
Bochner Technique

Throughout this section we will fix a connected Riemannian manifold (M, g). (Sometimes
we will drop the assumption that M is connected - but we will state this clearly). We also
let n be the dimension of M .

0.1. Summary.

0.2. Killing Fields. If X is a vector field on a manifold M , we will write φXt for the time
t flow of X. This flow may not always be well defined. As a result, it is a function from a
subset S of M to M where S is the set of points p where the time t flow of p along X is well
defined. Such a set S is open. A point p ∈ S is called a point where the flow of X is well
defined. We call S the domain of φXt .

Definition 0.1. A vector field X on a Riemannian manifold (M, g) is called a Killing field
if its local flows preserve the metric. In other words, if U ⊂ X is any open subset so that the
flow Ut := φXt (U) is well defined for |t| < ε then (φXt )∗(g|Ut) = g|U .

Proposition 0.2. A vector field X on a Riemannian manifold (M, g) is a Killing field if
and only if LXg = 0.

Proof. Let F t := φXt be the flow of X. Recall: LXg is a symmetric (0, 2)-tensor on M (I.e.
a fiberwise linear map LX : TM ⊗ TM −→ R satisfying LX(v, w) = LX(w, v)) defined by

LXg(v, w) :=
d

dt
g(DF t(v), DF t(w))|t.

Note that this is how one defines the Lie derivative of any tensor field. We have:

d

dt
g(DF t(v), DF t(w))|t=t0 =

d

dt
g(DF t−t0DF t0(v), DF t−t0DF t0(v)(w))|t=t0

d

dt
g(DF sDF t0(v), DF sDF t0(v)(w))|s=0

= LX(g)(DF t0(v), DF t0(w)).

Hence LX(g) = 0 if and only if d
dtg(DF t(v), DF t(w)) = d

dt(F
t)∗g is constant. I.e. if and only

if the flow of X preserves g. �

Proposition 0.3. (Skew symmetry property) X is a Killing field if and only if the map

TM −→ TM, v −→ ∇vX
is a skew symmetric (1, 1)-tensor. In other words, (0, 2)-tensor

(v, w) −→ g(∇vX,w)

is anti-symmetric, and hence a 2-form. This 2-form is also exact, and equal to 1
2dθX where

θX is the 1-form given by

θX : TM −→ R, θX(Y ) = g(X,Y ).

Proof. Recall that a (1, 1) tensor f : TM −→ TM is Skew symmetric if g(f(v), w) =
−g(f(w), v) for each v, w ∈ TxM , x ∈M .

Recall that ∇vX is a vector defined uniquely as follows: Let θX be the unique 1-form
defined by

θX(Y ) = g(X,Y ), ∀ Y ∈ TM.
1
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Then ∇vX is defined uniquely by the formula:

g(∇vX,Y ) =
1

2
(LX(g)(v, Y ) + dθX(v, Y )) .

(This is the unique affine connection on TM preserving g which is torsion free). Since LX(g)
is symmetric, we have that the above formula splits the (0, 2) tensor

TX : TM⊗2 −→ R, TX(v, Y ) −→ g(∇vX,Y )

uniquely into its symmetric and anti-symmetric components. Hence it is anti-symmetric if
and only if its symmetric component LX(g) vanishes. �

Proposition 0.4. Let p ∈ M and let X be a Killing field. Then X is uniquely determined
by X|p and ∇X|p.

Proof. Suppose we have another Killing field Y satisfying Y |p = X|p and ∇Y |p = ∇X|p.
Then X − Y is a Killing field satisfying X − Y |p = 0 and ∇X − Y |p = 0. Therefore, from
now on, we can assume X|p = 0 and ∇X|p = 0 and we wish to show that the set of points
for which X vanishes is both open and closed in M . The set of points for which X vanishes
is certainly closed since it is the zero set of a section of the bundle TM . Therefore we need
to show that X−1(0) is open.

Let F t be the flow of X. Since p ∈ X−1(0), this flow fixes p and hence we get a linear map

Dt := DF t|p : TpM −→ TpM.

We will now show that Dt is the identity map for each t. Now since DF t = DF t−t0DF t0 for
each t0 ∈ R, we have

d

dt
Dt|t=t0 =

(
d

dt
Dt|t=0

)
Dt0 .

Hence it is sufficient for us to show that

d

dt
Dt|t=0 = 0.

Let Y be a vector field defined in a neighborhood of p and define v := Y |p. Since X|p = 0
and ∇X |p = 0, we get

LXY |p = [X,Y ]|p = ∇YX|p −∇XY |p = 0

and so
d

dt
DtY |t=0 = LXY |p = 0.

Hence Dt is the identity map for each t.
This implies that F t = 0 in a small neighborhood of p. Why? Let U ⊂ TpM be a small

open neighborhood of 0 so that the exponential map

exp : U −→M

is an embedding. Now since F t is an isometry for each t, we have that F t(exp(v)) = expDtv =
exp v for each v ∈ U sufficiently small. Hence F t is the identity map near v. �
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Theorem 0.5. (Killing submanifold theorem)
Let (Xi)i∈I be a collection of Killing fields. Then N := ∩i∈IX−1

i (0) is a disjoint union of
totally geodesic submanifolds, each of even codimension.

Let p ∈ TpN and let T⊥p N := {v ∈ TpM : g(v, w) = 0 ∀ w ∈ TpN} be the corresponding
orthogonal subspace. Then the map

ρi := TpM −→ T⊥p N, ρi(v) := ∇vXi

is well defined and TpN = ∩i∈I ker(ρi).

Also, there exists constants α1, · · · , αl so that N = X−1(0) where X =
∑l

i=1 αiXi.

Recall that a submanifold S ⊂ M is totally geodesic if every geodesic tangent to S is
contained in S. Before we prove this theorem, we have the following lemma (proven in the
previous course?):

Lemma 0.6. Let Q be a set of isometries of (M, g). Let

Fix(Q) := {x ∈M : f(x) = x x ∈ Q}
be the fixed points set of Q. Then Fix(Q) is a disjoint union ot totally geodesic submanifolds.
Also for each p ∈ Fix(Q),

TpFix(Q) = {v ∈ TpM : DF (v) = v ∀ f ∈ Q}.

Proof. The key idea is to use the exponential map exp : U −→M , U ⊂ TM of the metric to
construct charts on Fix(Q). We will choose U to be a small neighborhood of the zero section
of TM so that exp |U |x is a smooth embedding. Recall that geodesics γ : I −→M where I ⊂ R
is a connected interval containing 0 are uniquely determined by γ(0) and γ′(0) = d

dtγ(t)|t=0.
Let

T := {v ∈ TM : Df(v) = v, f ∈ Q} .
This will be the tangent space of our fixed point set. Let x ∈ Fix(Q) and let T |x := T ∩TM |x.
Then exp |Tx∩U is a smooth embedding. It is contained in Fix(Q) for the following reason:
Each f ∈ Q sends geodesics to geodesics. If γ is a geodesic satisfying γ′(0) ∈ T |x then f ◦γ has
the same property. Hence f ◦γ = γ for each such geodesic. Therefore f ◦exp |Tx∩U = exp |Tx∩U
for each f ∈ Q. Hence exp |Tx∩U ⊂ Fix(Q). Also exp |Tx∩U is a neighborhood of x in Fix(Q)
for the following reason: If x′ ∈ Fix(Q) is sufficiently close to x then there is a unique shortest
geodesic γ connecting x with x′. Now f ◦ γ is another geodesic connecting x with x′ for each
f in Q. This geodesic has the same length since f is an isometry and so f ◦ γ = γ. Hence x′

is in the image of exp |T |x∩U if x′ is sufficiently close to x.
Hence exp |T |x∩U : T |x ∩ U −→ Fix(Q) is a chart for Fix(Q) for each x ∈ Fix(Q). Hence

Fix(Q) is a smooth totally geodesic submanifold of M . �

Proof of Theorem 0.5. Let F ti be the time t flow of Xi for each i ∈ I. Then by the previous
lemma, the fixed point set

S := Fix(F ti , t ∈ R) = {p ∈M : F ti (p) = p, ∀ t ∈ R, i ∈ I}.
is a disjoint union of totally geodesic submanifolds whose tangent space is

TS = {v ∈ TM : DF ti (v) = v, ∀ t ∈ R, i ∈ I}. (0.1)

Let v be any vector field on M and let p ∈ S. Then [v,Xi]|p = ∇Xi|pv −∇v|pXi and so

∇v|pXi = −∇Xi|pv − [v,Xi]|p = [Xi, v]|p =
d

dt
(F ti v|p)|t=0.
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since p ∈ S ⊂ X−1
i (0). Note gradients are always Lie brackets when the vector field X

vanishes - I.e. the metric does not matter here.
Therefore by Equation (0.1), ∇v|pXi = 0 for each i ∈ I if and only if v|p ∈ TS. Also if

w ∈ TpS and since F tiw = w we get

g(∇v|pXi, w) = g(
d

dt
(F ti v|p)|t=0, w)

= g(
d

dt
(F ti v|p)|t=0, w) + g(v,

d

dt
(F tiw)|t=0) =

d

dt
g(F ti v, F

t
iw)|t=0 = 0.

Hence
∇vXi ∈ TpS⊥

for each v ∈ TpM . Hence we have well define skew symmetric maps:

ρi : TpM −→ T⊥p S, ρi(v) := ∇vXi, i ∈ I
(Proposition (Skew symmetry property)). Also since v ∈ TpM satisfies

v ∈ TpS if and only if ∇vXi = 0 ∀ i ∈ I,
we have that

TpS = ∩i∈I ker(ρi).

Now by a linear algebra exercise, we can find i1, · · · , il in I and constants α1, · · · , αl so
that

∩i∈I ker(ρi) = ker(ρ)

where ρ =
∑l

j=1 αjρij . Let X :=
∑l

j=1 αjXij . Then ∇X|T⊥
p S

= ρ. Hence we have a well

defined map:

∇X : T⊥p S −→ T⊥p S, v −→ ∇vX.
Since the kernel ρ is TpS, we get that this map is invertible. Since this map is also skew

symmetric, we get that the dimension of TS⊥ is even (since non-degenerate skew symmetric
forms only exist on even dimensional vector spaces). Hence the codimension of S is even
dimensional. �

Definition 0.7. We define iso(M, g) ⊂ Vect(X) to be the subspace of Killing fields of (M, g).
We define Iso(M, g) ⊂ Diff(M) to be the subgroup of isometries of M .

Theorem 0.8. iso(M, g) is a Lie subalgebra of Vect(M) (with the usual Lie bracket) whose

dimension is ≤ n(n+1)
2 .

Proof. Now L[X,Y ] = [LX , LY ] and so if LXg = 0 and LY g = 0 then L[X,Y ]g = 0. Hence
iso(M, g) is a Lie subalgebra of Vect(M). Now let p ∈M . We have shown earlier that there
is an injective map

iso(M, g) −→ TpM × ∧2T ∗pM, X −→ (X|p, dθX |p)
is an injective homomorphism where θX(−) = g(∇vX,−). This gives us our dimension

restriction since the dimension of TpM × ∧2T ∗pM is n+ n(n−1)
2 = n(n+1)

2 . �

Theorem 0.9. Suppose that (M, g) is complete (I.e. the geodesic flow is well defined for all
time). Iso(M, g) is naturally a Lie group (with respect to the compact open topology) whose
Lie algebra at the identity is iso(M, g).
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Proof. We will not prove that Iso(M, g) is a Lie group (This is the Myers-Steenrod theorem).
To show that iso(M, g) is the Lie algebra of Iso(M, g) it is sufficient to show that the 1-
parameter subgroup generated by X ∈ iso(M, g) lies in Iso(M, g). But this was proven
above. �

Before we go to an example, let us recall some facts about curvature.

