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Gromov-Hausdorff Distance

» Definition. Let (X, d) be a metric space and let A, B C X be
subsets. The distance between A and B is defined to be:

d(A,B) :=inf{d(a,b) : ac A, be B}.

» Definition. For € > 0, the e-neighborhood of A is defined to
be
Bi(A) :={xe X : d(x,A) <e€}.

» Definition. The Hausdorff distance between A and B is
defined to be:

dy(A,B) :=inf{le >0 : AC B(B), BC B.(A)}.






» Lemma: (Exercise). Suppose A, B are compact. Then the
Hausdorff distance between A and B is 0 if and only if A = B.

» The Hausdorff distance can be infinite. E.g. Consider two
different lines in R2,
» However, it is finite if A and B are compact (Exercise).



> We will be mainly interested in compact metric spaces. We
will also sometimes be interested in proper metric spaces: |.e.
balls are relatively compact.

» Definition. Let (X, dx), (Y, dy) be metric spaces. An
admissible metric on the disjoint union X U Y, is a metric d
satisfying d|x = dx, d|y = dy. In other words, a metric on
X UY inwhich X and Y are isometric subspaces.
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» Definition. Let X and Y be metric spaces. The
Gromov-Hausdorff distance between X and Y is defined to be:

: admissible metrics
den(X,Y) = mf{dH(X, Y) : don XL Y }
» Lemma. dgn(X, X) = 0. Proof: Let € > 0 Consider the

topological space [0, €] x X with the product metric. Consider
the subspace {0,¢} x X = X U X. The Gromov-Hausdorff
distance between these two copies of X is € > 0. O



Example:. Let A, B be finite sets equipped with the discrete
metric (l.e. the unique metric satisfying d(x,y) =1 if x # y).
Then dgu(A, B) is equal to 1 if and only if A # B.

In other words, the Gromov-Hausdorff metric on the the set of
(metric isomorphism classes) of finite sets with the discrete metric
is the discrete metric.

Why? Consider a metric d on AU B and suppose

|A| < |B|.Suppose every point a € A is within distance € of a point
b, € B for some € > 0.Now let b € B — U,ca{b,}.Then by the
triangle inequality, dy(A,b) > 1 —¢.



Example (Exercise). If X is a metric space and Y = {y} is a

single point then
dGH(X, Y) = rad(X)

where rad(X) is the radius of the smallest ball covering X

rad(X) = inf sup d(X,y).
(X) = inf sup d(X.)

Example: (Exercise) dgn([0,1],R/Z) > 1/4.

Why? Suppose that the distance is / < 1/4. Then for each

x € [0,1] there exists y, € R/Z whose distance is at most

I < 1/4. Then d(yp,y1) < 1/2 and so by the triangle inequality
d(0,1) < 1in [0,1] giving us a contradiction.



Lemma: dgy(X,Y) is equal to the infimum / over all metric
spaces Z of dy(X,Y) where X and Y are isometric subsets of Z.

Proof: dgu(X,Y) > I since we can choose (Z,d) to be X U Y.
Conversely consider some metric space (Z, d) and consider
du(X,Y). Let € > 0 and consider the space [0,¢] x Z. The
induced metric on

XUY={0} x XU{e} x Y C[0,¢] xZ

is admissible.Hence dgn(X, Y) </ + € for each € > 0. O



» Definition: The diameter of a metric space X is

diam(X) := sup d(x,y).
x,yeX

» Lemma: Let X, Y be metric spaces. Then
1
deu(X,Y) <D := 5 min(diam(X), diam(Y)).

Proof: We need to construct an appropriate admissible metric
on X LY. Define the distance between x € X and y € Y to
be D/2. This gives us an admissible metric on X LI 'Y and
hence our inequality. O



Definition: We let M be the collection of isometry classes of
compact metric spaces.

Note that M is a set. This is because compact metric spaces have
cardinality at most R

(Why? any such space is determined by a countable dense subset
and the collection of all metrics on a countable metric space at
worst a countable number of copies of R).

Goal: Show that (M, dgn) is a metric space.



Lemma: (Exercise). We have
1. deu(X,Y) >0,
2. deH(X,Y) = dan(Y, X),
3. deu(X,Z) < dgu(X,Y) + deu(Y, 2).

As a result, dgy is almost a metric. The hard part is to show that
deu(X, Y) = 0 implies that X is isometric to Y.

