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Gromov-Hausdorff Distance

I Definition. Let (X , d) be a metric space and let A,B ⊂ X be
subsets. The distance between A and B is defined to be:

d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.

I Definition. For ε > 0, the ε-neighborhood of A is defined to
be

Bε(A) := {x ∈ X : d(x ,A) < ε}.

I Definition. The Hausdorff distance between A and B is
defined to be:

dH(A,B) := inf{ε > 0 : A ⊂ Bε(B), B ⊂ Bε(A)}.
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I Lemma: (Exercise). Suppose A,B are compact. Then the
Hausdorff distance between A and B is 0 if and only if A = B.

I The Hausdorff distance can be infinite. E.g. Consider two
different lines in R2.

I However, it is finite if A and B are compact (Exercise).



I We will be mainly interested in compact metric spaces. We
will also sometimes be interested in proper metric spaces: I.e.
balls are relatively compact.

I Definition. Let (X , dX ), (Y , dY ) be metric spaces. An
admissible metric on the disjoint union X t Y , is a metric d
satisfying d |X = dX , d |Y = dY . In other words, a metric on
X t Y in which X and Y are isometric subspaces.
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I Definition. Let X and Y be metric spaces. The
Gromov-Hausdorff distance between X and Y is defined to be:

dGH(X ,Y ) := inf

{
dH(X ,Y ) :

admissible metrics
d on X t Y

}
.

I Lemma. dGH(X ,X ) = 0. Proof: Let ε > 0 Consider the
topological space [0, ε]× X with the product metric. Consider
the subspace {0, ε} × X = X t X . The Gromov-Hausdorff
distance between these two copies of X is ε > 0.



Example:. Let A,B be finite sets equipped with the discrete
metric (I.e. the unique metric satisfying d(x , y) = 1 if x 6= y).
Then dGH(A,B) is equal to 1 if and only if A 6= B.

In other words, the Gromov-Hausdorff metric on the the set of
(metric isomorphism classes) of finite sets with the discrete metric
is the discrete metric.

Why? Consider a metric d on A t B and suppose
|A| < |B|.Suppose every point a ∈ A is within distance ε of a point
ba ∈ B for some ε > 0.Now let b ∈ B − ∪a∈A{ba}.Then by the
triangle inequality, dH(A, b) ≥ 1− ε.



Example (Exercise). If X is a metric space and Y = {y} is a
single point then

dGH(X ,Y ) = rad(X )

where rad(X ) is the radius of the smallest ball covering X

rad(X ) = inf
x∈X

sup
y∈Y

d(X , y).

Example: (Exercise) dGH([0, 1],R/Z) ≥ 1/4.
Why? Suppose that the distance is l < 1/4. Then for each
x ∈ [0, 1] there exists yx ∈ R/Z whose distance is at most
l ′ < 1/4. Then d(y0, y1) ≤ 1/2 and so by the triangle inequality
d(0, 1) < 1 in [0, 1] giving us a contradiction.



Lemma: dGH(X ,Y ) is equal to the infimum I over all metric
spaces Z of dH(X ,Y ) where X and Y are isometric subsets of Z .

Proof: dGH(X ,Y ) ≥ I since we can choose (Z , d) to be X t Y .
Conversely consider some metric space (Z , d) and consider
dH(X ,Y ). Let ε > 0 and consider the space [0, ε]× Z . The
induced metric on

X t Y = {0} × X t {ε} × Y ⊂ [0, ε]× Z

is admissible.Hence dGH(X ,Y ) ≤ I + ε for each ε > 0.



I Definition: The diameter of a metric space X is

diam(X ) := sup
x ,y∈X

d(x , y).

I Lemma: Let X ,Y be metric spaces. Then

dGH(X ,Y ) ≤ D :=
1

2
min(diam(X ), diam(Y )).

Proof: We need to construct an appropriate admissible metric
on X t Y . Define the distance between x ∈ X and y ∈ Y to
be D/2. This gives us an admissible metric on X t Y and
hence our inequality.



Definition: We let M be the collection of isometry classes of
compact metric spaces.