Definition 0.10. The curvature tensor is a (1, 3) tensor given by

R : TM⊗3 −→ TM, R(X,Y )Z := [∇X ,∇Y ]Z −∇[X,Y ]Z.

This is sometimes written as a (0, 4) tensor:

R : TM⊗4 −→ R, R(X,Y, Z,W ) := g(R(X,Y )Z,W ).

Now R is skew symmetric in the first two and last two entries, and so we can also view it as
fiberwise linear map:

R : ∧2TM ⊗ ∧2TM −→ R, (X ∧ Y,Z ∧W ) −→ R(X,Y, Z,W ).

For any two vectors v, w ∈ TpM , define Area�(v, w) := g(v, v)g(w,w)− g(v, w)2. This is the
area of the parallelogram spanned by v, w. We define the sectional curvature of (M, g) to be
the (0, 2) tensor

sec : TM⊗2 :=
R(w ∧ v, v ∧ w)

Area�(v, w)
.

This only depends on Span(v, w) and hence if 2-plane(M) is the subspace of 2-planes in TM
then we have

sec : 2-plane(M) −→ R, sec(Span(v, w)) := sec(v, w).

Recall that we have natural simply connected spaces Snk of constant sectional curvature k
for each k ∈ R.

(1) If k > 0 then Snk is the round sphere of curvature k = r−2 where r is the radius of
this sphere.

(2) If k = 0 then Snk is just Rn with the flat metric.
(3) If k < 0 then Snk can be viewed as the upper half plane

M = {(x1, · · · , xn) ∈ Rn : xn > 0}
with the metric

g =

(
1

xn

)2

((dx1)2 + · · ·+ ((dxn)2).

A more uniform view of Snk would be as follows: Consider the (0, 2)-tensor

g := (dx0)2 + k
(
(dx1)2 + · · ·+ (dxn)2

)
on Rn+1. If we think of this as a ‘metric’ on Rn+1, then we can look at radius k sphere

Snk =
{

(x0, · · · , xn) ∈ Rn+1 : (x0)2 + k((x1)2 + · · ·+ (xn)2) = k2
}

with the induced metric g|Snk . These spaces are isometric to the ones above.

Example 0.11. We have dim(iso(Snk )) = n(n+1)
2 (from the previous course, or just via linear

algebra). This is the maximal dimension and hence the bound above on the dimension of
iso(Snk ) is sharp.
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Example 0.12. In the previous course, we showed that every complete Riemannian manifold
of constant sectional curvature has universal cover equal to a product S :=

∏m
i=1 S

n
k . Hence

such a space is equal to S/Γ where Γ ⊂ Iso(S) acts freely and discontinuously on S. Hence
G := Iso(S/Γ) is the subgroup of Iso(S) consisting of those isometries that commute with
each element of Γ. If dim(G) is maximal, then G is a Lie group containing the connected
component of Iso(S) containing the identity. Therefore the only elements of Iso(S) commuting
with all elements of G are ±I and hence G ⊂ ±I. Now −I only acts freely on the sphere
(I.e. when k > 0). Hence the only space of constant sectional curvature so that dim(Iso) is
maximal and with non-trivial fundamental group is RPn.

In fact, we have the following proposition:

Proposition 0.13. If (M, g) is complete and dim(Iso(M, g)) is maximal (I.e. dim(Iso(M, g)) =
n(n+1)

2 ). Then (M, g) has constant sectional curvature.

Before we prove this proposition, we need a new (and important definition).

Definition 0.14. The Frame bundle of (M, g) is the principal O(n)-bundle FM constructed
as follows: As a set, FM is the collection of points (p, e1, · · · , en) where p ∈ M and
e1, · · · , en ∈ TpM is an orthonormal basis with respect to g. The bundle maps is the map,

π : FM →M, (p, e1, · · · , en)→ p.

The local trivializations defining this bundle are constructed as follows: Let x1, · · · , xn be
a chart U ⊂ M . By the Gram-Schmidt process, we can find smooth sections s1, · · · , en of
TM |U so that s1(p), · · · , sn(p) is an orthonormal basis for each p ∈ U . Then we have a
natural map

τ + U : π−1(U) −→ U ×O(n), τ(p, e1, · · · , en) = (p,Ap)

where Ap ∈ O(n) is the unique orthogonal matrix sending e1, · · · , en to s1(p), · · · , sn(p).
These trivializations τU over all charts U in M give us the collection of trivialization defining
our frame bundle FM .

Proof of Proposition 0.13. Any F ∈ Iso(M, g) gives us an induced map

F̃ : FM −→ FM, F̃ (p,DF (e1), · · · , DF (en).

Such a map does not have any fixed points since isometries are uniquely determined by their
action on a tangent plane. Hence the Lie group Iso(M, g) acts freely on FM . This group acts

smoothly on FM as well, and so each orbit is a submanifold of dimension n(n+1)
2 . Since the

dimension of FM is also n(n+1)
2 , this implies that this orbit contains a connected component

of FM .
If M is orientable then FM has two connected components (corresponding to both orien-

tations of the frames) and if M is non-orientable then it has only one.
In either case, one can show that Iso(M, g) sends each 2-plane in TM to any other 2-plane.

Since each 2-plane is mapped to any other 2-plane via an isometry, we get that (M, g) must
have constant sectional curvature. �

Killing Fields in negative Ricci Curvatre. Let us recall facts about Ricci curvature
first. Recall that the Ricci curvature should be thought of as the ‘Laplacian’ of the metric g.
Recall the following definition:
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Definition 0.15. Let f : M −→ R. Define ∇f to be the vector field uniquely defined by

g(∇f, w) = df(w), ∀ w ∈ TM.

We define the Hessian of f to be the symmetric (0, 2)-tensor:

Hess(f) :=
1

2
L∇fg

or, equivalently, the (1, 1) tensor:

S : TM −→ TM, S(X) := ∇X∇f.
The Laplacian of f is defined to be the function

∆f := tr(S) =
n∑
i=1

g(∇ei∇f, ei) =
1

2

n∑
i=1

(L∇f )g(ei, ei).

Definition 0.16. The Ricci curvature is the symmetric (0, 2) tensor equal to the trace of
R with respect to the first and fourth entries. In other words, if e1, · · · , en ∈ TpM is an
orthonormal basis then

Ric(v, w) = tr(x→ R(x, v)w) =

n∑
i=1

g(R(ei, v)w, ei)

=

n∑
i=1

g(R(v, ei)ei, v) =

n∑
i=1

g(R(ei, w)v, ei).

If I took the trace with respect to, say, the first and second entries, I would get 0 because R
is anti-symmetric in the first two entries. As a result, Ricci curvature is the only reasonable
way to take the trace of R.

Definition 0.17. Equivalently, the Ricci curvature is a (1, 1) tensor given by

Ric(v) :=
n∑
i=1

R(v, ei)ei.

These two definitions are equivalent after identifying the (0, 2) tensor with the 1−1 tensor
in the usual way (I.e. by converting the second parameter from a vector to a covector using
the metric g).

Definition 0.18. We write Ric ≥ k if all the eigenvalues of the (1, 1)-tensor Ric are ≥ k. Or
equivalently, if

Ric(v, v) ≥ kg(v, v), ∀ v ∈ TM.

If Ric(v) = kv for some v, or equivalently Ric(v, w) = kg(v, w) then we say that (M, g) is an
Einstein manifold with Einstein constant k.

Example 0.19. Snk is an Einstein manifold with Einstein constant (n− 1)k.

Definition 0.20. For a (1, 1)-tensor T , its norm |T | at p ∈M is defined by

|T |2 := tr(T ◦ T ∗) =
n∑
i=1

g(T (ei), T (ei))

where e1, · · · , en any orthonormal basis at p and T ∗ is the adjoint of T (I.e. the unique (1, 1)
tensor satisfying g(v, Tw) = g(Tvw) for each v, w).
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In other words, if you think T as a matrix with respect to an orthogonal basis, then its
norm is the sum of the squares of all the entries of this matrix.

Proposition 0.21. (Killing Field derivative identities) Let X be a Killing field on (M, g)
and consider the function

f : M −→ R, f =
1

2
|X|2.

Then

(1) ∇f = −∇XX.
(2) Hessf(V, V ) = g(∇VX,∇VX)−R(V,X,X, V ).
(3) ∆f = |∇X|2 − Ric(X,X).

Proof. Proof of (1):

df(V ) = ∇V f =
1

2
∇V (g(X,X)) =

1

2
(g(∇VX,X) + g(X,∇VX)) = g(∇VX,X) = −g(∇XX,V )

The last equality follows from the Skew symmetry property of the tensor:

(v, w) −→ g(∇vX,w).

(See Proposition 0.2).
Since the above equality is true for each V ∈ TM , we get ∇f = −∇XX.

Proof of (2): We will repeatedly use the fact that V −→ ∇VX is a skew symmetric
(1, 1)-tensor.

Hess(f(V, V )) = g(∇V (∇f), V ) = g(∇V (−∇XX), V )

= −g(R(V,X)X,V )− g(∇X∇VX,V )− g(∇[V,X]X,Y )

= −R(V,X,X, V )− g(∇X∇VX,V ) + g(∇∇XVX,V )− g(∇∇VXX,V )

= −R(V,X,X, V )− g(∇X∇VX,V )− g(∇VX,∇XV ) + g(∇VX,∇VX)

= −R(V,X,X, V )−DX(g(∇VX,V )) + g(∇VX,∇VX)

= −R(V,X,X, V ) + g(∇VX,∇VX)

since g(∇VX,V ) = 0 by skew symmetry.

Proof of (3):

∆f =
n∑
i=1

Hessf(Ei, Ei)

(2)
=

n∑
i=1

g(∇EiX,∇EiX)−
n∑
i=1

R(Ei, X,X,Ei)

=
n∑
i=1

g(∇EiX,∇EiX)− Ric(X,X)

= |∇X|2 − Ric(X,X).

�
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Definition 0.22. Let Tensr,s be the vector space (over R) of (r, s) tensor fields on M . We
have

Tens•,• := ⊕r,s≥0Tensr,s

is an algebra with multiplication given by tensor product. This algebra is Z×Z graded. For
any vector field V , we define the vector space map

∇V : Tensr,s −→ Tensr,s

to be the unique vector space map satisfying:

(1) ∇V f = df(V ) for each f ∈ C∞(M) = Tens0,0,
(2) ∇V ν = iV dν for each ν ∈ Ω1(M) = Tens0,1,
(3) ∇VX on Vect(M) = Tens1,0 coincides with the covariant derivative as usual
(4) Also, ∇V satisfies the Leibniz rule

∇V (S ⊗ T ) = (∇V S)⊗ T + S ⊗ (∇V T )

for each S ∈ Tensr,s(M), T ∈ Tensr
′,s′(M).

If we have a (0, r) tensor or a (1, r) tensor S, then

∇V S(Y1, · · · , Yr) = ∇V ((S(Y1, · · · , Yr)))−
r∑
i=1

S(Y1, · · · ,∇V Yi, · · · , Yr)

for each r-tuple of vector fields.
Recall that a tensor S is parallel if ∇S = 0.

Proposition 0.23. (Bochner 1946) Suppose (M, g) is compact, oriented and has Ric ≤ 0.
Then every Killing field is parallel. Furthermore, if Ric < 0 then there are no non-trivial
Killing fields.