We need some definitions, lemmas and a theorem first before we
prove this.



» We want a notion of “approximate” isometry.

» Definition: Let (X, dx), (Y, dy) be metric spaces and let
€>0. Amap f: X — Y is an e-isometry if

[dy (f(x), f(x")) —dx(x,x')| <&, Vx,x'€X
and for each y € Y, there exists x € X so that
dy(y, f(x)) <e.

> In other words, it f almost preserves the metric, and it is
almost surjective.



Lemma: Let (X, dx), (Y, dy) be metric spaces satisfying
den(X,Y) < € for some € > 0. Then there is a 2e-isometry from
XtoY.

Proof: Let d be an admissible metric on X LI Y so that
du(X,Y) < e. Foreach x € X, define f(x) € Y to be any point
satisfying d(x, f(x)) < e. Then

dy (f(x), f(x')) < d(x, f(x)) + d(x,x") + d(X, f(x))

< d(x,x") + 2e.
Also, dy(f(x),f(x")) > —d(x, f(x)) + d(x,x") — d(x, f(x"))

> d(x,x') — 2e.
Hence
|dy (f(x), f(X")) — dx(x,x")] <2 Vx,x' €X.

l.e. f almost respects the metric.



Proof continued.
We now need to show that f is almost surjective. Let y € Y.
Choose x € X so that d(x,y) < e.Then

d(f(x),y) < d(x f(x)) + d(x, y)

< 2e.



Lemma: Conversely suppose that there is an e-isometry f between
metric spaces X and Y. Then dgp(X,Y) <e.

Proof: Let 6 > 0 be small. We let d be an admissible metric on
XUY sothatforxe Xandy €Y,

d(x,y) = inf (d(x,X) + d(F(X), ) +

This is a metric (Exercise).
Let y € Y. Choose x € X so that d(f(x),y) < e. Then

d(x,y) < e+ d.Hence B.;5(Y) contains X.Now let x € X.Then
d(f(x),x) <. Hence B.;5(X) contains Y.Hence dgu(X,Y) <e.



» Definition: Let (X, dx),(Y,dy) be topological spaces. Let
CO(X, Y) be the space of continuous maps X — Y
equipped with the compact open topology. This is the
topology generated by sets

V(K,U):={feCOX,Y) : f(K)c}

for each compact subset K C X and open subset U C Y.

» Definition: A subset F C C°(X, Y) is equicontinuous if for
each x € X and each € > 0 there exists a neighborhood Uy so
that dy(f(x),f(y)) < € for each y € Uy and each f € F.

» Theorem: (Arzela-Ascoli)
Let X be a compact Hausdorff space and let Y be a compact
metric space. Then every equicontinuous subset
F C C°(X, Y) is relatively compact (l.e. has compact
closure).



Lemma: Let X,Y be compact metric spaces and let (¢;);en be
positive constants converging to 0. Let f;: X — Y be a
ei-isometry for each i € N. Then f; converges in C°(X, Y) to an
isometry.

Proof: The maps (f;)icn are equicontinuous. Hence f; — fy, with
respect to the compact open topology by Arzela-Ascoli. Hence f;
converges pointwise to f, (Exercise). Hence

dy (foo(x), oo (X)) <
dy (fi(x), fo(x)) + d(fi(x), fi(X)) + dy (fi(X'), fxo(x"))
— dx(x,x').

A similar argument tells us that

dy (foo(x), fo(X')) > dx(x, x').



Proof continued.

Hence f is an isometric embedding from X to Y. We now need
to show that f, is surjective.

Let y € Y.Then, there exists x; € X so that dy(fi(x;),y) < €; for
each i € N. Now x; — x after passing to a subsequence since X
is compact. Hence fi(x;) = foo(Xso). Since fi(x;) — y, we then get
foo(Xs0) = yand so fy is surjective.

L]



Proposition: Suppose X, Y € M satisfies dgn(X, Y) = 0 then X
is isometric to Y.

Proof:

Since dgu(X, Y) < 1/i for each i € N, there is a 1/i-isometry
fi: X — Y for each i € N.

By the previous lemma, f; converges to an isometry X — Y. O



> Definition: Let X, Y be metric spaces. Define
diso(X,Y) :={e >0 : Je-isometries X — Y and Y — X}.

» Proposition (Exercise). (M, dis,) is a metric space.

» Corollary: (M, dgn) is a metric space.