Note that M is a set. This is because compact metric spaces have
cardinality at most R

(Why? any such space is determined by a countable dense subset
and the collection of all metrics on a countable metric space at
worst a countable number of copies of R).

Goal: Show that (M, dGH) is a metric space.



Lemma: (Exercise). We have

1. dGH(X ,Y ) ≥ 0,

2. dGH(X ,Y ) = dGH(Y ,X ),

3. dGH(X ,Z ) ≤ dGH(X ,Y ) + dGH(Y ,Z ).

As a result, dGH is almost a metric. The hard part is to show that
dGH(X ,Y ) = 0 implies that X is isometric to Y .
We need some definitions, lemmas and a theorem first before we
prove this.



I We want a notion of “approximate” isometry.

I Definition: Let (X , dX ), (Y , dY ) be metric spaces and let
ε ≥ 0. A map f : X −→ Y is an ε-isometry if

|dY (f (x), f (x ′))− dX (x , x ′)| < ε, ∀ x , x ′ ∈ X

and for each y ∈ Y , there exists x ∈ X so that

dY (y , f (x)) < ε.

I In other words, it f almost preserves the metric, and it is
almost surjective.



Lemma: Let (X , dX ), (Y , dY ) be metric spaces satisfying
dGH(X ,Y ) < ε for some ε > 0. Then there is a 2ε-isometry from
X to Y .

Proof: Let d be an admissible metric on X t Y so that
dH(X ,Y ) < ε. For each x ∈ X , define f (x) ∈ Y to be any point
satisfying d(x , f (x)) < ε. Then

dY (f (x), f (x ′)) ≤ d(x , f (x)) + d(x , x ′) + d(x ′, f (x ′))

≤ d(x , x ′) + 2ε.

Also, dY (f (x), f (x ′)) ≥ −d(x , f (x)) + d(x , x ′)− d(x ′, f (x ′))

≥ d(x , x ′)− 2ε.

Hence

|dY (f (x), f (x ′))− dX (x , x ′)| < 2ε, ∀ x , x ′ ∈ X .

I.e. f almost respects the metric.



Proof continued.
We now need to show that f is almost surjective. Let y ∈ Y .
Choose x ∈ X so that d(x , y) < ε.Then

d(f (x), y) ≤ d(x , f (x)) + d(x , y)

< 2ε.



Lemma: Conversely suppose that there is an ε-isometry f between
metric spaces X and Y . Then dGH(X ,Y ) ≤ ε.

Proof: Let δ > 0 be small. We let d be an admissible metric on
X t Y so that for x ∈ X and y ∈ Y ,

d(x , y) = inf
x ′∈X

(d(x , x ′) + d(f (x ′), y)) + δ.

This is a metric (Exercise).

Let y ∈ Y . Choose x ∈ X so that d(f (x), y) < ε. Then
d(x , y) < ε+ δ.Hence Bε+δ(Y ) contains X .Now let x ∈ X .Then
d(f (x), x) ≤ δ. Hence Bε+δ(X ) contains Y .Hence dGH(X ,Y ) ≤ ε.



I Definition: Let (X , dX ),(Y , dY ) be topological spaces. Let
C 0(X ,Y ) be the space of continuous maps X −→ Y
equipped with the compact open topology. This is the
topology generated by sets

V (K ,U) := {f ∈ C 0(X ,Y ) : f (K ) ⊂ I}

for each compact subset K ⊂ X and open subset U ⊂ Y .

I Definition: A subset F ⊂ C 0(X ,Y ) is equicontinuous if for
each x ∈ X and each ε > 0 there exists a neighborhood Ux so
that dY (f (x), f (y)) < ε for each y ∈ Ux and each f ∈ F .

I Theorem: (Arzela-Ascoli)
Let X be a compact Hausdorff space and let Y be a compact
metric space. Then every equicontinuous subset
F ⊂ C 0(X ,Y ) is relatively compact (I.e. has compact
closure).



Lemma: Let X ,Y be compact metric spaces and let (εi )i∈N be
positive constants converging to 0. Let fi : X −→ Y be a
εi -isometry for each i ∈ N. Then fi converges in C 0(X ,Y ) to an
isometry.