Proof. Let X be a Killing field and let f := 1
2 |X|

2. Then

0 =

∫
M

∆fdvol =

∫
M
|∇X|2 − Ric(X,X)dvol ≥

∫
M
|∇X|2dvol ≥ 0.

Hence |∇X| = 0 and so X must be parallel. The above inequalities then tell us∫
M

Ric(X,X)dvol = 0.

Since we are assuming Ric ≤ 0, this implies Ric(X,X) = 0. Hence, if Ric < 0 then X = 0. �

Corollary 0.24. If (M, g) is as above, then dim(iso(M, g)) = dim(Iso(M, g)) ≤ M and
Iso(M, g) is finite if Ric(M, g) < 0 (in fact, we just need Ric(v, v) < 0 for each nontrivial
vector v).

Proof. Recall that the map

Killing Fields→ TpM ×Hom(TpM,TpM), X −→ (X|p, v → ∇vX)

is injective. Now since ∇X = 0, we get that the map

Killing Fields→ TpM, X −→ X|p
is injective which implies that dim(iso(M, g)) ≤ dim(M). Also if Ric < 0 then X|p = 0
as well ensuring that the dimension of Iso(M, g) is zero. Since M is compact, we get that
Iso(M, g) is finite (since it acts freely and properly discontinuously on the compact manifold
FM of frames). �
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Corollary 0.25. If (M, g) is as above and p := dim(iso(M, g)), we have that the universal

cover M̃ is a product

M̃ = Rp ×N
with the product metric. The metric on Rp is the usual Euclidean metric. The Killing fields
here are just given by linear vector fields on Rp.

Proof. We have p linearly independent Killing fields X1, · · · , Xp which we can assume are

orthonormal. Also since M̃ is simply connected and since∇Xi = 0, are equal to∇f1, · · · ,∇fp
for some smooth functions fi : M −→ R, i = 1, · · · p. The function f := (f1, · · · , fp) : M̃ →
Rp is no critical points (since X1, · · · , Xp are linearly independent). Hence N = f−1(0) is a

smooth manifold. Since M is compact, the vector fields X1, · · · , Xp on M̃ are also integrable.
Let F ti be the time t flow of Xi. Hence we have a diffeomorphism:

Rp ×N −→ M̃, (t1, · · · , tp, n) −→ F t11 ◦ · · · ◦ F
tp
p (n).

Also the Lie bracket [Xi, Xj ] = ∇XjXi −∇XiXj = 0 vanishes since these vector fields are

parallel. This implies that the flows F ti , i = 1, · · · , p commute with each other. This implies
that the metric splits as a product (flat metric) × gN on Rp × N under the diffeomorphism
above.

�

Killing Fields in positive Ricci Curvatre. Here we will see how these Bochner techniques
can be used to constrain the topology of manifolds with positive Ricci curvature.

Recall that the Euler characteristic of a manifold is defined to be:

χ(M) :=

n∑
i=1

(−1)i dim(H i(M ;R)).

Also recall that we have the following theorem:

Theorem 0.26. If the Euler characteristic of M is non-zero then every vector field on M
vanishes at some point.

We have the following conjecture:

Hopf conjecture: Every compact even dimensional manifold with positive sectional cur-
vature is positive Euler characteristic.

We will explain partial results in this direction. In dimension 2 this conjecture is true
since the 2-sphere is the only 2-manifold with positive sectional curvature and its Euler
characteristic is 2.

Proposition 0.27. The Hopf conjecture is true in dimension 4.

Proof. We showed earlier that if M has positive sectional curvature then it has finite funda-
mental group (if it is orientable then π1 = 0 by a theorem of Synge 1936 and the non-orientable
case follows by a covering trick. The key point of the proof here is to start with a shortest
non-contractible geodesic and show that the second variation of the energy is negative. This
shows that there are even shorter ones giving a contradiction ).
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Therefore H1(M ;R) = 0. By Poincaré duality, we get H3(M ;R) = 0 as well. Hence
all the odd dimensional cohomology vanishes and so the Euler characteristic is at least 1 =
dim(H0(M ;R)). �

Theorem 0.28. (Berger 1965) If M is even dimensional, compact and has positive sectional
curvature then every Killing field has a zero.

Proof. Let X be a Killing field and let f = 1
2 |X|

2. Since M is compact, f has a minimum
p ∈M . Since it is a minimum, Hessf |p ≥ 0. Also by Proposition 0.21 (Killing Field derivative
identities), Hessf(V, V ) = g(∇VX,∇VX)−R(V,X,X, V ). By assumption

g(R(V,X)X,V ) > 0

if X,V are linearly independent. Consider the skew symmetric map (Proposition 0.2)

η : TpM −→ TpM, v −→ ∇vX.
Now ∇XX|p = −∇f |p = 0 by Proposition 0.21 (Killing Field derivative identities) since f
has a minimum at p.

Now suppose, for a contradiction, that X is nowhere zero. Then η has non-trivial Kernel
since ∇XX|p = 0. Since the dimension of TpM is even, we get that the kernel is even dimen-
sional and hence has dimension at least 2. Therefore, let v ∈ ker(η) be linearly independent
from X. Then

Hessf(v, v) = g(∇vX,∇vX)−R(v,X,X, v) = −R(v,X,X, v) < 0

since sec < 0. This contradicts the fact that Hessf |p ≥ 0. �
The above result can be used to get some more results hinting at the Hopf conjectures.

For instance we know that the zero sets of Killing fields are totally geodesic submanifolds.
Therefore, one might hope there is some kind of induction on dimension procedure.

Theorem 0.29. (Conner 1957) Let X be a Killing field on a compact Riemannian manifold.
Let Ni ⊂M be the connected components of the totally geodesic submanifold X−1(0). Then

(1) χ(M) =
∑

i χ(Ni)
(2)

∑
p dim(H2p(M ;R)) ≥

∑
i

∑
p dim(H2p(Ni;R))

(3)
∑

p dim(H2p+1(M ;R)) ≥
∑

i

∑
p dim(H2p+1(Ni;R))

We won’t prove this theorem.

Corollary 0.30. Suppose M is a compact 6-manifold with positive sectional curvature. Sup-
pose that M admits a non-zero Killing field X. Then χ(M) > 0

Proof. We know that χ−1(0) is non-empty and each connected component of this submanifold
has even codimension. This each connected component is 0,2 or 4 dimensional. Since these
are totally geodesic submanifolds, they all have positive sectional curvature. They all have
trivial odd Betti numbers (by the proof of Proposition 0.27). Hence χ(M) > 0 by the previous
theorem. �

Sometimes we have stronger constraints by having positive sectional curvature.

Theorem 0.31. (Hsiang-Kleiner, 1989) If M4 is compact orientable 4-manifold with positive
sectional curvature which admits a Killing field, then χ(M) ≤ 3. This implies that M is
homeomorphic to S4 or CP 2 (using work of Freedman which says that the homeomorphism
type of a four manifold only depends on the intersection form and the Kirby-Siebenmann
invariant - this invariant vanishes for PL manifolds and hence smooth ones).
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We won’t prove this theorem. But we will prove theorems which look similar in spirit.
Usually it is easier to prove things if we have more symmetries.

Definition 0.32. The rank of a compact Lie group is the dimension of the largest abelian
subalgebra of its associated Lie algebra. The symmetry rank of (M, g) is the rank of Iso(M, g).
Let h(M, g) ⊂ iso(M, g) be any abelian subalgebra whose rank is the symmetry rank of (M, g)
and define

Z(h(M, g)) := {N : N is a connected component of

∩mi=1X
−1
i (0) for some X1, · · · , Xm ∈ h(M, g)}.

This set has a natural partial order given by inclusion.

Proposition 0.33. (1) All X ∈ h(M, g) are tangent to the submanifold N ∈ Z(h(M, g)).
(2) If N,N ′ ∈ Z(h(M, g)) then each connected component of N ∩ N ′ is contained in

Z(h(M, g)).
(3) N ∈ Z(h(M, g)) is maximal if and only if the restriction of h(M, g) to N has dimen-

sion dim(h(M, g))− 1.
(4) If N ∈ Z(h(M, g)) then there are only finitely many maximal sets N1, · · · , Nl ∈

Z(h(M, g)) containing N and they satisfy

N = N1 ∩ · · · ∩Nl.

Proof. (1) Suppose N is a connected component of the zero set of X ∈ h(M, g). Let
Y ∈ h(M, g). Then

0 = (LY g)(X,X) = d(|X|2)(Y )− 2g(LYX,X) = d(|X|2)(Y )

by the Leibniz rule and the fact that [X,Y ] = 0. Hence the flow of Y preserves the
level sets of |X|2 and hence is tangent to N .

(2) Let N,N ′ ∈ Z(h(M, g)). Then, by the Killing field theorem, we can find X,X ′ ∈
h(M, g) so that N = X−1(0) and N ′ = (X ′)−1(0). Let p ∈ N ∩N ′. Choose α, α′ so
that Y := αX + α′X ′ satisfies

ker∇Y |p = ker∇X|p ∩ ker∇X ′|p
where

∇Y : TpM −→ TpM, v −→ ∇vY
and where ∇X and ∇X ′ are defined likewise. Let Q be the connected component
of Y −1(0) containing p. Then TpQ = TpN ∩ TpN ′ (by the Killing field theorem).
Similarly TqQ = TqN ∩ TqN ′ for each q ∈ Q. Hence N and N ′ intersect cleanly
along Q (I.e. the dimension of the intersections of their tangent spaces is constant
along Q). Therefore by the constant rank theorem, this implies that Q is a connected
component of N ∩N ′ and hence Q ∈ Z(h(M, g)).

(3) Let N ∈ Z(h(M, g)). Suppose that the restriction of h(M, g) to N has dimension d not
equal to dim(h(M, g))−1. Since there exists X ∈ h(M, g) satisfying N ⊂ X−1(0), we
get that d < dim(h(M, g))− 1. This implies that there are two linearly independent
vector fields X and Y in h(M, g) satisfying N ⊂ X−1(0) ∩ Y −1(0). Let p ∈ N abd
V := T⊥p N . By Theorem 0.5 we get that V is even dimensional and we also have two
skew symmetric linear maps

∇X|p,∇Y |p : V −→ V.

Since [X,Y ] = 0, these two skew symmetric linear maps commute (Why???? - exe-
rcise: Let F t be the flow of X then ∇vX = −∇Xv − [v,X] = [X, v] = d

dt(F
tv)|t=0
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- Note gradients are always Lie brackets when the vector field X vanishes - I.e. the
metric does not matter here. We get a similar formula if Gt is the flow of Y . So our
result follows since F t and Gt commute). Since V is even dimensional, this implies
that V decomposes as a direct sum

V := E1 ⊕ · · · ⊕ El
of 2-dimensional subspaces so that ∇X and ∇Y preserve these spaces. The space of
skew symmetric maps on a 2-dimensional space is 1-dimensional. Hence, there exists
α, β ∈ R so that α∇X+β∇Y |E1 = 0. Since Killing fields are uniquely determined by
their value and derivative at p, this implies that the zero set of αX + βY contains a
manifold strictly larger than N . Hence N cannot be maximal. Hence the dimension
of all maximal elements of Z(h(M, g)) are greater than or equal to dim(h(M, g))− 1.

