (*Exercise*). We have

- 1. $d_{\rm GH}(X, Y) \ge 0$,
- 2. $d_{GH}(X, Y) = d_{GH}(Y, X)$,
- 3. $d_{\mathrm{GH}}(X,Z) \leq d_{\mathrm{GH}}(X,Y) + d_{\mathrm{GH}}(Y,Z).$

As a result, d_{GH} is almost a metric. The hard part is to show that $d_{GH}(X, Y) = 0$ implies that X is isometric to Y. We need some definitions, lemmas and a theorem first before we

prove this.

- We want a notion of "approximate" isometry.
- **Definition:** Let (X, d_X) , (Y, d_Y) be metric spaces and let $\epsilon \ge 0$. A map $f : X \longrightarrow Y$ is an ϵ -isometry if

$$|d_Y(f(x), f(x')) - d_X(x, x')| < \epsilon, \quad \forall x, x' \in X$$

and for each $y \in Y$, there exists $x \in X$ so that

 $d_Y(y, f(x)) < \epsilon.$

In other words, it f almost preserves the metric, and it is almost surjective. **Lemma:** Let (X, d_X) , (Y, d_Y) be metric spaces satisfying $d_{GH}(X, Y) < \epsilon$ for some $\epsilon > 0$. Then there is a 2ϵ -isometry from X to Y.

Proof: Let *d* be an admissible metric on $X \sqcup Y$ so that $d_H(X, Y) < \epsilon$. For each $x \in X$, define $f(x) \in Y$ to be any point satisfying $d(x, f(x)) < \epsilon$. Then

$$d_Y(f(x), f(x')) \le d(x, f(x)) + d(x, x') + d(x', f(x'))$$

$$\le d(x, x') + 2\epsilon.$$

Also, $d_Y(f(x), f(x')) \ge -d(x, f(x)) + d(x, x') - d(x', f(x'))$
$$\ge d(x, x') - 2\epsilon.$$

Hence

$$|d_Y(f(x), f(x')) - d_X(x, x')| < 2\epsilon, \quad \forall x, x' \in X.$$

I.e. f almost respects the metric.

Proof continued.

We now need to show that f is almost surjective. Let $y \in Y$. Choose $x \in X$ so that $d(x, y) < \epsilon$. Then

 $d(f(x), y) \leq d(x, f(x)) + d(x, y)$

 $< 2\epsilon$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma: Conversely suppose that there is an ϵ -isometry f between metric spaces X and Y. Then $d_{GH}(X, Y) \leq \epsilon$.

Proof: Let $\delta > 0$ be small. We let *d* be an admissible metric on $X \sqcup Y$ so that for $x \in X$ and $y \in Y$,

$$d(x,y) = \inf_{x'\in X} (d(x,x') + d(f(x'),y)) + \delta.$$

This is a metric (*Exercise*).

Let $y \in Y$. Choose $x \in X$ so that $d(f(x), y) < \epsilon$. Then $d(x, y) < \epsilon + \delta$.Hence $B_{\epsilon+\delta}(Y)$ contains X.Now let $x \in X$.Then $d(f(x), x) \le \delta$. Hence $B_{\epsilon+\delta}(X)$ contains Y.Hence $d_{\mathsf{GH}}(X, Y) \le \epsilon$.

▶ Definition: Let (X, d_X),(Y, d_Y) be topological spaces. Let C⁰(X, Y) be the space of continuous maps X → Y equipped with the *compact open topology*. This is the topology generated by sets

$$V(K,U) := \{f \in C^0(X,Y) : f(K) \subset I\}$$

for each compact subset $K \subset X$ and open subset $U \subset Y$.

Definition: A subset F ⊂ C⁰(X, Y) is equicontinuous if for each x ∈ X and each ε > 0 there exists a neighborhood U_x so that d_Y(f(x), f(y)) < ε for each y ∈ U_x and each f ∈ F.

► **Theorem:** (Arzela-Ascoli)

Let X be a compact Hausdorff space and let Y be a compact metric space. Then every equicontinuous subset $F \subset C^0(X, Y)$ is relatively compact (I.e. has compact closure).

Lemma: Let X, Y be compact metric spaces and let $(\epsilon_i)_{i \in \mathbb{N}}$ be positive constants converging to 0. Let $f_i : X \longrightarrow Y$ be a ϵ_i -isometry for each $i \in \mathbb{N}$. Then f_i converges in $C^0(X, Y)$ to an isometry.