Proof:
We only need to show:

deu(X,Y)=0 = X is isometric to Y.
This follows from:

diso(X, Y) < dn(X, Y) < 2diso(X, Y).



Example: (Berger spheres).
Consider the unit sphere S3 C C2. Let U(1) act diagonally on S3
l.e. we have an action

d:U1) xS — 83 (7, x):=e"x.

Now we ‘stretch’ the metric in the direction of this action.We did
this earlier with Berger-Cheeger perturbations.Let gs3, gy(1) be the
standard metrics on S3 and U(1). Now consider the product metric
gss + Agy() on S$3 x U(1), A > 0.This descends a metric g on:

S =8 xyp) S°

As A — 0, we have that S3 Gromov-Hausdorff converges to

S2 = $3/U(1).



Lemma: For each compact metric space (X, dx) and each € > 0,
there is a finite metric space (Y, dy) so dgu(X, Y) < €. In other

words, every compact metric space can be approximated by a finite
one.

Proof. Choose a countable dense subset A C X. Then B(a),

a € Ais a cover and hence has a finite subcover B.(a;),

i=1,--- k. The Hausdorff distance between X and {as,--- ,ax}
is at most €. By an earlier Lemma, this gives us our result.



Proposition: (M, dgy) is separable.

Recall that a metric space is separable if it contains a countable
dense open subset.

Proof. By the previous lemma, finite metric spaces form a dense
subset F C M. Moreover, finite metric spaces whose associated
metrics take rational values gives us a dense subset of F. Hence
(M, dgn) is separable.



Theorem: (M, dgn) is complete.

Proof. It is sufficient to show that (M, dis,) is complete. Let
(Xi, di)ien be Cauchy. After passing to a subsequence, we can
assume that there is a 1/2' isometry:

fi o Xi — Xiq1
for each /. We let X, be the set of equivalence classes of
sequences (X;)jcn, where
» x; € X; for each |.
> dii1(fi(x;), xi 1) < 271 for all sufficiently large .
> (xi)ien is equivalent to (x)ien if di(x;, x!) < 1/2/=1 for all
sufficiently large i.
We define the metric ds, on X5 to be
doo ((X) e, (X )ien) = lim sup di(xi, x;).-
IS

Exercise: Prove that this is a metric.



Proof continued.
Claim: (X, dx) is compact.

Proof of claim: Let (z;);cn be a sequence in Xy. Then

zj = (xjj)jen, Xjj € Xj. Since X; is compact for each j, we have, by
a diagonal argument, x;; — Xj» after passing to a subsequence for
each j. After passing to a further subsequence, we can assume
that f;(x;;) converges to fi(xjo) as j — oo for each i. Now

Zoo = (Xjoo)ieN is in X5 and z; converges to z,, as i — oo
(Exercise).

Claim: (Xi, dj) 253 (Xoo, dbo).
Proof of Claim: Let i € N. Construct a map X; — X by sending

x; € X; to a sequence (yj)jen Where y; is any point you like for
Jj<i andyj=fi_jo---of;. Thisisa 1/2-isometry for each j. [

Hence X; dﬂ Xoo and so (M, dgy) is complete.



Pointed Convergence.
» Sometimes we wish to deal with “Gromov-Hausdorff"”
convergence for non-compact metric spaces.

» To do this, we should think of such a space as a union of
compact metric spaces, and then look at the convergence of
all of these individual spaces.

> Let us now gives some more precise definitions.



» Definition: A pointed metric space is a triple (X, d, x) where
(X, d) is a metric space and x € X is a basepoint. Sometimes
we just write (X, x) if we do not wish to describe the metric.

» Two such spaces are based isometric if there is an isometry
sending one basepoint to the other.

» Definition Let (X, dx,x), (Y, dy,y) be compact pointed
metric spaces. The Gromov-Hausdorff distance between them
is:

den((X, dx,x), (Y, dy,y)) ==
inf {dy(X,Y)+d(x,y) : dis an admissible metricon X LI Y}.



Definition A proper pointed metric space is a pointed metric
space (X, d, x) so that Bg(x) is precompact for each R > 0.

We define M, to be the set of based isometry classes of
pointed metric spaces.

Definition: Bg(x) (resp. Br(x)) denotes the open (resp.
closed) ball of radius R about x.