Now suppose that N ∈ Z(h(M, g)) is not maximal. Then there exists N ′ ∈
Z(h(M, g)) so that N is a proper submanifold of N ′. Hence there exists X ∈ h(M, g)
so that N ′ ⊂ X−1(0). Also since N is a proper submanifold, there exists Y ∈ h(M, g)
so that N ⊂ Y −1(0) and Y |N ′ 6= 0. Therefore N ⊂ X−1(0) ∩ Y −1(0) and X,Y are
linearly independent. Hence the dimension of h(M, g) restricted to N is smaller than
dim(h(M, g))− 1.

(4) Let N ∈ Z(h(M, g)). Let p ∈ N and let

h0 := {X ∈ h(M, g) : N ⊂ X−1(0)}.
By the Killing field theorem ∇X is a skew symmetric linear transformation on V =
TpN

⊥ for each X ∈ h0. Since these transformations all commute (since the vector
fields in h0 commute and since each X ∈ h0 vanishes at p and so ∇vX|p = [X, v]), we
get a decomposition

V = E1 ⊕ · · ·El
into two dimensional subspaces as above, where ∇X preserves these subspaces for
each X ∈ h0. The kernel ∇X|p, for each X ∈ h0, is equal to

Ei1 ⊕ · · ·Eik
for some i1, · · · , ik. Now suppose N ′ contains N . Then the above argument implies
that TpN

′ is equal to TpN plus a finite number of subspaces Ei. Also N ′ is uniquely
determined by TpN

′ (why?, because it is a totally geodesic submanifold and hence
a neighborhood of p in N ′ is determined by TpN and hence all of N ′ is determined
by TpN by an open closed argument). Hence there are only finitely many N ′ ∈
Z(h(M, g)) containing N .

Let N1, · · · , Nk be the maximal elements of Z(h(M, g)) containing N . We will now
show that N = ∩li=1Ni. Let X1, · · · , Xl ∈ h0 be the unique elements (up to scalar

multiplication) satisfying Ni = X−1
i (0) (see (3)). Put an equivalence relation ∼ on

{1, · · · , l}. We say that i ∼ j if, for each X,X ′ ∈ h0, ∇X|Ei⊕Ej is proportional to
∇X ′|Ei⊕Ej . Let I1, · · · , Is ⊂ {1, · · · , l} be the corresponding equivalence classes and
define

E′i := ⊕j∈IiEi, i = 1 · · · , s.
Let ui : V −→ V be an element of h0 whose restriction to Ej is trivial for each
j 6= i and which is non-zero on Ei. Then u1, · · · , us is a basis for h0. One can then
show that for each i, ui = ∇Xj |p for some j. Hence ∩ ker∇Xj |p = 0. This implies

TpN = ∩li=1TpNi and hence (via a similar argument to (2)), N = ∩iNi.
�
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Recall that a result of Berger 1955 (above) says that every Killing field on an even dimen-
sional manifold has a zero. For odd dimensional manifolds this is not true: Consider the unit
sphere S2n−1 ⊂ Cn with the induced metric coming from the Euclidean metric. The flow

F t : S2n−1 −→ S2n−1, F t(z) = eitz

is the flow of a Killing field which does not vanish anywhere. In this case, the dimension of
h(M, g) is 1 (we will see this later). What happens if dim(h(M, g)) ≥ 2? Here is a result
when dim(h(M, g)) is large.

Theorem 0.34. (Grove-Searle 1994)
Let M be a compact n-manifold with positive sectional curvature and symmetry rank k

(I.e. dim(iso(M, g)) = k). If k ≥ n/2 then M is either diffeomorphic to a sphere, complex
projective space or a cyclic quotient Sn/Zq where Zq acts freely by isometries.

Proof. We will first show that there is a maximal element of Z(h(M, g)) of codimension 2.
For each B ∈ Z(h(M, g)), let hB ⊂ h(M, g) be the subspace of elements tangent to B.

Suppose (for a contradiction) there is a maximal element N ∈ Z(h(M, g)) of codimension
> 2 (this could be the empty set!). Then

dim(hN ) = dim(h(M, g))− 1 ≥ n/2 > dim(N)/2 + 1

(well, actually it cannot be empty by the formula above!). Now choose a maximal element
N1 of Z(h(N, g|N )). Since N1 is of even codimension inside N , we get

dim(hN1) > dim(N1)/2 + 1.

Keep choosing maximal elements N2 ⊂ N1, N3 ⊂ N2 etc until we reach a 1 or 2 dimensional
submanifold Nl so that h(Nl) ≥ 2. If Nl has dimension 1 then dim(h(N1)) ≤ 1 since Nl must
be a circle, giving us a contradiction. If dim(Nl) = 2 then we can choose linearly independent
Killing fields X,Y on (Nl, g|Nl). Since Nl is even dimensional, we get that X−1(0) is a non-
empty zero dimensional submanifold. Since [X,Y ] = 0, we get that the flow of Y preserves
|X|2 and hence the flow of Y preservesX−1(0). HenceX−1(0) = Y −1(0). Choose p ∈ X−1(0).
Since ∇X|p and ∇Y |p are skew symmetric operators on a two dimensional subspace TpNl,
we get that they are proportional. Since Killing fields on Nl are determined by their value
and derivative at p, this implies X and Y are proportional, giving us a contradiction.

Hence, (M, g) admits a Killing field X so that X−1(0) contains a submanifold of codimen-
sion 2. Our result now follows from the following theorem: �

Theorem 0.35. (Grove-Searle 1994). Suppose (M, g) is a closed n-manifold with positive
sectional curvature admitting a Killing field X so that X−1(0) has a connected component
of codimension 2. Then M is diffeomorphic to a sphere, or complex projective space or a
quotient of the round sphere by a finite group acting freely by isometries.

We will prove a weaker version of this theorem instead. Before we do that, we give an
application of the Grove-Searle result above:

Theorem 0.36. (Putnam-Searle 2002) Suppose M2n is a closed 2n-manifold of positive
sectional curvature and symmetry rank k ≥ 2n−4

4 . Then χ(M) > 0.

Proof. We will induct on dimension (in a similar manner as above). However it is better
to have a slightly stronger induction hypothesis: We will show that (M, g) and all N ∈
Z(h(M, g)) have positive Euler characteristic. For the base case, we know we know that the
above statement is true when 2n = 2, 4.
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Now suppose that it is true for each even dimensional manifold of dimension < 2n. Let
N ∈ Z(h(M, g)) and let N ′ ∈ Z(h(M, g)) be a maximal component. If the codimension of
N ′ is ≥ 4 then χ(N) > 0 by the induction hypothesis (combined with the fact that h(M, g)
restricted to N ′ has rank one less). If the codimension of N is 2 then the Grove-Searle result
tells us that N is either a finite quotient of a sphere or complex projective space. Then the
odd dimensional homology groups (over Q) vanish. Now we can use part (3) of Conners
theorem (proven earlier). Let X ∈ h(M, g) be such that N is a connected component of
X−1(0) and let Ni be the connected components of X−1(0). Then

0 =
∑
p

dim(H2p+1(M ;R)) ≥
∑
i

∑
p

dim(H2p+1(Ni;R)).

Hence the odd dimensional homology groups of N vanish and so χ(N) > 0. �

We now wish to prove a simplified version of the Grove-Searle result stated above. This is
enough for the proposition above:

Proposition 0.37. (Weak Grove-Searl theorem) Suppose (M, g) is a closed n-manifold with
positive sectional curvature admitting a Killing field X so that X−1(0) has a connected com-
ponent of codimension 2. Then the Betti numbers bi of M satisfy:

b2p+1 = 0, ∀ 2p+ 1 < n

b2p = b2p+2 ∀2p+ 2 ≤ n.

Before we prove this proposition, we need the following lemma:

Proposition 0.38. (Connectedness Principle with symmetries Wilking 2003).
Suppose (M, g) is a closed Riemannian manifold of positive sectional curvature. If N ∈

Z(h(M, g)) has codimension k, then it is (n− 2k + 2)-connected.

Before we prove this lemma, we recall some facts about path spaces and the energy functio-
nal which will be useful. For each p, q ∈M , we define Ωp,qM to be the space of smooth paths
γ : [0, 1] −→ M satisfying γ(0) = p and γ(1) = q equipped with the C∞ topology. In other
words, a set K ⊂ Ωp,qM is closed if and only if for every sequence of maps γi : [0, 1] −→ M
in Ωp,q, i ∈ N ∪ {∞} so that γi(x) → γ∞(x) and so that the derivatives of γi at x converge
to the derivatives of γ∞ at x for each x ∈ [0, 1] and where γi ∈ K, we have γ∞ ∈ K too.

Now consider the function:

E : Ωp,q(γ) −→ R, E(γ) :=
1

2

∫ 1

0
|γ̇(t)|2dt.

This is called the energy functional. We should pretend that this is a “smooth function” on
an “infinite dimensional manifold”. How do we compute its derivatives? Let us compute its
first derivative. A smooth curve in Ωp,qM is a family (γs)s∈I of elements in Ωp,q where I ⊂ R
is an interval so that the map

γ• : I × [0, 1] −→M, γ•(s, x) := γs(x)

is smooth. Let us suppose I = (−ε, ε). Then

d

dt
γs|t=0

is a smooth section of γ∗0TM whose value at x ∈ [0, 1] is

Dγ•(
∂

∂s
)|(0,x).
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As a result, a tangent vector at γ ∈ Ωp,q is a smooth section v of γ∗TM which is zero at
∂[0, 1] = {0, 1} and a curve tangent to this tangent vector is a smooth curve (γs)t∈I so that
s γs0 = γ and d

dtγs|s=s0 = v. We define TγΩp,qM = C∞(γ∗TM).

What is dE? This is a linear function

TγΩp,qM −→ R.
It is defined as follows: let (γs)t∈(−ε,ε) be a smooth curve in Ωp,qM tangent to v at s = 0.
Then

dE(v) :=
d

ds
E(γ(s))|s=0.

This does not depend on the choice of γ. We can compute this formula explicitly:

dE(γs)

ds
=

∫ 1

0

1

2

∂

∂s
g

(
∂

∂t
γs(t),

∂

∂t
γs(t)

)
dt

=

∫ 1

0
g

(
∂2

∂s∂t
γs(t),

∂

∂t
γs(t)

)
dt

(to understand this, one can choose an appropriate trivialization of γ∗TM so that g is constant
and equal to the Euclidean metric in this trivialization). Then the above expression is

=

∫ 1

0
g

(
∂2

∂s∂t
γs(t),

∂

∂t
γs(t)

)
dt =

∫ 1

0
g

(
∂2

∂t∂s
γs(t),

∂

∂t
γs(t)

)
dt

=

∫ 1

0

∂

∂t
g

(
∂

∂s
γs(t),

∂

∂t
γs(t)

)
− g

(
∂

∂s
γs(t),

∂2

∂2t
γs(t)

)
dt

= v(1)− v(0)−
∫ 1

0
g(γ̈(t), v(t))dt.

= −
∫ 1

0
g(γ̈(t), v(t))dt.

Note a more invariant expression of γ̈ is ∇γ̇ γ̇. Now, if we choose v = γ̈(t), then

dE(v) = −
∫ 1

0
|γ̈(t)|2dt.

Hence dE|γ = 0 if and only if γ̈ = 0. In other words, if and only if γ is a geodesic.

Recall that a Morse function is a smooth function

f : M −→ R
whose Hessian at each critical point is a non-degenerate quadratic form. The index of this
critical point p is the dimension of the negative Eigenspace of Hessp(f). Morse functions give
us explicit descriptions of M as a CW complex. Each critical point of index k corresponds
to attaching a k cell. Instead of proving this I will just draw a picture to demonstrate. draw
picture. The corresponding cell of a critical point p is the descending manifold of p:

W u(p) := {x ∈M : lim
t→∞

φ∇ft (x) = p}.