Proof: The maps (fi )i∈N are equicontinuous. Hence fi → f∞ with
respect to the compact open topology by Arzela-Ascoli. Hence fi
converges pointwise to f∞ (Exercise). Hence

dY (f∞(x), f∞(x ′)) ≤

dY (fi (x), f∞(x)) + d(fi (x), fi (x
′)) + dY (fi (x

′), f∞(x ′))

→ dX (x , x ′).

A similar argument tells us that

dY (f∞(x), f∞(x ′)) ≥ dX (x , x ′).



Proof continued.

Hence f∞ is an isometric embedding from X to Y . We now need
to show that f∞ is surjective.

Let y ∈ Y .Then, there exists xi ∈ X so that dY (fi (xi ), y) < εi for
each i ∈ N. Now xi → x∞ after passing to a subsequence since X
is compact. Hence fi (xi )→ f∞(x∞). Since fi (xi )→ y , we then get
f∞(x∞) = yand so f∞ is surjective.



Proposition: Suppose X ,Y ∈M satisfies dGH(X ,Y ) = 0 then X
is isometric to Y .

Proof:
Since dGH(X ,Y ) < 1/i for each i ∈ N, there is a 1/i-isometry
fi : X −→ Y for each i ∈ N.
By the previous lemma, fi converges to an isometry X → Y .



I Definition: Let X ,Y be metric spaces. Define

diso(X ,Y ) := {ε > 0 : ∃ ε-isometries X → Y and Y → X} .

I Proposition (Exercise). (M, diso) is a metric space.

I Corollary: (M, dGH) is a metric space.

Proof:
We only need to show:

dGH(X ,Y ) = 0 =⇒ X is isometric to Y .

This follows from:

diso(X ,Y ) ≤ dGH(X ,Y ) ≤ 2diso(X ,Y ).



Example: (Berger spheres).
Consider the unit sphere S3 ⊂ C2. Let U(1) act diagonally on S3

I.e. we have an action

Φ : U(1)× S3 −→ S3, (e iϑ, x) := e iϑx .

Now we ‘stretch’ the metric in the direction of this action.We did
this earlier with Berger-Cheeger perturbations.Let gS3 , gU(1) be the
standard metrics on S3 and U(1). Now consider the product metric
gS3 + λgU(1) on S3 × U(1), λ > 0.This descends a metric gλ on:

S3 = S3 ×U(1) S
3.

As λ→ 0, we have that S3 Gromov-Hausdorff converges to
S2 = S3/U(1).



Lemma: For each compact metric space (X , dX ) and each ε > 0,
there is a finite metric space (Y , dY ) so dGH(X ,Y ) < ε. In other
words, every compact metric space can be approximated by a finite
one.

Proof: Choose a countable dense subset A ⊂ X . Then Bε(a),
a ∈ A is a cover and hence has a finite subcover Bε(ai ),
i = 1, · · · , k . The Hausdorff distance between X and {a1, · · · , ak}
is at most ε. By an earlier Lemma, this gives us our result.



Proposition: (M, dGH) is separable.

Recall that a metric space is separable if it contains a countable
dense open subset.

Proof: By the previous lemma, finite metric spaces form a dense
subset F ⊂M. Moreover, finite metric spaces whose associated
metrics take rational values gives us a dense subset of F . Hence
(M, dGH) is separable.



Theorem: (M, dGH) is complete.

Proof: It is sufficient to show that (M, diso) is complete. Let
(Xi , di )i∈N be Cauchy. After passing to a subsequence, we can
assume that there is a 1/2i isometry:

fi : Xi −→ Xi+1

for each i . We let X∞ be the set of equivalence classes of
sequences (xi )i∈N, where

I xi ∈ Xi for each i .

I di+1(fi (xi ), xi+1) ≤ 2i+1 for all sufficiently large i .

I (xi )i∈N is equivalent to (x ′i )i∈N if di (xi , x
′
i ) ≤ 1/2i−1 for all

sufficiently large i .

We define the metric d∞ on X∞ to be

d∞((xi )i∈N, (x
′
i )i∈N) = lim sup

i∈N
di (xi , x

′
i ).

Exercise: Prove that this is a metric.