Definition: A sequence of pointed metric spaces (X, d;, x;),
i € N Gromov-Hausdorff converges to (X0, dso, Xo0 ) if for
each R > 0, there exists a sequence R; — R so that the
compact pointed metric spaces (Bg.(x;), di, x;), i € N

Gromov-Hausdorff converge to (Bgr(Xx); doos Xoo)-



You might think that all you need is that (Bgr(x;), di, x;), i € N
Gromov-Hausdorff converge to (Bg(Xx), dso;s X0 ) for each R > 0
in the definition above (as stated in the Wikpedia definition).
However the following example shows that this is not good.

Example: Let X; = {0,1+ 1/i} with the metric induced from R
and let 0 be the basepoint for each i € NU {oco}. Then

X; dﬂ Xoo- However, B1(0) = {0} C X; does not converge in dgy
to B1(0) ={0,1} C Xw.

In other words, such a modified definition is too strong.



Exercise. Let (Xj, d;, x;), i € NU{oo} be a sequence of compact
pointed metric spaces satisfying

dGH((Xi7 d,',X,'), (Xooa domXoo)) —0

then (X, d;, x;),i € N Gromov-Hausdorff converges to
(XOO7 dOO7 XOO)

Note: For each R > 0, you need to find R; — R so that

(Br,(xi), di, xi) 2 (Br.. (X0), oo Xoo)-



Lemma: C C M, is precompact if and only if
Fr:={Br(x)C X : (X,x)eC} C M
is precompact for each R > 0.

Proof. Let Gg := {(Bgr(x),x) C X : (X,x) €C} C M,. IfCis
precompact, then Gg is precompact for each R > 0 and so Fg is
precompact for each R > 0.

Now suppose Fg is precompact for each R > 0. Fix R > 0. Let
(Br(xi),xi) C (Xi, x;) be a sequence in Fr. After passing to a

= d
subsequence, we have Br(x;) —= Yg for some Ygp € M. After
passing to another subsequence, there is a 1/2'-isometry

fi : Br(xi) — Yr

for each i € N. After passing to a subsequence, fi(xi) = yr.
Hence (Br(xi), %)) — (Yr,yr) in M,.



Proof continued.

For each Ry < R then (Bg,(x;),x;) — (Br,(Yr),Yr) (Exercise).
Hence (Yg,, yr,) is isometric to (Bg,(yr), yr) for each Ry < R.
Hence we can define a pointed metric space: Y := UgsoYr with
basepoint y corresponding to yg for each R > 0. Then
(Br(x;),x;) converges to (Bg(y),y) for each R > 0.

O



Convergence of maps.

» Definition Let f, : Xy — Yk, k € NU{oo} be a sequence of
maps between compact metric spaces. Suppose

X B X Y Sy

Then we say that f; dﬂ f~ if for each sequence of points
x;i € Xi, i € NU{oo} satisfying (X, x;) Jen, (Xoos Xo0), We
d
have (Y, f(xi)) =2 (Yo, F(Xs0))-
> Note that we can put appropriate metrics on Licnyufoo} Xi and
UieNufoo} Yi 0 that F = Lieni {0} fi is uniformly continuous
if and only if fi, %% ...



» Definition: A sequence of maps f; : Xy — Yk, k € Nis

equicontinuous if for each € > 0, there is a 0 > 0 so that
Be(fk(x)) C fk(B(g(X)), VxéeX., keN.

Theorem: Every equicontinuous sequence of maps
f : X,k — Yx, k € N between compact metric spaces has a
convergent subsequence.

Proof: After passing to a subsequence, we can assume that

Xk dﬂ X and Yy dﬂ Ys. Now choose countable dense
subset
Ai ={ai1,ai0,- -} C X

for each i € N. By a diagonal argument, we have that the
pointed spaces (X, ax;), k € N converge to (X, asoi) for
some an; € Xy for each i € N. Also, after passing to a
subsequence, (Xk, fk(aki)) — (Xoo, foo(a00i)) for some

foo(acoi) for each i. Hence f dor, .

O



» We need some conditions ensuring that subsets of M are
relatively compact.

» Definition: Let X be a compact metric space. Define
Cap(e) = Capx(€) := max number of disjoint €/2-balls in X,

Cov(e) = Covx(€) := min number of e-balls to cover X.

» Lemma: Cov(e) < Cap(e).