Now we can also formally define HessE as well. It turns out that for generic metric g, E is
a ”Morse function” which means that the dimension of the kernel of the Hessian is zero. I.e.
HesspE(v, v) = 0 implies that v = 0. Also the dimension of the negative Eigenspace is finite
(although the positive Eigenspace is infinite dimensional). Using Morse theoretic ideas, one
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can show that Ωp,qM is homotopic to a CW complex and each critical point of E of index k
corresponds to a k cell. As a result, it is important for us to compute the Hessian of E at
each critical point.

Theorem 0.39. (Synges second variation formula 1926). Let γ : (−ε, ε) × [0, 1] −→ M
represent a smooth path (γs)s∈(−ε,ε) so that γ0 is a geodesic. Then

d2E(γs)

ds
|s=0 =

∫ 1

0

∣∣∣∣ ∂2γ

∂t∂s

∣∣∣∣2 − ∫ 1

0
g

(
R

(
∂γ

∂s
,
∂γ

∂t

)
∂γ

∂t
,
∂γ

∂s

)
+ g

(
∂2γ

∂s2
,
∂γ

∂t

)∣∣∣∣1
0

For any v = d
dsγs ∈ Tγ0Ωp,qM as above, we define d2E(v) := d2E(γs)

ds |s=0. As a result d2E
is a quadratic form on Tγ0Ωp,qM . Note that if γs is a path in Ωp,q then the last term does
not matter in Synges formula.

We won’t prove this theorem.

Definition 0.40. The index of γ0 as described above is the dimension of the subspace spanned
by the vectors {

v ∈ Tγ0Ωp,q : d2E(v) < 0
}
⊂ Tγ0Ωp,q.

Example 0.41. If M has non-positive sectional curvature then Snyges formula tells us that
all critical points of E have index 0. This implies that the Ωp,qM is homotopic to a zero
dimensional CW complex. It also tells us that there is exactly one geodesic in each connected
component of Ωp,qM .

Now we can generalize the discussion above as follows.

Definition 0.42. Let N ⊂M be a submanifold. We define ΩNM to be the space of smooth
map γ : [0, 1] −→ M satisfying γ(0), γ(1) ∈ N . We define E : ΩNM as above. The critical
points of E are now geodesics γ : [0, 1] −→ M in ΩNM so that γ̇(0) ⊥ TN and γ̇(1) ⊥ TN .
We have exactly the same variation formula for d2E as above.

Metric “stretched” by a group action - Berger-Cheeger perturbations.
Suppose that we have a Lie group G of isometries acting on (M, g). Now equip G with a

left invariant metric (, ). Then we get a metric g + λ(, ) on M ×G which is invariant under
the natural G×G action. Hence it descends to a metric gλ on

M ×G G
which is the quotient by the diagonal action. Now an inclusion

M
x→(x,e)−→ M ×G�M ×G G

gives us a natural diffeomorphism M ∼= M ×GG. Hence we get a family of metrics gλ, λ ≥ 0
on M . What do these metrics look like? First of all these metrics are all preserved by G.
What else? The tangent space TpM is decomposed into Vp ⊕Hp where Vp is tangent to the
group action and Wp is perpendicular. One can show that the metrics are unchanged when
restricted to Hp but the get bigger and bigger when restricted to Vp. In particular the size
of the Killing fields |X|gλ goes to zero as λ→∞. Also the sectional curvatures restricted to
Hp can only increase (see page 88 in Peterson’s book for an explicit calculation). Finally if γ
is a geodesic that is tangent to Vp at each point p along γ then it remains a geodesic for gλ
for each λ (see ). We will use these facts in the proof below.

We now wish to prove the following proposition:
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Proposition 0.43. (Connectedness Principle with symmetries Wilking 2003).
Suppose (M, g) is a closed Riemannian manifold of positive sectional curvature. If N ∈

Z(h(M, g)) has codimension k, then it is (n− 2k + 2)-connected.

Recall that h(M, g) ⊂ iso(M, g) is any abelian subalgebra whose rank is the symmetry
rank of (M, g) and

Z(h(M, g)) := {N : N is a connected component of}

∩mi=1X
−1
i (0) for some X1, · · · , Xm ∈ h(M, g)}.

Proof of proposition above. The key idea here is to show that ΩNM is highly connected. We
have a natural inclusion map ι : N ↪→ ΩNM via constant loops and a natural projection map
p : ΩNM −→ N . Since ι ◦ p is the identity map, this implies by functoriality of homotopy
groups that the natural map

πkN −→ πkΩNM

is injective since the composition:

πk(N) −→ πk(ΩNM) −→ πk(N)

is the identity map. Therefore to prove this proposition it is sufficient to show that ΩNM is
(n− 2k+ 2)-connected. By the discussion above, it is therefore sufficient for us to show that
all geodesics starting and ending at N and which are orthogonal to N at their endpoints have
Morse index ≥ n − 2k + 2. Therefore it is sufficient for us to construct n − 2k + 2 linearly
independent vector fields along each such geodesic where the second derivative of E along
this vector field is negative.

Let us now compute the index of the critical points of the energy functional

E : ΩNM −→ R, E(γ) :=

∫ 1

0
| ˙γ(t)|2dt.

Let γ be a critical point of E. Then γ is a geodesic starting and ending at N and which is
perpendicular to N at its endpoints.

We will now construct vector fields along γ in the negative Eigenspaces of d2E. In fact,
this will only be true once we replace g with the “stretched metric” gλ constructed above.
Consider the space S0 of sections F ∈ C∞(γ∗TM) satisfying:

F (0) ∈ Tγ(0)N

Ḟ = −g(F,∇γ̇X)

|X|2
X.

We will show our negative Eigenspace contains:

S := {F ∈ S0 : F (1) ∈ Tγ(0)N} ⊂ S0

and that the dimension of S is at least n− 2k + 2.
We will first compute the dimension of S. Consider the evaluation map

ev : S0 −→ Tγ(1)M, ev(F ) := F (1).

We will first show that F (1) is orthogonal to γ̇ and ∇γ̇X for each F ∈ S0. Since these two
vectors γ̇ and ∇γ̇X span a two dimensional space (since ∇X is anti-symmetric and non-

degenerate on TN⊥ and γ̇ ∈ TN⊥), we get that the codimension of the image of ev is ≥ 2.
This implies that the codimension of S inside S0 is at most k − 2. Since the dimension of S
is dim(N) = n− k. Hence the dimension of S is at least n− k − k + 2 = n− 2k + 2.
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Let us now show g(F (1),∇γ̇X) = 0. To do this, we will first compute:

d

dt
g(F,X) = g(Ḟ ,X) + g(E,∇γ̇X)

= g(−g(F,∇γ̇X)

|X|2
, X) + g(E,∇γ̇X) = 0.

Also X|γ(0) = 0 which implies g(F,X) = 0 everywhere. Hence by the previous two equations:

g(F (1),∇γ̇X) = 0

since X|γ(1) = 0.
Now we will show that g(F (1), γ̇) = 0. Again we compute

d

dt
g(F, γ̇) = g(Ḟ , γ̇) = g(−g(F,∇γ̇X)

|X|2
, γ̇) = −g(F,∇γ̇)

|X|2
g(X, γ̇).

Now
d

dt
g(X, γ̇) = g(∇γ̇X, γ̇) = 0

by skew symmetry and X|γ(0) = 0. Hence g(X, γ̇) = 0 which implies d
dtg(F, γ̇) = 0 by

the equation above. Since γ̇|γ(0) ∈ TN⊥ and F (0) ∈ TN , we get g(F, γ̇)|γ(0) = 0 and so
g(F, γ̇) = 0 by the previous two equations.

Hence we have shown that the dimension of S is at least n− 2k+ 2. We now need to show
that the negative Eigenspace of the energy functional

Eλ : ΩNM −→ R, Eλ(γ) :=

∫ 1

0
|γ̇|2gλ

converges to S as λ → ∞ (the rate of convergence does not depend on γ either! - this is
important!). Since γ is a geodesic for gλ for each λ, this will give us our result.

By Synges second variation formula with γ satisfying d
dsγ = Ḟ :

d2Eλ
ds2

∣∣∣∣
s=0

=

∫ 1

0

∣∣∣ ˙F (t)
∣∣∣2
gλ
dt−

∫ 1

0
gλ(R(Ḟ , γ̇)γ̇, F )dt

=

∫ 1

0

∣∣∣∣−g(F,∇γ̇X)

|X|2g
X

∣∣∣∣2
gλ

−
∫ 1

0
secgλ(F, γ̇)Area�gλ(F, γ̇)dt

≤
∫ 1

0

∣∣∣∣−g(F,∇γ̇X)

|X|2g
X

∣∣∣∣2
gλ

−
∫ 1

0
secg(F, γ̇)|F |2gdt

(this is because sectional curvature increases as λ increases and because |γ̇|gλ shrinks in

comparison to Ḟ which is defined using an ODE with shrinking derivatives.)

≤
∫ 1

0

g(F,∇γ̇X)2

|X|4g
|X|2gλ −

∫ 1

0
secg(F, γ̇)|F |2gdt −→ −

∫ 1

0
secg(F, γ̇)|F |2gdt

as λ→∞. Hence the dimension of the negative Eigenspace of Eλ is at least 2− 2k+ 2 for λ
sufficiently large. This proves our proposition.

�
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Bochner Technique applied to differential forms

Quick summary of Hodge theory. Let us suppose that M is closed. We have a volume
form:

dvol(v1, · · · , vn) = det (g(vi, ej))

where e1, · · · , en is an oriented orthonormal basis. We also have an inner product:

(ω1, ω2) =

∫
M
g(ω1, ω2)dvol, ω1, ω2 ∈ Ωk(M)

This enables us to define the Hodge star operator:

? : Ωk(M) −→ Ωn−k(M)

to be the unique linear map satisfying

(?ω1, ω2) =

∫
ω1 ∧ ω2, ∀ω1, ω2 ∈ Ωk(M).

This gives us an explicit Poincaré duality isomorphism:

? : Hk(M) −→ Hn−k(M).

Lemma 0.44.

?2 : Ωk(M) −→ Ωk(M), ?2 = (−1)k(n−k)

Definition 0.45. The adjoint of the exterior differential is the unique map

δ : Ωk+1(M) −→ Ωk(M)

satisfying

(δω1, ω2) = (ω1, dω2), ∀ω1 ∈ Ωk+1(M), ω2 ∈ Ωk(M).

Lemma 0.46.

δ : Ωk+1(M) −→ Ωk(M)

is equal to

δ(ω) = (−1)(n−k)(k+1) ? d ? .

Remark 0.47. The expressions for δ and ? are local. As a result they can be defined for
non-compact M as well. For instance, in a chart, we can cut of our forms with a bump
function and consider them as forms on Sn and use the same arguments.

Definition 0.48. We define the Hodge Laplacian or just the Laplacian to be the operator

∆ : Ωk(M) −→ Ωk(M), ∆ω := (dδ + δd)ω = (d+ δ)2ω.

A Harmonic differential form is an element in the kernel of ∆. We let

Hi = Hi(M)

be the vector space spanned by Harmonic differential forms.