Proof: The maps $(f_i)_{i \in \mathbb{N}}$ are equicontinuous. Hence $f_i \to f_{\infty}$ with respect to the compact open topology by Arzela-Ascoli. Hence f_i converges pointwise to f_{∞} (*Exercise*). Hence

 $d_Y(f_\infty(x), f_\infty(x')) \leq$

 $egin{aligned} &d_Y(f_i(x), f_\infty(x)) + d(f_i(x), f_i(x')) + d_Y(f_i(x'), f_\infty(x')) \ & o d_X(x, x'). \end{aligned}$

A similar argument tells us that

$$d_Y(f_\infty(x), f_\infty(x')) \ge d_X(x, x').$$

Proof continued.

Hence f_{∞} is an isometric embedding from X to Y. We now need to show that f_{∞} is surjective.

Let $y \in Y$. Then, there exists $x_i \in X$ so that $d_Y(f_i(x_i), y) < \epsilon_i$ for each $i \in \mathbb{N}$. Now $x_i \to x_\infty$ after passing to a subsequence since Xis compact. Hence $f_i(x_i) \to f_\infty(x_\infty)$. Since $f_i(x_i) \to y$, we then get $f_\infty(x_\infty) = y$ and so f_∞ is surjective.

Proposition: Suppose $X, Y \in \mathcal{M}$ satisfies $d_{GH}(X, Y) = 0$ then X is isometric to Y.

Proof: Since $d_{GH}(X, Y) < 1/i$ for each $i \in \mathbb{N}$, there is a 1/i-isometry $f_i : X \longrightarrow Y$ for each $i \in \mathbb{N}$. By the previous lemma, f_i converges to an isometry $X \rightarrow Y$.

Definition: Let X, Y be metric spaces. Define

 $d_{\mathfrak{iso}}(X,Y) := \{\epsilon > 0 : \exists \epsilon \text{-isometries } X \to Y \text{ and } Y \to X\}.$

- ▶ **Proposition** (*Exercise*). (*M*, *d*_{iso}) is a metric space.
- ▶ **Corollary**: (*M*, *d*_{GH}) is a metric space.

Proof: We only need to show:

$$d_{\mathsf{GH}}(X,Y) = 0 \implies X$$
 is isometric to Y.

This follows from:

$$d_{\mathfrak{iso}}(X,Y) \leq d_{\mathsf{GH}}(X,Y) \leq 2d_{\mathfrak{iso}}(X,Y).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: (Berger spheres). Consider the unit sphere $S^3 \subset \mathbb{C}^2$. Let U(1) act diagonally on S^3 l.e. we have an action

$$\Phi: U(1) \times S^3 \longrightarrow S^3, \quad (e^{i\vartheta}, x) := e^{i\vartheta}x.$$

Now we 'stretch' the metric in the direction of this action. We did this earlier with Berger-Cheeger perturbations. Let g_{S^3} , $g_{U(1)}$ be the standard metrics on S^3 and U(1). Now consider the product metric $g_{S^3} + \lambda g_{U(1)}$ on $S^3 \times U(1)$, $\lambda > 0$. This descends a metric g_{λ} on:

$$S^3 = S^3 \times_{U(1)} S^3.$$

As $\lambda \to 0$, we have that S^3 Gromov-Hausdorff converges to $S^2 = S^3/U(1).$

Lemma: For each compact metric space (X, d_X) and each $\epsilon > 0$, there is a finite metric space (Y, d_Y) so $d_{GH}(X, Y) < \epsilon$. In other words, every compact metric space can be approximated by a finite one.

Proof: Choose a countable dense subset $A \subset X$. Then $B_{\epsilon}(a)$, $a \in A$ is a cover and hence has a finite subcover $B_{\epsilon}(a_i)$, $i = 1, \dots, k$. The Hausdorff distance between X and $\{a_1, \dots, a_k\}$ is at most ϵ . By an earlier Lemma, this gives us our result.

Proposition: (\mathcal{M}, d_{GH}) is separable.

Recall that a metric space is *separable* if it contains a countable dense open subset.

Proof: By the previous lemma, finite metric spaces form a dense subset $F \subset M$. Moreover, finite metric spaces whose associated metrics take rational values gives us a dense subset of F. Hence $(\mathcal{M}, d_{\text{GH}})$ is separable.

Theorem: $(\mathcal{M}, d_{\mathsf{GH}})$ is complete.