Proof continued.
Claim: (X∞, d∞) is compact.

Proof of claim: Let (zi )i∈N be a sequence in X∞. Then
zi = (xij)j∈N, xij ∈ Xj . Since Xj is compact for each j , we have, by
a diagonal argument, xij → xi∞ after passing to a subsequence for
each j . After passing to a further subsequence, we can assume
that fi (xij) converges to fi (xi∞) as j →∞ for each i . Now
z∞ := (xi∞)i∈N is in X∞ and zi converges to z∞ as i →∞
(Exercise).

Claim: (Xi , di )
diso−→ (X∞, d∞).

Proof of Claim: Let i ∈ N. Construct a map Xi → X∞ by sending
xi ∈ Xi to a sequence (yj)j∈N where yj is any point you like for
j < i , and yj = fj−1 ◦ · · · ◦ fi . This is a 1/2i -isometry for each i .

Hence Xi
dGH−→ X∞ and so (M, dGH) is complete.



Pointed Convergence.

I Sometimes we wish to deal with “Gromov-Hausdorff”
convergence for non-compact metric spaces.

I To do this, we should think of such a space as a union of
compact metric spaces, and then look at the convergence of
all of these individual spaces.

I Let us now gives some more precise definitions.



I Definition: A pointed metric space is a triple (X , d , x) where
(X , d) is a metric space and x ∈ X is a basepoint. Sometimes
we just write (X , x) if we do not wish to describe the metric.

I Two such spaces are based isometric if there is an isometry
sending one basepoint to the other.

I Definition Let (X , dX , x), (Y , dY , y) be compact pointed
metric spaces. The Gromov-Hausdorff distance between them
is:

dGH((X , dX , x), (Y , dY , y)) :=

inf {dH(X ,Y ) + d(x , y) : d is an admissible metric on X t Y } .



I Definition A proper pointed metric space is a pointed metric
space (X , d , x) so that BR(x) is precompact for each R > 0.

I We define M∗ to be the set of based isometry classes of
pointed metric spaces.

I Definition: BR(x) (resp. BR(x)) denotes the open (resp.
closed) ball of radius R about x .

I Definition: A sequence of pointed metric spaces (Xi , di , xi ),
i ∈ N Gromov-Hausdorff converges to (X∞, d∞, x∞) if for
each R > 0, there exists a sequence Ri −→ R so that the
compact pointed metric spaces (BRi

(xi ), di , xi ), i ∈ N
Gromov-Hausdorff converge to (BR(x∞), d∞, x∞).



You might think that all you need is that (BR(xi ), di , xi ), i ∈ N
Gromov-Hausdorff converge to (BR(x∞), d∞, x∞) for each R > 0
in the definition above (as stated in the Wikpedia definition).
However the following example shows that this is not good.

Example: Let Xi = {0, 1 + 1/i} with the metric induced from R
and let 0 be the basepoint for each i ∈ N ∪ {∞}. Then

Xi
dGH−→ X∞. However, B1(0) = {0} ⊂ Xi does not converge in dGH

to B1(0) = {0, 1} ⊂ X∞.

In other words, such a modified definition is too strong.



Exercise. Let (Xi , di , xi ), i ∈ N ∪ {∞} be a sequence of compact
pointed metric spaces satisfying

dGH((Xi , di , xi ), (X∞, d∞, x∞))→ 0

then (Xi , di , xi ),i ∈ N Gromov-Hausdorff converges to
(X∞, d∞, x∞).

Note: For each R > 0, you need to find Ri → R so that

(BRi
(xi ), di , xi )

dGH−→ (BR∞(x∞), d∞, x∞).



Lemma: C ⊂ M∗ is precompact if and only if

FR :=
{
BR(x) ⊂ X : (X , x) ∈ C

}
⊂M

is precompact for each R > 0.

Proof. Let GR :=
{

(BR(x), x) ⊂ X : (X , x) ∈ C
}
⊂M∗. If C is

precompact, then GR is precompact for each R > 0 and so FR is
precompact for each R > 0.