Theorem 0.49. (Hodge) The harmonic forms give us a basis for de Rham cohomology.
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Bochner technique for forms

Consider a 1-form θ and let X be the g-dual of θ. We are interested in the function:

f : M −→ R,
1

2
|θ|2g =

1

2
g(X,X) =

1

2
θ(X).

Proposition 0.50. div(X) = −δ(θ).

Recall that the divergence of a vector field X is defined to be

tr(∇X) =

n∑
i=1

g(∇eiX, ei)

where (ei)
n
i=1 is an orthonormal frame. Here δ is the adjoint of the exterior differential.

Proof of Proposition above. We will prove this when M is compact and oriented. Then δ is
defined by: ∫

M
g(dh, ω) =

∫
M
hδω

for each differential form ω and for each smooth function h : M −→ R. Therefore, we need
to show that ∫

M
g(dh, θ)dvol = −

∫
M
hdiv(X)dvol

for each smooth function h. To prove this,

div(fX) = g(∇f,X) + fdiv(X) = g(df, θ) + fdiv(X).

Integrating: ∫
M

div(fX)dvol =

∫
M
g(df, θ)dvol +

∫
M
fdiv(X)dvol.

Now

div(fX)dvol = LfXdvol = difXdvol

(I won’t prove this identity, you can do that) and so the integral on the left hand side is zero
by Stokes’ theorem.

If M is not compact and oriented, then since our theorem is local, we can cut off θ with a
bump function and think of it as a 1-form on a small chart in Sn and then apply the argument
above. �

The above proposition says that the Laplacian on function is the same as the old definition:

div∇ = −δd.

Proposition 0.51. Let θ be a 1-form and X the dual vector field. Then ∇X is symmetric
if and only if dθ = 0.

Proof. Recall, by definition

g(∇VX,W ) =
1

2
(LXg)(V,W ) +

1

2
dθ(V,W ).

This is the decomposition ∇X into its symmetric and skew-symmetric parts. Hence ∇X is
symmetric if and only if dθ = 0. �

Corollary 0.52. If θ is harmonic then ∇X is symmetric.
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Definition 0.53. For a (·, r) tensor field S, we define ∇2S = ∇(∇S) where ∇S is now a
(,̇r + 1) tensor field. More explicitly,

∇2
X1,X2

S(Y1, · · · , Yr) = (∇X1(∇S))(X2, Y1, · · · , Y2)

= (∇X1(∇X2S))(Y1, · · · , Yr)− (∇∇X1
X2S)(Y1, · · · , Yr).

We now have the following Bochner identities:

Theorem 0.54. Let X be a vector field so that ∇X is symmetric (I.e. the dual 1-form θ is
closed). Let

f =
1

2
|X|2 .

Let p ∈M and suppose X = ∇u near p (such a function u exists because θ is closed). Then

(1) ∇f = ∇XX.
(2) Hessf(V, V ) = Hess2 u (V, V ) + (∇XHess u) (V, V ) +R(V,X,X, V )

= g(∇VX,∇VX) + g(∇2
X,VX,V ) +R(X,V, V,X).

(Here Hess2u means S2(u) where S is the associated (1, 1) tensor

X −→ ∇X∇u.

I.e. X → ∇∇X∇u∇u - and then we convert it back to a (0, 2) tensor, giving us

(X,V )→ g(∇∇X∇u∇u, V ).

.
(3) ∆f = |Hess u|2 +DX∆u+ Ric(X,X)

= |∇X|2 +DXdiv(X) + Ric(X,X).

Proof. (1) g(∇f, V ) = DV
1
2 |X|

2 = DV
1
2g(X,X) = g(∇VX,X) = g(∇XX,V ) for each

vector V . (the second to last equality is due to the fact that ∇X is symmetric).
(2) Hessu(U, V ) = g(∇U∇u, V ) = g(∇UX,V ), and so

Hess2u(V, V ) = g(∇∇VXX,V ) = g(∇VX,∇VX)

since ∇X is symmetric.

(∇XHessu)(V, V ) = ∇Xg(∇VX,V )− g(∇∇XVX,V )− g(∇VX,∇XV )

= g(∇X∇VX,V )− g(∇∇XVX,V ) = g(∇2
X,VX,V ).

Hence

Hessf(V, V ) = g(∇V∇f, V ) = g(∇V∇XX,V )

= g(R(V,X)X,X +∇X∇VX +∇[V,X]X,V )

= R(V,X,X, V ) + g(∇X∇VX,V )− g(∇∇XVX,V ) + g(∇∇VXX,V )

= R(V,X,X, V ) + (∇XHess u)(V, V ) + Hess2 u(V, V ).

(3) Now we take traces of the equation (2) give (3). The trace of R(X,−,−, X) is
Ric(X,X). The trace of g(∇−X,∇−X) is∑

i

g(∇eiX,∇eiX) = |∇X|2.
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Finally we need to compute the trace of ∇XHess u. Let p ∈M . If X|p 6= 0 we choose
our orthonormal frame (ei)

n
i=1 to be invariant under the flow of X. If X|p = 0 then

we choose any orthonormal frame. Then

tr(∇XHess u) =
n∑
i=1

∇XHess u(ei, ei) =

n∑
i=1

DXHess u(ei, ei)− 2Hess u(∇Xei, ei) =

n∑
i=1

DXHess u(ei, ei) = DX

n∑
i=1

Hess u(ei, ei) = DX∆u.

�

Theorem 0.55. (Bochner 1948) If (M, g) is closed and oriented and has Ric ≥ 0 then every
harmonic 1-form is parallel. In other words, if X is the vector field dual to this 1-form θ (I.e.
g(X,−) = θ(−)) then ∇X = 0.

Proof. Let f = 1/2|X|2. The by the proposition above,

∆f = |∇X|2 + Ric(X,X).

However since ∆fdvol = (δdf)dvol = −div∇fdvol = L∇fdvol is exact (see proof of Proposi-
tion 0.5 for exactness), we get:

0 =

∫
M

∆fdvol =

∫
M
|∇X|2 + Ric(X,X).

Now since |∇X|2 and Ric(X,X) are non-negative, this implies ∇X = 0. �

Corollary 0.56. If, in addition, Ric > 0 at some point p of M then all harmonic forms
vanish.

Proof. The above proof tells us that Ric(X,X) = 0 at p and so X = 0 (since Ric > 0 at p).
Hence X vanishes at p. However, since ∇X = 0, we also get that X vanishes everywhere. �

Corollary 0.57. Suppose (M, g) is closed and oriented and satisfies Ric ≥ 0. Then b1(M) ≤
n with equality if and only if M is the flat torus.

Proof. We know that b1(M) = dimH1(M). Also since each element of H1(M) is parallel
(I.e. its dual vector field has trivial gradient), we get that the map

H1(M) −→ T ∗pM, X −→ X|p
is injective and hence b1(M) ≤ dim(T ∗pM) = n.

Now suppose that b1(M) = n. Since we have n linearly independent parallel fields
X1, · · · , Xn, we get that (M, g) is flat and hence the universal cover of M is Rn with the
standard metric. Hence M = Rn/Γ where Γ is a discrete subgroup of the group of isometries

of Rn. The pullbacks X̃1, · · · , X̃n of the vector fields are constant vector fields on Rn since
they are parallel. Also the action of Γ preserves these constant vector fields. Hence any γ ∈ Γ
sends any v ∈ TqRn to the same vector in Tγ(q)Rn. This implies that Γ acts by translations
and so is a discrete subgroup of translations of Rn. Hence Γ ∼= Zm for some m. If the span
V of Γ has smaller dimension than Rn then Γ acts on V ⊕ V ⊥ ⊂ Rn and it acts trivially on
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V ⊥ which implies that the quotient is of the form V/Γ × V ⊥ which is non-compact. Hence
the span of Γ is Rn.

Hence a basis of generators a1, · · · , am for Γ span Rn. They are also linearly independent,
since the map Γ ⊗Z Q −→ Rn must also be injective (why? scaling out Q linear relations
gives us Z linear relations. Also tensoring a vector space over Q with R preserves dimension).
Hence the quotient must be a torus. �

1. Bochner Technique In General

Let E be a smooth vector bundle and let Γ(E) be the space of smooth sections of E.

Definition 1.1. Recall that a connection on E is a morphism of vector spaces (over R):

∇ : Γ(E) −→ Γ(Hom(TM,E)) = Γ(E ⊗ T ∗M), s −→ ∇s
satisfying

∇(fs) = f∇s+ s⊗ df
for each s ∈ Γ and f ∈ C∞(M). We write ∇s as the map

X −→ ∇Xs.

More explicitly ∇ is a map satisfying the following identities:

(1) ∇X(s1 + s2) = ∇Xs1 +∇Xs2

(2) ∇X1+X2s = ∇X1s+∇X2s
(3) ∇(fs) = f∇s+ s⊗ df for each smooth function f ,
(4) ∇fXs = f∇Xs.

Lemma 1.2. In a local trivialization of E over U , we have that sections correspond to maps
s : U −→ Rm and ∇Xs = DXs+AX where A : U −→ Matm×mR

Definition 1.3. A metric 〈, 〉 on E is a smooth map

E ⊗ E −→ R, s1 ⊗ s2 −→ 〈s1, s2〉
whose restriction to each fiber is an R-linear non-degenerate symmetric bilinear form. A
connection ∇ is compatible with a metric 〈, 〉 if:

DX〈s1, s2〉 = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉
for each pair of smooth sections s1, s2 and each vector X.

We will also define

(s1, s2) :=

∫
M
〈s1, s2〉dvol

for each s1, s2 ∈ Γ(E). Also if S1, S2 ∈ Γ(Hom(TM,E)), we define

〈S1, S2〉 := tr(S∗1S2) =
n∑
i=1

g(S∗1S2(ei), ei)

for any orthonormal basis e1, · · · , en. Here S∗1 ∈ Hom(TM,E) is the pointwise adjoint of S1,
defined by:

〈S∗1(X), s〉 = g(X,S1(s)), ∀X ∈ Vect(X).

We define

(S1, S2) :=

∫
M
〈S1, S2〉dvol.

IfM is non-compact, then the above expressions make sense for compactly supported sections.
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Lemma 1.4. (S1, S2) =
∑n

i=1〈S1(ei), S2(ei)〉 for any orthonormal basis e1, · · · , en.

Definition 1.5. Suppose a connection ∇ is compatible with the metric 〈, 〉 on E, then we
define

∇∗ : Γ(Hom(TM,E)) −→ Γ(E)

to be the adjoint of ∇. I.e. it is defined by∫
M
〈∇∗S, s〉dvol =

∫
M
〈S,∇s〉dvol ∀ s ∈ Γ(E), S ∈ Γ(Hom(TM,E)).

The following lemma tells us that ∇∗ is basically a connection on Hom(TM,E),

Lemma 1.6. (Exercise). Let E′ := Hom(TM,E) and define

E′′ := Hom(TM,Hom(TM,E)).

Define

∇′ : Γ(E′) −→ Hom(TM,E′), ∇′Xs := (Y −→ 〈X,Y 〉∇∗s).
Then ∇′ is a connection on E′.

Definition 1.7. The curvature of ∇

Definition 1.8. If E,E′ are vector bundles on M and ∇, ∇′ are connections then we define
the connection

∇⊗∇′ : Γ(E ⊗ E′) −→ Hom(TM,E ⊗ E′)
to be the unique connection satisfying

(∇⊗∇′)X(s⊗ s′) := (∇Xs)⊗ s′ + s⊗ (∇Xs′).

