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Geometric Applications.

We will be using the following proposition, proven in Section 6 of
Peterson,

Proposition: Suppose that | sec(M, g)| ≤ K and inj(M, g) ≥ i0.
Then on Bi0(p),

max{|D expp |, |D exp−1p |} ≤ exp(f (n,K , i0))

where f only depends on n,K , i0 and f (n,K , 0)→ 0 as K → 0.



Hence, we have the following theorem:

Theorem: For every Q > 0, there exists r > 0 depending only on
ι0 and K so that for any complete Riemannian manifold (M, g)
satisfying | sec(M, g)| ≤ K and inj(M, g) ≥ i0, we have
‖(M, g)‖C0,r ≤ Q. Furthermore, if (Mi , gi , pi ) satisfy injMi ≥ i0
and | sec(Mi , gi )| ≤ Ki −→ 0, then a subsequence converges in the
pointed Gromov-Hausdorff topology to a flat Riemannian manifold
satisfying inj ≥ i0.

We would like a stronger version of this theorem since C 0 bounds
from C 2 bounds on the Riemannian metric seem a bit strong.



Instead of using exponential charts, we will use distance functions
to construct coordinate charts with appropriate bounds.

Lemma: Suppose inj(M, g) ≥ i0, | sec(M, g)| ≤ K . Let p ∈ M
and consider the distance function dp(x) := d(x , p) where d is the
distance metric on (M, g). Then dp is smooth on Bi0(p)− p and
its Hessian is bounded in absolute value on Bi0(p)− Bi0/2(p) by
F (n,K , i0).

Proof idea: The smoothness property just follows from the
injectivity radius assumption. The derivative bounds come from the
following formula from Chapter 6 of Peterson: In polar coordinates,

√
K cot(

√
Kr)gr ≤ Hessdp ≤

√
K coth(

√
Kr)gr

(here gr = r2ds2n−1 where sn−1 is the round metric on the unit
sphere). . This gives us our result.



We will now describe the coordinate system near p ∈ M that we
will use. We let d be the distance metric on M. Also suppose
| sec(M, g)| ≤ K and inj(M, g) ≥ i0. Let e1, · · · , en ∈ TpM be an
orthonormal basis. Let γi (t) be the unique geodesic satisfying
γi (0) = p, γ̇i (0) = ei for each i . Define

di : M −→ [0,∞), di (x) := d(x , γi (i0 · (4
√
K )−1)).

Define
φ(x) := (d1(x), · · · , dn(x)).

The previous lemma tells us that the Hessian of φ has a uniform
bound when restricted to Bi0·(8

√
K)−1(p). Our potential chart will

be φ−1, but we have to show that φ restricted to a smaller ball is
smoothly invertible first. The proof of the next theorem will
address this issue.



Theorem: (The Convergence Theorem of Riemannian Geometry).
Given K , i0 > 0, there exists Q, r > 0 so that for each (M, g)
satisfying

| sec(M, g)| ≤ K , inj(M, g) ≥ i0,

we have
‖(M, g)‖C1,r ≤ Q.

Hence this class of manifolds is compact in the pointed Cα

topology for all α < 1.



Proof: Let p ∈ M and let di be the distance coordinate system
described above and φ = (d1, · · · , dn) as above. Let
gij := g(∇di ,∇dj). First note that gij = id at p. Therefore our
bound on the Hessian of the distance functions tell us there exists
Q, ε > 0 depending only on ι0,K so that |Dφ| ≤ eQ on Bε(p) and
|Dφ−1| ≤ eQ on Bε(0). Hence by the implicit function theorem,
there exists ε̂ > 0 only depending on Q, n so that
φ−1 : Bε̂(p) −→ Rn is a smooth chart satisfying (n2). Conditions
(n3),(n4) come from the Hessian estimates. Condition (n1) is true
since our charts are centered at every point p ∈ M.



Corollary: (Cheeger 1967) Given n > 1 and k > 0, the class of
Riemannian 2n-manifolds with k ≤ sec ≤ 1 is compact in the
Cα-topology. Hence there are only finitely many diffeomorphism
types of such manifolds.

Proof: This follows directly from the following two propositions:

Theorem: (Klingenberg’s Estimate for injectivity radius, 1959).
Suppose (M, g) is an even dimensional manifold satisfying
0 < sec < 1. Then inj > π/2.

Theorem: (Hopf-Rinow, 1931, Myers 1932). Suppose (M, g) is
complete and satisfies sec > k > 0. Then M is compact and
satisfies diam(M, g) ≤ π/

√
k = diam(Sn

k ).
(Here the diameter bound is used because we are talking about
convergence, instead of pointed convergence).



Now we wish to give conditions ensuring that the injectivity radius
is bounded below.