Now suppose FR is precompact for each R > 0. Fix R > 0. Let
(BR(xi ), xi ) ⊂ (Xi , xi ) be a sequence in FR . After passing to a

subsequence, we have BR(xi )
dGH−→ YR for some YR ∈M. After

passing to another subsequence, there is a 1/2i -isometry

fi : BR(xi ) −→ YR

for each i ∈ N. After passing to a subsequence, fi (xi )→ yR .
Hence (BR(xi ), xi )→ (YR , yR) in M∗.



Proof continued.
For each R1 ≤ R then (BR1(xi ), xi )→ (BR1(yR), yR) (Exercise).
Hence (YR1 , yR1) is isometric to (BR1(yR), yR) for each R1 ≤ R.
Hence we can define a pointed metric space: Y := ∪R>0YR with
basepoint y corresponding to yR for each R > 0. Then
(BR(xi ), xi ) converges to (BR(y), y) for each R > 0.



Convergence of maps.

I Definition Let fk : Xk −→ Yk , k ∈ N ∪ {∞} be a sequence of
maps between compact metric spaces. Suppose

Xk
dGH−→ X∞, Yk

dGH−→ Y∞.

Then we say that fk
dGH−→ f∞ if for each sequence of points

xi ∈ Xi , i ∈ N ∪ {∞} satisfying (Xi , xi )
dGH−→ (X∞, x∞), we

have (Yi , f (xi ))
dGH−→ (Y∞, f (x∞)).

I Note that we can put appropriate metrics on ti∈N∪{∞}Xi and
ti∈N∪{∞}Yi so that F = ti∈Nt{∞}fi is uniformly continuous

if and only if fk
dGH−→ f∞.



I Definition: A sequence of maps fk : Xk −→ Yk , k ∈ N is
equicontinuous if for each ε > 0, there is a δ > 0 so that

Bε(fk(x)) ⊂ fk(Bδ(x)), ∀ x ∈ Xk , k ∈ N.

I Theorem: Every equicontinuous sequence of maps
fk : Xk −→ Yk , k ∈ N between compact metric spaces has a
convergent subsequence.

Proof: After passing to a subsequence, we can assume that

Xk
dGH−→ X∞ and Yk

dGH−→ Y∞. Now choose countable dense
subset

Ai = {ai1, ai2, · · · } ⊂ Xi

for each i ∈ N. By a diagonal argument, we have that the
pointed spaces (Xk , aki ), k ∈ N converge to (X∞, a∞i ) for
some a∞i ∈ X∞ for each i ∈ N. Also, after passing to a
subsequence, (Xk , fk(aki )) −→ (X∞, f∞(a∞i )) for some

f∞(a∞i ) for each i . Hence fk
dGH−→ f∞.



I We need some conditions ensuring that subsets of M are
relatively compact.

I Definition: Let X be a compact metric space. Define

Cap(ε) = CapX (ε) := max number of disjoint ε/2-balls in X ,

Cov(ε) = CovX (ε) := min number of ε-balls to cover X .

I Lemma: Cov(ε) ≤ Cap(ε).

Proof. Let Bε/2(xi ), i = 1, · · · , k be disjoint where
k = Cap(ε). Suppose (for a contradiction)
xk+1 ∈ X − ∪ki=1Bε(xi ). Then Bε/2(xi ), i = 1, · · · , k + 1 are
disjoint and so k < Cap(ε). Contradiction. Hence
∪ki=1Bε(xi ) = X and so Cov(ε) ≤ Cap(ε).



Theorem: (Gromov 1980). Let C ⊂ M. The following statements
are equivalent:

1. C is precompact.

2. There exists a function N1 : (0, α) −→ (0,∞) so that

CapX (ε) ≤ N1(ε), ∀ ε > 0.

3. There exists a function N2 : (0, α) −→ (0,∞) so that

CovX (ε) ≤ N2(ε), ∀ ε > 0.

The proof of this theorem relies on the following Lemma:

Lemma: (Exercise). Let X ,Y ∈M satisfy dGH(X ,Y ) < δ. Then

CapX (ε) ≥ CapY (ε+ 4δ)

CovX (ε) ≥ CovY (ε+ 2δ)

(Similarly with X and Y swapped).