Definition 1.9. For each s ∈ Γ(E), we define ∇2s := ∇(∇s) where (by abuse of notation)
∇ is the induced connection on Hom(TM,E) = E ⊗ T ∗M coming from the Levi-Civita
connection on TM and the connection ∇ on E. More explicitly, we define

∇2
X,Y s := ∇X∇Y s−∇∇XY s

for each pair of vector fields X,Y and each s ∈ Γ(E).

Definition 1.10. The curvature of ∇ is the linear map

R∇ : Γ(TM)⊗ Γ(TM)⊗ Γ(E) −→ Γ(E)

defined by

R∇(X,Y )s = ∇2
X,Y s−∇2

Y,Xs = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

Definition 1.11. The connection Laplacian of s ∈ Γ(E) is defined to be

∇∗∇s.

This does not coincide with our precious notion of Laplacian, say, for vector fields, the
only sections satisfying

∇∗∇s = 0

are parallel (I.e. ∇s = 0) since:∫
M
〈∇∗∇s, s〉dvol =

∫
M
|∇s|2dvol.



26

Definition 1.12. We define

tr(∇2s) :=
n∑
i=1

∇2
ei,eis ∈ Γ(E)

where e1, · · · , en is any choice of normal frame (Exercise: this does not depend on the choice
of orthonormal frame).

Lemma 1.13. ∇∗∇s = −tr∇2s.

Proof. Let s1, s2 be two compactly supported sections supported in the domain of some
orthonormal frame e1, · · · , en. Now let us compute:

〈tr∇2s1, s2〉 =
n∑
i=1

〈∇2
ei,eis1, s2〉

=

n∑
i=1

〈∇ei∇eis1, s2〉 −
n∑
i=1

〈∇∇eieis1, s2〉

= −
n∑
i=1

〈∇eis1,∇eis2〉+

n∑
i=1

∇ei〈∇eis1, s2〉 −
n∑
i=1

〈∇∇eieis1, s2〉

see below for justification
= −〈∇s1,∇s2〉+ div(X)

where X is the vector field defined by:

g(X, v) = 〈∇vs1, s2〉.

Recall that the divergence of a vector field X is defined to be tr(∇X) =
∑n

i=1 g(∇eiX, ei).
Let us now justify the final equality:∑

i

Deig(X, ei) =
∑
i

g(∇eiX, ei) +
∑
i

g(X,∇eiei) = div(X) +
∑
i

〈∇∇eieis1, s2〉.

Also: ∑
i

Deig(X, ei) =
∑
i

∇ei〈∇eis1, s2〉

and hence

div(X) = −
n∑
i=1

∇ei〈∇eis1, s2〉 −
n∑
i=1

〈∇∇eieis1, s2〉.

Summarizing, we have:

〈tr∇2s1, s2〉 = −〈∇s1,∇s2〉+ div(X).

And hence

(−tr∇2s1, s2) =

∫
M
〈∇s1,∇s2〉+ div(X)dvol =

∫
M
〈∇s1,∇s2〉dvol

= 〈∇∗∇s1, s2〉dvol = (∇∗∇s1, s2).

This proves our lemma. �
Now the connection Laplacian and other Laplace operators defined so far are examples of

differential operators.
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Definition 1.14. Let E1, E2 be vector bundles over M . A differential operator of order ≤ k
is a map

D : Γ(E1) −→ Γ(E2)

so that in local coordinates x1, · · · , xn on M and in a local trivialization of E1 and E2 over
this coordinate chart, we have

D(s)(x) =
∑
|α|≤k

aα(x)Dαs

where aα is a smooth function. Here we are summing over tuples α = (i1, · · · , in) satisfying

|α| =
∑

j ij ≤ k and where Dα = ∂i1

∂x
i1
1

· · · ∂in
∂xinn

s. Here s should be viewed as an m1 × m2

matrix of functions where mj is the dimension of the fibers of Ej , j = 1, 2. We say that it is
of order k if it is not of order ≤ k − 1.

Lemma 1.15. Any sort of Laplacian that we have defined so far is a differential operator of
order 2.

Definition 1.16. A differential operatorD2 : Γ(E) −→ Γ(E) of order 2 satisfies a Weitzenböck
identity or formula if it is of the form

D2s = ∇∗∇s+ C(R∇)(s)

where C is some trace or contraction of R∇ (we do not define this precisely - it is usually
clear what this looks like).

Proposition 1.17. Let E be a vector bundle with metric 〈, 〉 and compatible connection ∇.
Let D2 be a differential operator of order 2 as above. Let s ∈ Γ(E). Then

∆

(
1

2
|s|2
)

= 〈∇s,∇s〉 − 〈D2s, s〉+ 〈C(R∇)(s), s〉.

Proof.

∆

(
1

2
|s|2
)

=
n∑
i=1

∇2
ei,ei

1

2
|s|2

=
n∑
i=1

∇ei∇ei
1

2
|s|2 −

n∑
i=1

∇∇eiei
1

2
〈s, s〉

=

n∑
i=1

∇ei∇ei
1

2
|s|2 −

n∑
i=1

〈∇∇eieis, s〉

=
n∑
i=1

(
〈∇ei∇eis, s〉+ 〈∇ei∇eis, s〉 − 〈∇∇eieis, s〉

)
= 〈∇s,∇s〉+ 〈

n∑
i=1

∇2
ei,eis, s〉

Lemma1.13
= 〈∇s,∇s〉 − 〈∇∗∇s, s〉 = 〈∇s,∇s〉 − 〈D2s, s〉+ 〈C(R∇)(s), s〉.

�

Corollary 1.18. If C(R∇) ≥ 0 (I.e 〈C(R∆)(s′), s′〉 ≥ 0 for each s′) and D2s = 0 then
∇s = 0 which implies that s is parallel, and hence the dimension of the space of sections
satisfying D2s = 0 is ≤ the dimension of the fiber of E. If, in addition, C(R∇) > 0 at some
point of M then the only sections s satisfying D2s = 0 are 0.
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Proof.

0 =

∫
∆

(
1

2
|s|2
)
dvol =

∫
M
|∇s|2dvol +

∫
〈C(Rδ)s, s〉

which implies that ∇s = 0. Since s is parallel, it is determined by its value at a single point
giving us our dimension restriction. Now suppose C(R∇) > 0 at some point p. Then the
above inequality forces our section s to be zero at p. Since s is parallel, this implies s = 0
everywhere. �

Now let us apply this to p-forms. In this case, our differential operator of order 2 is the
Hodge Laplacian. Recall that the curvature operator R is defined to be the map

R : ∧2TM −→ ∧2TM, R(X ∧ Y,Z ∧W ) := R(X,Y, Z,W ).

Fact: This is symmetric. I.e. swapping (X,Y ) and (Z,W ) leaves R unchanged.

Theorem 1.19. (D. Meyer 1971) Let ∆ : Ωp(M) −→ Ωp(M) be the Hodge Laplacian for
p-forms. Then ∆ = ∇∗∇+ C(R∇) for some C(R∇). If R ≥ 0 then C(R∇) ≥ 0.

Corollary 1.20. If R ≥ 0 and M is closed and orientable then

bk(M) ≤
(
n

k

)
= bk(Tm).

If R > 0 at some point of M then bk(M) = 0 for each 0 < k < n.

Proof. Let p ∈M be a point. The dimension of Hk(M) is at most the dimension of ∧kT ∗pM
by the previous theorem and corollary. This gives us our bound on bk. If, in addition, R > 0
at p, then Hk(M) = 0 by the previous theorem and corollary. �

We will now focus on the proof of the theorem by Meyer above. To do this, we need to
talk about Clifford multiplication on forms. First of all, let us just talk about the abstract
Clifford algebra and then later on see how this is realized on differential forms.

Definition 1.21. Let V be a vector space over a field K (in our case this will always be R).
The free algebra generated by V is the algebra

TV := ⊕∞i=0V
⊗i = K ⊕ V ⊕ V ⊗2 ⊕ · · ·

with multiplication given by (a, b) −→ a⊗ b (the 0th tensor power is defined to be K itself).
Let Q : V −→ R be a quadratic form on V . Then the Clifford algebra Cl(V,Q) is defined

to be the quotient TV/I where I is the ideal generated by {v ∈ V : v ⊗ v −Q(v)1 = 0}. If
h is the bilinear form associated to Q then we sometimes write Cl(V, h).

Example 1.22. If Q = 0 then the Clifford algebra is just the exterior algebra.

Example 1.23. Suppose V = R and Q(x) = −x2. Then I is generated by x ⊗ x + x21. In
other words x is a square root of −1. Hence Cl(Q,V ) ∼= C.

Example 1.24. Cl(R2, Q) where Q(x, y) = −x2 − y2 gives us the quaternions. Here i, j, k
corresponds to e1, e2 and e1 ⊗ e2 where e1, e2 are the basis vectors for R2.

Lemma 1.25. The dimension of Cl(V,Q) is 2m where m = dim(V ).
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Proof. Let P : TV � Cl(V,Q) be the natural surjection. Let F k := F kCl(V,Q) ⊂ Cl(V,Q)
be the image of ⊕ki=0TV

⊗k. Then if e ∈ F k and f ∈ F l then ef ∈ F kl. This is an example
of a filtration on the algebra Cl(V,Q). Define F−1 = 0. Consider Gr := ⊕∞k=0F

k/Fk−1 Then
the product on Cl(V,Q) gives us an induced product on Gr. Also Gr ∼= ∧∗E with the wedge
product (Exercise). Since the dimension of Gr is 2m and equal to the dimension of Cl(V,Q)
we are done. �

Definition 1.26. The transpose xt of an element x ∈ Cl(V,Q) is defined as follows: Consider
the vector space isomorphism Φ : TV −→ TV sending v1 ⊗ · · · vk to vk ⊗ vk−1 · · · ⊗ v1. Since
Φ preserves the kernel of the natural map TV −→ Cl(V,Q), we get an automorphism of the
vector space Cl(V,Q) sending x to xt (this automorphism does not preserve the product, but
it is an anti-homomorphism).

For each x ∈ Cl(V,Q) let (x)0 be the degree 0 part of x. We can extend Q to a quadratic
form Q : Cl(V,Q) −→ K as follows:

Q(x) := Q((xtx)0).

Lemma 1.27. (Exercise). Q is a positive definite quadratic form on Cl(V,Q) if the charac-
teristic of K is not equal to 2. The associated symmetric bilinear form is 〈x, y〉 = Q((xty)0).
Also, for each v1, · · · , vk ∈ V , we have Q(v1 · · · vk) = Q(v1) · · ·Q(vk).

Lemma 1.28. (Exercise)

〈ax, y〉 = 〈x, aty〉
〈xa, y〉 = 〈x, yat〉

for each x, a, y ∈ Cl(V,Q).

Definition 1.29. If θ ∈ V ∗, we define interior product iθ : ∧∗V −→ ∧∗V to be the unique

linear map sending v1 ∧ · ∧ vk to
∑k

i=1(−1k)θ(vi)v1 · · · ∧ vi−1 ∧ vi+1 · · · ∧ vk.
If 〈, 〉 is a metric on V , then for each v ∈ V , we define v# ∈ V ∗ to be the unique element

satisfying 〈v, f〉 = v#f for each f ∈ V .

Lemma 1.30. Let V be a vector space and Q a positive definite quadratic form. Consider
the unique bilinear and associative product · on ∧∗V satisfying:

θ · ω = θ ∧ ω − iθ#ω, ∀ θ ∈ ∧1V, ω ∈ ∧p(V )

ω · θ = (−1)p(θ ∧ ω + iθ#ω), ∀ θ ∈ ∧1V, ω ∈ ∧p(V )/

Then Cl(V,−〈, 〉) is naturally isomorphic to this product · on ∧∗V .