Proof. It is sufficient to show that (\mathcal{M}, d_{iso}) is complete. Let $(X_i, d_i)_{i \in \mathbb{N}}$ be Cauchy. After passing to a subsequence, we can assume that there is a $1/2^i$ isometry:

$$f_i: X_i \longrightarrow X_{i+1}$$

for each *i*. We let X_{∞} be the set of equivalence classes of sequences $(x_i)_{i \in \mathbb{N}}$, where

- $x_i \in X_i$ for each *i*.
- $d_{i+1}(f_i(x_i), x_{i+1}) \leq 2^{i+1}$ for all sufficiently large *i*.
- (x_i)_{i∈ℕ} is equivalent to (x'_i)_{i∈ℕ} if d_i(x_i, x'_i) ≤ 1/2^{i−1} for all sufficiently large i.

We define the metric d_∞ on X_∞ to be

$$d_{\infty}((x_i)_{i\in\mathbb{N}},(x_i')_{i\in\mathbb{N}})=\limsup_{i\in\mathbb{N}}d_i(x_i,x_i').$$

Exercise: Prove that this is a metric.

Proof continued. **Claim:** (X_{∞}, d_{∞}) is compact.

Proof of claim: Let $(z_i)_{i\in\mathbb{N}}$ be a sequence in X_{∞} . Then $z_i = (x_{ij})_{j\in\mathbb{N}}$, $x_{ij} \in X_j$. Since X_j is compact for each j, we have, by a diagonal argument, $x_{ij} \to x_{i\infty}$ after passing to a subsequence for each j. After passing to a further subsequence, we can assume that $f_i(x_{ij})$ converges to $f_i(x_{i\infty})$ as $j \to \infty$ for each i. Now $z_{\infty} := (x_{i\infty})_{i\in\mathbb{N}}$ is in X_{∞} and z_i converges to z_{∞} as $i \to \infty$ (*Exercise*).

Claim: $(X_i, d_i) \xrightarrow{d_{isc}} (X_{\infty}, d_{\infty}).$

Proof of Claim: Let $i \in \mathbb{N}$. Construct a map $X_i \to X_\infty$ by sending $x_i \in X_i$ to a sequence $(y_j)_{j \in \mathbb{N}}$ where y_j is any point you like for j < i, and $y_j = f_{j-1} \circ \cdots \circ f_i$. This is a $1/2^i$ -isometry for each i.

Hence $X_i \xrightarrow{d_{\mathsf{GH}}} X_\infty$ and so $(\mathcal{M}, d_{\mathsf{GH}})$ is complete.

Pointed Convergence.

- Sometimes we wish to deal with "Gromov-Hausdorff" convergence for non-compact metric spaces.
- To do this, we should think of such a space as a union of compact metric spaces, and then look at the convergence of all of these individual spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let us now gives some more precise definitions.

- ▶ Definition: A pointed metric space is a triple (X, d, x) where (X, d) is a metric space and x ∈ X is a basepoint. Sometimes we just write (X, x) if we do not wish to describe the metric.
- Two such spaces are *based isometric* if there is an isometry sending one basepoint to the other.
- ▶ Definition Let (X, d_X, x), (Y, d_Y, y) be compact pointed metric spaces. The Gromov-Hausdorff distance between them is:

$$d_{\mathsf{GH}}((X,d_X,x),(Y,d_Y,y)) :=$$

 $\inf \left\{ d_H(X,Y) + d(x,y) : d \text{ is an admissible metric on } X \sqcup Y \right\}.$

- Definition A proper pointed metric space is a pointed metric space (X, d, x) so that B_R(x) is precompact for each R > 0.
- ► We define M_{*} to be the set of based isometry classes of pointed metric spaces.
- ▶ Definition: B_R(x) (resp. B_R(x)) denotes the open (resp. closed) ball of radius R about x.

Definition: A sequence of pointed metric spaces (X_i, d_i, x_i), i ∈ N Gromov-Hausdorff converges to (X_∞, d_∞, x_∞) if for each R > 0, there exists a sequence R_i → R so that the compact pointed metric spaces (B_{Ri}(x_i), d_i, x_i), i ∈ N Gromov-Hausdorff converge to (B_R(x_∞), d_∞, x_∞).

You might think that all you need is that $(B_R(x_i), d_i, x_i), i \in \mathbb{N}$ Gromov-Hausdorff converge to $(\overline{B}_R(x_\infty), d_\infty, x_\infty)$ for each R > 0in the definition above (as stated in the Wikpedia definition). However the following example shows that this is not good.