Proof of Gromov’s theorem:
1. =⇒ 2. Suppose C is precompact. Let ε > 0. Choose
X1, · · · ,Xk ∈ C so that

∪ki=1Bε/4(Xk) ⊃ C.

Define N1(ε) := maxi CapXi
(ε/2). Then by the previous lemma,

CapX (ε) ≤ CapXi
(ε/2) ≤ N1(ε), ∀ X ∈ C.

2. =⇒ 3. Use N1 = N2.



3. =⇒ 1.
It is sufficient for us to show that C is totally bounded. I.e.
CovC(ε) <∞ for each ε > 0. Let ε > 0 and let N1 be as in 2 and
define N := bN1(ε/2)c.
Let X ∈ C. Since CovX (ε/2) ≤ N, there exists x1, · · · , xN in X

satisfying ∪Ni=1Bε/2(xi ) ⊃ X . This implies that for each X ∈ C,
there is a metric space AX with N points so that
dGH(X ,AX ) ≤ ε/2 and satisfying CovA(ε/2) ≤ N.
Now let S ⊂M be the subset of metric spaces A with N points

satisfying CovA(ε/2) ≤ N. Since dH(C,S) ≤ ε/2, it is now
sufficient for us to show that CovS(ε/2) <∞. We leave this finial
step as an exercise.



Corollary: Let n ≥ 2 be an integer, k ∈ R and D > 0. Then:

1. The collection of closed Riemannian n-manifolds satisfying
Ric ≥ (n − 1)k and diam ≤ D is precompact in M.

2. The collection of pointed complete Riemannian n-manifolds
satisfying Ric ≥ (n − 1)k is precompact in M∗.

We will use the following proposition to prove this corollary (we
wont prove this proposition though, but refer to Peterson Ch 9):
Lemma: (Bishop-Cheeger-Gromov): Let (M, g) be a complete
Riemannian manifold with Ric ≥ (n − 1)k and let x ∈ M. Then

fx : (0,∞) −→ (0,∞), fx(R) :=
volBR(x)

v(n, k,R)

is non-increasing and satisfies fx(R)→ 1 as R → 0 where
v(n, k ,R) is the volume of a ball of radius R in the constant
curvature symmetric space Sn

k .



Proof of the Corollary above: We only need to prove 2. Let
C ⊂ M∗ be the collection of all Riemannian manifolds from 2. By
an earlier lemma, it is suffucient to show that

FR :=
{
BR(x) ⊂ X : (X , x) ∈ C

}
⊂M

is precompact for each R > 0. Let R > 0 and let ε > 0. We need
to find N1(ε) so that CapBR(x)

(ε) ≤ N1(ε) for each (M, x) ∈ C.

Let x1, · · · , xk ∈ M be points so that Bε(xi ) are all disjoint. Let
Bε(xi ) be the ball with the smallest volume. Then, by the lemma
above (fx is non-increasing):

k ≤ volBR(x)

volBε(xi )
≤ volB2R(xi )

volBε(xi )
≤ v(n, k , 2R)

v(n, k , ε)
.

Hence we choose N1(ε) to be v(n,k,2R)
v(n,k,ε) .



I Definition: The Mikowski dimension of a metric space X is

dimX := lim sup
ε→0

log CovX (ε)

− log(ε)
.

I Fact: The Mikowski dimension of any Riemannian n-manifold
is n.

I The proof of the corollary above tells us that the Riemannian
manifolds listed converge (after passing to a subsequence) to
a metric space whose Mikowski dimension is ≤ n.



I The following lemma tells us that Mikowski dimension cannot
increase under limits.

I Lemma: Suppose N : (0,∞) −→ (0,∞) is a continuous
function. Let C(N) ⊂M be the subset of metric spaces X
satisfying CovX (ε) ≤ N(ε) for each ε > 0. Then C(N) is
compact.

Proof: We already know that C(N) is precompact. Suppose
(Xi )i∈N is a sequence in C(N) converging to X∞. Then

CovX (X∞) ≤ CovXi
(ε− 2dGH(X ,Xi )) ≤ N(ε− 2dGH(X ,Xi ))

→ N(ε), as i →∞

since N is continuous.