The word natural means that this isomorphism is in fact a natural transformation between
functors. The first functor sends a bundle with metric to its associated Clifford bundle. The
second functor is ∧∗ together with the product described above.

Proof. We have Cl(V, 〈, 〉)|x is generated as an algebra by elements of V = ∧1V . Similarly,

(∧∗V, )̇ is generated by ∧1V . Let T (V ) = ⊕∞i=0V
⊗i and let

Φ : (TV,⊗) −→ (∧∗V, ·)

be the unique algebra map whose restriction to V is the identity map. Since

θ · θ = θ ∧ θ − iθ#θ = −g(θ, θ) = |θ|2,
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and since Cl(V,−〈, 〉) = TV/I where I is the ideal in TV generated by elements e ∈ V
satisfying e2 = −〈e, e〉, we have that Φ descends to an injective bundle map

Ψ : (Cl(V, 〈, 〉)) −→ (∧∗V, ·).

Since the dimensions of both vector spaces are the same, this is an isomorphism. �

Lemma 1.31. (Exercise). Let e1, · · · , en be an orthonormal basis of V . Then

ei1 · · · · · eik = ei1 ∧ · · · ∧ eik ,

i1, · · · , ik ∈ N is an orthonormal basis for Cl(V,Q) under the identification above.

Lemma 1.32. (Exercise). Let x ∈ ∧kV . Then xt = (−1)f(k)x where

f(k) =


0 if k = 0 mod 4
0 if k = 1 mod 4
1 if k = 2 mod 4
1 if k = 3 mod 4.

Lemma 1.33. Let V be a vector space over K and 〈, 〉 a positive definite bilinear form on V
and Q its associated quadratic form. We also write 〈, 〉 to be the induced metric on Cl(V,Q)
as described above. Then for each θ ∈ V , ψ ∈ ∧2V and ω1, ω2 ∈ Cl(V,Q) = ∧∗V , we have

〈θ · ω, ω2〉 = −〈ω1, θ · ω2〉

〈[ψ, ω1], ω2〉 = −〈(ω1, [ψ, ω2])

where [−,−] is the commutator.

This lemma follows immediately from Lemma 1.28 and the previous lemma.

Now let us assume that K = R.

Definition 1.34. Let π : E −→ B be a smooth vector bundle with a metric 〈, 〉. Define

Q : E −→ R, Q(v) := 〈v, 〉

be the associated quadratic form. The Clifford bundle associated to (E,Q), denoted by
Cl(E,Q) or Cl(E, 〈, 〉), is the bundle whose fiber over x ∈M is Cl(E|x, Q|E|x). More precisely,
if ρij : Uij −→ O(Rn) are transition functions defining Q then the induced maps Uij −→
Cl(Rn, | · |2) are the transition maps defining this Clifford bundle.

The following lemma gives a more explicit description of Cl(E,Q).

We will be interested in the Clifford bundle Cl(T ∗M,−g). The lemmas above tells us that
this is isomorphic to ∧∗T ∗M with the unique bilinear and associative product · satisfying

θ · ω = θ ∧ ω − iθ#ω, ∀ θ ∈ ∧1T ∗M, ω ∈ ∧p(T ∗M)

ω · θ = (−1)p(θ ∧ ω + iθ#ω), ∀ θ ∈ ∧1T ∗M, ω ∈ ∧p(T ∗M).

The metric on Cl(T ∗M,−g) is identical to the usual metric on ∧∗TM by one of the lemmas
above.

Definition 1.35. For an (·, r) tensor S and vector fields X,Y , we define

R(X,Y )(S) := ∇2
X,Y S −∇2

Y,XS = ∇X∇Y S −∇Y∇XS −∇[X,Y ]S.
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Lemma 1.36. For ω1, ω2 ∈ Ω∗(M) and vector fields X,Y , we have:

∇X(ω1 · ω2) = (∇Xω1) · ω2 + ω1 · (∇Xω2)

R(X,Y )(ω1 · ω2) = (R(X,Y ))(ω1) · ω2 + ω1 · (R(X,Y )(ω2).

Proof. Let us prove the first formula. We only need to prove this when ω1 = θ is a 1-form by
induction. We have:

∇X(θ ∧ ω) = (∇Xθ) ∧ ω + θ ∧ (∇Xω)

∇X(iθ#ω) = iθ#ω + i∇Xθ#(∇Xω).

Hence

∇X(θω̇) = ∇X(θ ∧ ω − iθ#ω)

= (∇Xθ) ∧ ω + θ ∧ (∇Xω)− iθ#ω − i∇Xθ#(∇Xω)

= (∇Xθ) ∧ ω − iθ#ω + θ ∧ (∇Xω)− i∇Xθ#(∇Xω)

∇Xθ) · ω + θ · (∇Xω).

The second formula follows from the first formula (we won’t do the calculation here). �

Definition 1.37. Define the Dirac operator on forms to be the map

D : Ω∗M −→ Ω∗M

D(ω) :=

n∑
i=1

θi∇eiω

where e1, · · · , en is any frame and θ1, · · · , θn ∈ T ∗M is the dual frame.

More generally, if you have a bundle with a ‘Clifford action’ (I.e. a morphism of bundles
Cl(T ∗M,−g) −→ End(E) which is a fiberwise algebra morphism), then you can similarly
define a Dirac operator.

Proposition 1.38. (Exercise).

dω = θi ∧∇eiω
δω = −i(θi)#∇eiω

D = d+ δ.

To prove the proposition above, you show that the first two formulas do not depend on
the choice of frame and then prove it for an orthonormal frame.

Corollary 1.39. D2 = ∆ where ∆ is the Hodge Laplacian.

Definition 1.40. If Y is a vector field, then define Y [ to be the corresponding dual 1-form.
Recall that:

Ric(v) :=

n∑
i=1

R(v, ei)ei.

Theorem 1.41. (Weitzenbök formula for 1-forms only).
Let X be a vector field and θ the dual 1-form. Then

∆θ = ∇∗∇θ + Ric(X)[.
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Proof. Let p ∈ M . We consider an orthonormal frame ei which satisfies ∇ei|p = 0. We will
use the following formula for the exterior derivative:

dω(X0, · · · , Xk) =
k∑
i=0

(−1)i(∇Xiω)(X0, · · · , X̂i, · · · , Xk).

Also

δω = −
n∑
i=1

iei∇eiω.

(We leave these formulas as exercises - or refer to the appendix of Peterson). Let Z =∑n
i=1 aiei be a constant linear combination of ei’s. Then

(∆θ)(Z) = (dδθ)(Z) + (δdθ)(Z) = ∇Zδθ −
n∑
i=1

(∇eidθ)(ei, Z) =

= −
n∑
i=1

∇Z(∇eiθ)(ei))−
n∑
i=1

(∇eidθ)(ei, Z)

−
n∑
i=1

(∇2
Z,eiθ)(ei))−∇ei

n∑
i=1

(dθ)(ei, Z)

(by the flatness conditions ∇ei|p = 0)

−
n∑
i=1

(∇2
Z,eiθ)(ei))−∇ei

n∑
i=1

(∇eiθ)(Z)− (∇Zθ)(ei)

(by our formula for d)

=

n∑
i=1

(∇2
ei,Zθ −∇Z,eiθ)(ei)−

n∑
i=1

(∇2
ei,eiθ)(Z)

=

n∑
i=1

(R(ei, Z)θ)(ei) + (∇∗∇θ)(Z).

We now need to compute the curvature term. We will use the following identity:

(R(X,Y )θ)(W ) = R(X,Y )(θ(W ))− θ(R(X,Y )W ) = −θ(R(X,Y )W )

for all θ ∈ Ω1(M), X,Y,W ∈ Vect(M). This is because R(X,Y )f = ∇X∇Y f − ∇Y∇Xf −
∇[X,Y ]f = d(df(X))(Y )−d(df(Y ))(X)−df([X,Y ]) = d2f(X,Y ) = 0 for any smooth function
f . Hence

n∑
i=1

(R(ei, Z)θ)(ei) = −
n∑
i=1

θ(R(ei, Z)ei) =
n∑
i=1

θ(R(Z, ei)ei)

=

n∑
i=1

g(R(Z, ei)ei, X) =

n∑
i=1

R(Z, ei, ei, X)
since R is symmetric

=

n∑
i=1

R(ei, X, Z, ei) =

n∑
i=1

R(X, ei, ei, Z)

g(Ric(X), Z) = Ric(X)[(Z).

Combining everything gives us our lemma. �

Now we wish to consider all forms. We need the following lemma.
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Lemma 1.42. Let ei be a frame with dual coframe θi

D2ω =
n∑

i,j=1

θi · θj · ∇2
ei,ejω =

n∑
i,j=1

(
∇2
ei,ejω

)
· θj · θi.

Proof. Let p ∈M . Recall

∇2
ei,ej = ∇ei∇ej −∇∇eiej

is tensorial in i and j and so these expressions are invariantly defined (tensorial means linear
over C∞(M)). Hence we can choose our frame so that ∇ei|p = 0. We will use Einstein
summation conventions. Then

D2ω = θi · (∇ei(θj · ∇ejω)) = θi · (∇eiθj) · ∇ejω + θi · θj · ∇ei∇ejω

= θi · θj · ∇ei∇ejω
by flatness

= θi · θj · ∇ei∇ejω − θi · θj · ∇∇eiejω = θi · θj · ∇2
ei,ejω.

Now define

D̂ω := (∇eiω) · θi.
One can show (in a similar way that we did for D), that

D̂ω = (−1)p(d− δ)ω
if ω is a p-form. Hence

D̂2 = ∆ = D2.

Hence, an identical proof as above, but with D replaced by D̂ gives us the second identity. �

Theorem 1.43. (Weitzenbök identities for p-forms). Let ei be a frame and θi its dual
coframe. Then for any form ω,

D2ω = ∇∗∇ω +
1

2

n∑
i,j=1

θi · θj ·R(ei, ej)ω = ∇∗∇ω +
1

2

n∑
i,j=1

R(ei, ej)ω · θj · θi

Proof. Using the identities above, it is sufficient to check:

∇∗∇ω +
1

2

n∑
i,j=1

θi · θj ·R(ei, ej)ω =
n∑

i,j=1

θi · θj · ∇2
ei,ejω

∇∗∇ω +
1

2

n∑
i,j=1

R(ei, ej)ω · θj · θi =

n∑
i,j=1

(
∇2
ei,ejω

)
· θj · θi.

Since these formulas are established in the same way, we will only focus on the first formula.
Let p ∈M . We can assume ei is orthonormal at p and ∇ei|p = 0. We have identities:

θi · θi = −1, θi · θj = −θj · θi.
Hence

n∑
i,j=1

θi · θj · ∇2
ei,ejω = −

n∑
i=1

∇2
ei,eiω +

∑
i 6=j

θi · θj · ∇2
ei,ejω

= −∇∗∇ω +
∑
i 6=j

θi · θj · ∇2
ei,ejω
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= −∇∗∇ω +
∑
i<j

θi · θj · (∇2
ei,ejω −∇

2
ej ,eiω)

= −∇∗∇ω +
∑
i<j

θi · θj ·R(ei, ej)ω = −∇∗∇ω +
1

2

∑
i 6=j

θi · θj ·R(ei, ej)ω

= −∇∗∇ω +
1

2

∑
i 6=j

θi · θj ·R(ei, ej)ω.

�
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