Example: Let $X_i = \{0, 1 + 1/i\}$ with the metric induced from \mathbb{R} and let 0 be the basepoint for each $i \in \mathbb{N} \cup \{\infty\}$. Then $X_i \xrightarrow{d_{GH}} X_{\infty}$. However, $B_1(0) = \{0\} \subset X_i$ does not converge in d_{GH} to $B_1(0) = \{0, 1\} \subset X_{\infty}$.

In other words, such a modified definition is too strong.

Exercise. Let (X_i, d_i, x_i) , $i \in \mathbb{N} \cup \{\infty\}$ be a sequence of compact pointed metric spaces satisfying

$$d_{\mathsf{GH}}((X_i, d_i, x_i), (X_\infty, d_\infty, x_\infty)) \to 0$$

then $(X_i, d_i, x_i), i \in \mathbb{N}$ Gromov-Hausdorff converges to $(X_{\infty}, d_{\infty}, x_{\infty})$.

Note: For each R > 0, you need to find $R_i \rightarrow R$ so that

$$(B_{R_i}(x_i), d_i, x_i) \xrightarrow{d_{\mathsf{GH}}} (B_{R_{\infty}}(x_{\infty}), d_{\infty}, x_{\infty}).$$

Lemma: $\mathcal{C} \subset \mathcal{M}_*$ is precompact if and only if

$$F_R := \left\{\overline{B}_R(x) \subset X : (X,x) \in \mathcal{C}\right\} \subset \mathcal{M}$$

is precompact for each R > 0.

Proof. Let $G_R := \{(\overline{B}_R(x), x) \subset X : (X, x) \in C\} \subset \mathcal{M}_*$. If C is precompact, then G_R is precompact for each R > 0 and so F_R is precompact for each R > 0.

Now suppose F_R is precompact for each R > 0. Fix R > 0. Let $(\overline{B}_R(x_i), x_i) \subset (X_i, x_i)$ be a sequence in F_R . After passing to a subsequence, we have $\overline{B}_R(x_i) \xrightarrow{d_{GH}} Y_R$ for some $Y_R \in \mathcal{M}$. After passing to another subsequence, there is a $1/2^i$ -isometry

$$f_i:\overline{B}_R(x_i)\longrightarrow Y_R$$

for each $i \in \mathbb{N}$. After passing to a subsequence, $f_i(x_i) \to y_R$. Hence $(\overline{B}_R(x_i), x_i) \to (Y_R, y_R)$ in \mathcal{M}_* . Proof continued. For each $R_1 \leq R$ then $(\overline{B}_{R_1}(x_i), x_i) \rightarrow (\overline{B}_{R_1}(y_R), y_R)$ (Exercise). Hence (Y_{R_1}, y_{R_1}) is isometric to $(\overline{B}_{R_1}(y_R), y_R)$ for each $R_1 \leq R$. Hence we can define a pointed metric space: $Y := \bigcup_{R>0} Y_R$ with basepoint y corresponding to y_R for each R > 0. Then $(\overline{B}_R(x_i), x_i)$ converges to $(\overline{B}_R(y), y)$ for each R > 0.

Convergence of maps.

Definition Let f_k : X_k → Y_k, k ∈ N ∪ {∞} be a sequence of maps between compact metric spaces. Suppose

$$X_k \stackrel{d_{\mathsf{GH}}}{\longrightarrow} X_\infty, \quad Y_k \stackrel{d_{\mathsf{GH}}}{\longrightarrow} Y_\infty.$$

Then we say that $f_k \xrightarrow{d_{GH}} f_{\infty}$ if for each sequence of points $x_i \in X_i, i \in \mathbb{N} \cup \{\infty\}$ satisfying $(X_i, x_i) \xrightarrow{d_{GH}} (X_{\infty}, x_{\infty})$, we have $(Y_i, f(x_i)) \xrightarrow{d_{GH}} (Y_{\infty}, f(x_{\infty}))$.

Note that we can put appropriate metrics on ⊔_{i∈ℕ∪{∞}}X_i and ⊔_{i∈ℕ∪{∞}}Y_i so that F = ⊔_{i∈ℕ⊔{∞}}f_i is uniformly continuous if and only if f_k d_{GH}/d_{GH} f_∞.

▶ **Definition**: A sequence of maps $f_k : X_k \longrightarrow Y_k$, $k \in \mathbb{N}$ is *equicontinuous* if for each $\epsilon > 0$, there is a $\delta > 0$ so that

 $B_{\epsilon}(f_k(x)) \subset f_k(B_{\delta}(x)), \quad \forall \ x \in X_k, \ k \in \mathbb{N}.$

► Theorem: Every equicontinuous sequence of maps f_k: X_k → Y_k, k ∈ N between compact metric spaces has a convergent subsequence.