Lemma (Cheeger 1967). Let n ≥ 2, v ,K > 0 and a compact
n-manifold (M, g) satisfying:

| sec(M, g)| ≤ K ,

volB1(p) ≥ v , ∀ p ∈ M.

Then inj(M, g) ≥ i0 where i0 only depends on n,K , v .

Proof: Suppose (for a contradiction), there exists (Mi , gi )
satisfying the assumptions stated in this lemma with
inj(Mi , gi )→ 0 as i →∞. Choose pi ∈ Mi so that
injpi = inj(Mi , gi ). Now consider the sequence of pointed
manifolds: (Mi , g i , pi ), i ∈ N where g i = (inj(Mi , gi ))−2gi . Then

inj(Mi , g i ) = 1, | sec(Mi , g i )| ≤ (inj(Mi , gi ))−2K = Ki → 0.



Proof continued. Now by the convergence theorem for Riemannian
geometry stated above together with the first theorem stated on
these slides we get that (Mi , g i , pi ) converges in the pointed Cα

topology to a flat manifold (M∞, g∞, p∞) for each α < 1.

Claim 1: injp∞(M∞, g∞) ≤ 1.

Proof of Claim 1: We need the following Theorem by Klingenberg:

Theorem: Suppose | sec(M, g)| ≤ K . Then

injp(M, g) ≥

min

{
π√
K
,

1

2
· (length of shortest geodesic loop based at p)

}
.

Now since
√
Ki →∞, the above theorem tells us that there is a

geodesic loop of length 2 based at pi in (Mi , g i ). These geodesic
loops must converge to a geodesic loop on (M∞, g∞) and hence
injp∞(M∞, g∞) ≤ 1. QED for Claim 1.



Proof continued. Claim 2: (M∞, g∞) = (Rn, gstd). This
contradicts Claim 1, and so we are done if we can prove Claim 2.

Proof. Since volB1(pi ) ≥ v inside (Mi , gi ) for each i ∈ N, there
exists v ′ = v ′(n,K , v) so that volBr (pi ) ≥ v ′rn for each r ≤ 1.
Hence volBr (pi ) ≥ v ′rn for each r ≤ (inj(Mi , gi ))−1 inside the
rescaled manifold (Mi , g i ). Since (Mi , g i , pi ) converges in the
pointed Cα topology to a flat manifold (M∞, g∞, p∞), we then
get volBr (p∞) ≥ v ′rn for all r .

Hence (M∞, g∞) = (Rn, gstd). Why? If it wasn’t, then there
would be a covering M̂ −→ M∞ equal to a cylinder Rn/Z where Z
acts via translations. However, in this case:

lim
r→∞

volBr (p∞)

rn
= 0

giving us a contradiction.



Corollary (Cheeger 1967) Let n ≥ 2, Λ,D, v > 0. The class of
closed Riemannian n-manifolds with

| sec | ≤ Λ

diam ≤ D

vol ≥ v

is precompact in the Cα topology for any α ∈ (0, 1). Hence there
are only finitely many diffeomorphism types of such manifolds.



By modifying the proof of the convergence theorem in Riemannian
geometry, we have the following theorem:

Theorem (S-h Zhu) Given K , i0 > 0, there exists Q, r > 0 so that
for each (M, g) satisfying

sec(M, g) ≥ −K 2, inj(M, g) ≥ i0,

we have
‖(M, g)‖C1,r ≤ Q.

Hence this class of manifolds is compact in the pointed Cα

topology for all α < 1.

Proof idea: It suffices to get upper and lower Hessian bounds for
the distance function dp(x) = d(x , p). As before, we get an upper
bound

Hessd(x) ≤ K · coth(k · dp(x))gr .



Proof continued

.
We now need a lower bound. Now suppose x0 ∈ Bi0(p). Let γ be
the unique unit speed geodesic minimizing the distance between p
and x0 and define y0 := γ(i0). Define

fx0 : Bi0(p) −→ [0,∞), fx0(x) := i0 − d(x , y0).

Then fx0(x0) = dp(x0) and fx0 − dp ≤ 0 by the triangle inequality.
Hence Hessdp ≥ Hessfx0 at x0. Also from chapter 6 in Peterson:

Hessfx0 ≥ −K · coth(d(x0, y0) ·K )gr = −K · coth(K (i0 − r(x0)))gr .

This gives us the appropriate two sided bounds (details
missing).



The following example shows that the bounds by Zhu are sharp.

Let
fε : [0,∞) −→ [0,∞)

be a concave function so that:

fε(r) =

{
r if 0 ≤ r ≤ 1− ε
3
4 r if 1 + ε ≤ r .

Consider the metrics
dr2 + f 2ε dθ

2

on R2. These metrics have sec ≥ 0 and inj ≥ 1. As ε→ 0, we get
a C 1,1-manifold with a C 0,1-metric (M, g). As a result limit spaces
can’t be expected to be smoother than the above example.