Proof. Let B./>(x;), i =1,--- , k be disjoint where

k = Cap(€). Suppose (for a contradiction)

X1 € X — UK B(x;). Then B.jp(x;), i=1,---  k+1are
disjoint and so k < Cap(e). Contradiction. Hence

UK Be(x;) = X and so Cov(e) < Cap(e). O



Theorem: (Gromov 1980). Let C C M. The following statements
are equivalent:

1. C is precompact.
2. There exists a function Nj : (0,a) — (0, 00) so that

Capx(e) < Ni(e), Ve > 0.
3. There exists a function N, : (0,) — (0, 00) so that

Covx(e) < Na(e), Ve> 0.

The proof of this theorem relies on the following Lemma:
Lemma: (Exercise). Let X, Y € M satisfy dgu(X, Y) < d. Then
Capx/(€) > Capy (e + 40)

Covx(€e) > Covy (e + 26)
(Similarly with X and Y swapped).



Proof of Gromov's theorem:
1. = 2. Suppose C is precompact. Let ¢ > 0. Choose
X1, , Xk € C so that

Uit Beja(Xi) D C.
Define N (e€) := max; Capx,(€/2). Then by the previous lemma,

Capx(€) < Capx,(e/2) < Ni(e), V X € C.

2. — 3. Use N1 = N2.



3. = L

It is sufficient for us to show that C is totally bounded. |.e.
Cove(e) < oo for each € > 0. Let € > 0 and let Ny be as in 2 and
define N := | Ni(e/2)].

Let X € C. Since Covx(e/2) < N, there exists x1,--- ,xy in X
satisfying U, B. /(i) D X. This implies that for each X € C,
there is a metric space Ax with N points so that
deH(X, Ax) < €/2 and satisfying Cova(e/2) < N.

Now let S C M be the subset of metric spaces A with N points
satisfying Cova(e/2) < N. Since dy(C,S) < ¢/2, it is now
sufficient for us to show that Covs(e/2) < co. We leave this finial
step as an exercise. []



Corollary: Let n > 2 be an integer, k € R and D > 0. Then:

1. The collection of closed Riemannian n-manifolds satisfying
Ric > (n — 1)k and diam < D is precompact in M.
2. The collection of pointed complete Riemannian n-manifolds
satisfying Ric > (n — 1)k is precompact in M.,.
We will use the following proposition to prove this corollary (we
wont prove this proposition though, but refer to Peterson Ch 9):
Lemma: (Bishop-Cheeger-Gromov): Let (M, g) be a complete
Riemannian manifold with Ric > (n — 1)k and let x € M. Then

vol Br(x)

fi: (0,00) — (0.00), £(R) i= Jo =7

is non-increasing and satisfies f,(R) — 1 as R — 0 where
v(n, k, R) is the volume of a ball of radius R in the constant
curvature symmetric space Sj.



Proof of the Corollary above: We only need to prove 2. Let
C C M., be the collection of all Riemannian manifolds from 2. By
an earlier lemma, it is suffucient to show that

Fr:={Br(x)C X : (X,x)eC} CM

is precompact for each R > 0. Let R > 0 and let ¢ > 0. We need
to find Ny(e) so that Capg,(,(€) < Ni(e) for each (M, x) € C.
Let xq,---,xx € M be points so that B(x;) are all disjoint. Let
Bc(x;) be the ball with the smallest volume. Then, by the lemma
above (fy is non-increasing):

vol Bogr(x;i)
vol B.(x;)

v(n, k,2R)
v(n, k,e)

< vol Br(x)

<
~ volB(x;) —

<

v(n,k,2R)

Hence we choose Nj(¢€) to be DR




» Definition: The Mikowski dimension of a metric space X is

log C
dim X := limsup M.
e—0 - |Og(€)
» Fact: The Mikowski dimension of any Riemannian n-manifold
is n.
» The proof of the corollary above tells us that the Riemannian

manifolds listed converge (after passing to a subsequence) to
a metric space whose Mikowski dimension is < n.



» The following lemma tells us that Mikowski dimension cannot
increase under limits.

» Lemma: Suppose N : (0,00) — (0,00) is a continuous
function. Let C(N) C M be the subset of metric spaces X
satisfying Covx(e) < N(e) for each € > 0. Then C(N) is
compact.

Proof: We already know that C(N) is precompact. Suppose
(Xi)ien is a sequence in C(N) converging to Xs. Then

COVX(XOO) S COVXI.(E — 2dGH(X, X,)) § N(E — 2dGH(X,X,'))

— N(e), as i — o0

since N is continuous. O