Proof: After passing to a subsequence, we can assume that $X_k \xrightarrow{d_{GH}} X_{\infty}$ and $Y_k \xrightarrow{d_{GH}} Y_{\infty}$. Now choose countable dense subset

$$A_i = \{a_{i1}, a_{i2}, \cdots\} \subset X_i$$

for each $i \in \mathbb{N}$. By a diagonal argument, we have that the pointed spaces $(X_k, a_{ki}), k \in \mathbb{N}$ converge to $(X_{\infty}, a_{\infty i})$ for some $a_{\infty i} \in X_{\infty}$ for each $i \in \mathbb{N}$. Also, after passing to a subsequence, $(X_k, f_k(a_{ki})) \longrightarrow (X_{\infty}, f_{\infty}(a_{\infty i}))$ for some $f_{\infty}(a_{\infty i})$ for each i. Hence $f_k \xrightarrow{d_{\mathsf{GH}}} f_{\infty}$.

- We need some conditions ensuring that subsets of *M* are relatively compact.
- **Definition:** Let X be a compact metric space. Define

 $Cap(\epsilon) = Cap_X(\epsilon) := max$ number of disjoint $\epsilon/2$ -balls in X,

 $Cov(\epsilon) = Cov_X(\epsilon) := min number of \epsilon$ -balls to cover X.

• Lemma: $Cov(\epsilon) \leq Cap(\epsilon)$.

Proof. Let $B_{\epsilon/2}(x_i)$, $i = 1, \dots, k$ be disjoint where $k = \operatorname{Cap}(\epsilon)$. Suppose (for a contradiction) $x_{k+1} \in X - \bigcup_{i=1}^{k} B_{\epsilon}(x_i)$. Then $B_{\epsilon/2}(x_i)$, $i = 1, \dots, k+1$ are disjoint and so $k < \operatorname{Cap}(\epsilon)$. Contradiction. Hence $\bigcup_{i=1}^{k} B_{\epsilon}(x_i) = X$ and so $\operatorname{Cov}(\epsilon) \leq \operatorname{Cap}(\epsilon)$.

Theorem: (Gromov 1980). Let $C \subset M$. The following statements are equivalent:

1. C is precompact.

2. There exists a function $N_1: (0, \alpha) \longrightarrow (0, \infty)$ so that

$$\mathsf{Cap}_X(\epsilon) \leq N_1(\epsilon), \ \forall \ \epsilon > 0.$$

3. There exists a function $N_2: (0, \alpha) \longrightarrow (0, \infty)$ so that

$$\operatorname{Cov}_X(\epsilon) \leq N_2(\epsilon), \,\, \forall \,\, \epsilon > 0.$$

The proof of this theorem relies on the following Lemma:

Lemma: (*Exercise*). Let $X, Y \in \mathcal{M}$ satisfy $d_{GH}(X, Y) < \delta$. Then $\operatorname{Cap}_X(\epsilon) \ge \operatorname{Cap}_Y(\epsilon + 4\delta)$ $\operatorname{Cov}_X(\epsilon) \ge \operatorname{Cov}_Y(\epsilon + 2\delta)$ (Similarly with X and Y swapped). Proof of Gromov's theorem: 1. \implies 2. Suppose C is precompact. Let $\epsilon > 0$. Choose $X_1, \dots, X_k \in C$ so that

$$\cup_{i=1}^{k}B_{\epsilon/4}(X_k)\supset \mathcal{C}.$$

Define $N_1(\epsilon) := \max_i \operatorname{Cap}_{X_i}(\epsilon/2)$. Then by the previous lemma,

$$\operatorname{Cap}_X(\epsilon) \leq \operatorname{Cap}_{X_i}(\epsilon/2) \leq N_1(\epsilon), \ \forall \ X \in \mathcal{C}.$$

2. \implies 3. Use $N_1 = N_2$.

 $3. \implies 1.$

It is sufficient for us to show that C is *totally bounded*. I.e.

 $\operatorname{Cov}_{\mathcal{C}}(\epsilon) < \infty$ for each $\epsilon > 0$. Let $\epsilon > 0$ and let N_1 be as in 2 and define $N := |N_1(\epsilon/2)|$.

Let $X \in \mathcal{C}$. Since $\operatorname{Cov}_X(\epsilon/2) \leq N$, there exists x_1, \dots, x_N in X satisfying $\bigcup_{i=1}^N B_{\epsilon/2}(x_i) \supset X$. This implies that for each $X \in \mathcal{C}$, there is a metric space A_X with N points so that $d_{\operatorname{GH}}(X, A_X) \leq \epsilon/2$ and satisfying $\operatorname{Cov}_A(\epsilon/2) \leq N$. Now let $S \subset \mathcal{M}$ be the subset of metric spaces A with N points satisfying $\operatorname{Cov}_A(\epsilon/2) \leq N$. Since $d_H(\mathcal{C}, S) \leq \epsilon/2$, it is now sufficient for us to show that $\operatorname{Cov}_S(\epsilon/2) < \infty$. We leave this finial step as an exercise.

Corollary: Let $n \ge 2$ be an integer, $k \in \mathbb{R}$ and D > 0. Then:

- 1. The collection of closed Riemannian *n*-manifolds satisfying $\operatorname{Ric} \geq (n-1)k$ and diam $\leq D$ is precompact in \mathcal{M} .
- 2. The collection of pointed complete Riemannian *n*-manifolds satisfying Ric $\geq (n-1)k$ is precompact in \mathcal{M}_* .

We will use the following proposition to prove this corollary (we wont prove this proposition though, but refer to Peterson Ch 9): **Lemma:** (Bishop-Cheeger-Gromov): Let (M, g) be a complete Riemannian manifold with Ric $\geq (n-1)k$ and let $x \in M$. Then

$$f_x:(0,\infty)\longrightarrow (0,\infty),\ f_x(R):=rac{\mathrm{vol}B_R(x)}{v(n,k,R)}$$

is non-increasing and satisfies $f_x(R) \to 1$ as $R \to 0$ where v(n, k, R) is the volume of a ball of radius R in the constant curvature symmetric space S_k^n .

Proof of the Corollary above: We only need to prove 2. Let $\mathcal{C} \subset \mathcal{M}_*$ be the collection of all Riemannian manifolds from 2. By an earlier lemma, it is suffucient to show that

$$F_R := \left\{ \overline{B}_R(x) \subset X : (X, x) \in \mathcal{C} \right\} \subset \mathcal{M}$$

is precompact for each R > 0. Let R > 0 and let $\epsilon > 0$. We need to find $N_1(\epsilon)$ so that $\operatorname{Cap}_{\overline{B}_R(x)}(\epsilon) \le N_1(\epsilon)$ for each $(M, x) \in C$. Let $x_1, \dots, x_k \in M$ be points so that $B_{\epsilon}(x_i)$ are all disjoint. Let $B_{\epsilon}(x_i)$ be the ball with the smallest volume. Then, by the lemma above $(f_x$ is non-increasing):

$$k \leq \frac{\operatorname{vol} B_R(x)}{\operatorname{vol} B_\epsilon(x_i)} \leq \frac{\operatorname{vol} B_{2R}(x_i)}{\operatorname{vol} B_\epsilon(x_i)} \leq \frac{v(n,k,2R)}{v(n,k,\epsilon)}.$$

Hence we choose $N_1(\epsilon)$ to be $\frac{v(n,k,2R)}{v(n,k,\epsilon)}$.

Definition: The *Mikowski dimension* of a metric space X is

$$\dim X := \limsup_{\epsilon \to 0} \frac{\log \operatorname{Cov}_X(\epsilon)}{-\log(\epsilon)}.$$

- Fact: The Mikowski dimension of any Riemannian n-manifold is n.
- ► The proof of the corollary above tells us that the Riemannian manifolds listed converge (after passing to a subsequence) to a metric space whose Mikowski dimension is ≤ n.

- The following lemma tells us that Mikowski dimension cannot increase under limits.
- Lemma: Suppose N : (0,∞) → (0,∞) is a continuous function. Let C(N) ⊂ M be the subset of metric spaces X satisfying Cov_X(ε) ≤ N(ε) for each ε > 0. Then C(N) is compact.

Proof: We already know that C(N) is precompact. Suppose $(X_i)_{i \in \mathbb{N}}$ is a sequence in C(N) converging to X_{∞} . Then

 $\operatorname{Cov}_X(X_\infty) \leq \operatorname{Cov}_{X_i}(\epsilon - 2d_{\operatorname{GH}}(X, X_i)) \leq N(\epsilon - 2d_{\operatorname{GH}}(X, X_i))$

$$\rightarrow N(\epsilon)$$
, as $i \rightarrow \infty$

since N is continuous.