1. A REVIEW OF COHOMOLOGY OF MANIFOLDS
Good texts include Spanier and Hatcher.

Definition 1.1. The standard n-simlex is the convex set A" C R"*! given by the set of
(n + 1)-tuples (tg,- - ,tyn), satisfying Z?jll t; = 1.

A continuous map from A" to a topological space X is called a singular n-simplex. The
ith face of a singular n-simplex o : A™ < X is the n — 1-simplex

cgog;: A" — X
where
i : AV T, (ﬁ,(to, ce ,tn_l) = ¢(t0, cee Ly tio1,0,t, - - 7tn—1)-
For each n > 0, the singular chain group C,,(X,A) where A is a commutative ring, is
the free A-module generated by the set of singular n-simplices. In other words, it is the set
of formal finite linear combinations ) ;g a;[o;] where |S| is finite and a; € A for all i € S

and (0;)ies are singular n-simplices. For n < 0, C,,(X, A) is defined to be 0.
The boundary homomorphism is the map

0: Co(X,A) — Coa(X,A), 00 aios) = iy [0i0 i
icS ieS  j=0
Then 0 09 = 0. We define Z,(X,A) = ker(0) and B,(X,A) = Im(0) and H,(X,A) =
Zn(X,N)/B,(X,A) to be the nth singular homology gorup of X. Note we call this a
group, but it is really a A-module (it is a group in the case when A = Z as abelian groups
are Z-modules).
The cochain group is defined to be the dual of the singular chain group:

C"(X,A) = Homp(Cpn(X,A),A).
In other words, it is the set of maps:

s:Cp(X,A) — A

s ailoi]) = ais([o])
1€S 1€S
for each finite formal sum ;¢ a;[o;] as above.
The coboundary map is the A-linear map

§:C™(X;A) — C"TY(X,A), 8(s)(z) = (=1)"TLs(d(z)), VseC™X;A), € Cpii(X;A).

Again Z"(X; A) = ker(d) and B"(X;A) = Im(d) and H"(X;A) = Z™"(X;A)/B"(X;A) is the
nth cohomology group of X.

satisfying

Note that we have not used the multiplicative structure of A (yet). Hence, one could gen-
eralize our coefficient system to include A-modules for instance. This is useful in obstruction
theory for instance. We will stick to having coefficients in a commutative ring A.

If A C X is a topological subspace, we have groups C, (X, A;A) = C,(X;A)/Cn(A4;A)
and hence we can define H, (X, A;A) in the usual way using the induced boundary homo-
morphism 0 (since 0 maps the submodule C),(A;A) to itself). We define C"(X, A;A) =
ker(C™(X;A) — C™(A;A). Again § maps the submodule C"™(X, A; A) to itself and hence
we can define H"(X, A; A).

Relationship between homology and cohomology.
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From now on we will assume that A is a principal ideal domain (e.g a field or Z). To
simplyfy notation we will omit A, and just write C,(X), Z,(X), H,(X), etc instead of

Cn(X;5 M), Z,(X; A), ete. Also we will write H,.(X) for the sequence of groups Hy(X), H1(X),---.

Theorem 1.2. Suppose that H,,_1(X) is 0 or (more generally) a free A-module. Then
H"(X) is canonically isomorphic Homp(Hy(X);A). We have a similar statement for pairs
(X, A).

E.g. the identity H"(X) = Homa(H,(X);A) is always true when A is a field.

The proof is contained in Milnor and Stasheff (Appendix A) We will just explain what the
canonical map k : H"(X) — Homp(H,(X); A) is.

Given elements z € H"(X) and § € H,(X) define the Kronecker index < z,{ >€ A as
follows: Choose a representative 7 € C™(X; A) of z and a representative £ € C,,(X;A) of &.
Then we define < z,& >= {(x).

Exercise: show that this does not depend on the choice of representatives Zf,g of x and &
repsectively.

Hence we get a natural map:

k:H"(X) — Homp(Hp(X);A), k(x)(&) =<z,&>.

Homology of a CW complex.

Recall that a CW complex is a topological space obtained by starting with 0 dimensional
balls, then gluing 1-balls to the 0 balls along the boundary of these 1-balls giving us a
1-skeleton, and then gluing 2-balls to the 1-skeleton along their boundary giving us the 2-
skeleton etc....

Let K be the underlying topological space of a CW complex and let K™ C K be its
n-skeleton.

Lemma 1.3. H;(K", K" ') =0 for all i # n and is a free A-module generated by the set of
n-cells (that are glued) when i = n

Proof. Let S C K" be a finite set with exactly one point in the interior of each n-cell and
no other points. Since K"~ ! is a deformation retract K" — S and hence of a neighborhood
of itself inside K™, we get that H;(K", K"~ ') = H;(K"/K"!). We have that K"/K"! is
homeomorphic to a wedge sum of spheres giving us our result. O

Corollary 1.4. H; K" is zero for i > n and free of rank the number of cells when ¢ = n and
isomorphic to H;(K) for i < n.

Proof. This is true when n = 0 since KV is a disjoint union of points corresponding to the
number of 0-cells. Now suppose our lemma is true for the n — 1 skeleton and consider the n
skeleton. Consider long exact sequence:

Hy(K"™ Y — Hy(K") — H;(K", K" 1).

The condition that H;(K™, K" ') = 0 for i < n implies that H;(K"™1') — H;(K™) is an
isomorphism for all ¢ < n — 1 by our induction hypothesis. If K is infinite dimensional then
one needs to use the fact that its homology is the direct limit of the homology of K" as n
goes to infinity. O

Definition 1.5. The free module H,(K", K" 1) is called the nth chain group of the the
CW complex K. We will write €, K for this module. Similarly C"(K) = Homx(C, K, A)
is the nth cochain group of the CW complex K.
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The boundary is the natural map 9, : €,11 K — C,K coming from the long exact
sequence of the triple (K”H, K", K”—l);

Hy (K™ K™) — Hy (K™, K™Y — Hy (K™ K™Y — Hy (K™ K™).
Similarly one can define the coboundary map.

Theorem 1.6. The (co)homology of the CW chain complex of K is canonically isomorphic
to its singular (co)homology.

The canonical homomorp-hism comes from the long exact sequence:
0 — Hy(K", K" ?) — C,K — €, 1 K

coming from the triple (K™, K"1 K"~2) combined with the fact that H,(K", K" 2) =
H,(K") from Lemma 1.4. See Milnor’s book.

cup product:

Let o : A™™ — X be a singular simplex. The front m-face of sigma, is the singular
simplex o o a,, where

Q t AT — AT (L, ) — (to,  ytm, 0,00+, 0).
The back n-face of ¢ is the composition ¢ o 3,, where
Br t A" — AMT (g, ty) — (0, 0,80, ).
The cup product cUc € C" (X)) of c € C™(X),c € C"(X) is defined as:
cud(lo]) = (=1)""c([o 0 am])c ([0 0 Bn]) € A

Then

S(cUd) = (dc)Ud + (=1)"c U (6c).
Hence the cup product descends to a product

U: H™(X)® H"(X) — H™(X).
This is graded commutative in the sense that [c]U [¢/] = (—=1)™"[¢/] U [¢]. Hence H*(X) is
a graded commutative ring.

If AC X and B C X are relatively open when considered as open subsets of AU B. Then
one has a cup product map:

H™(X;A)® H"(X;B) — H™™"(X; AUB).
Kiinneth formula:

Definition 1.7. Let p; : X XY — X and p2 : X XY — Y be the natural projection
maps. The cross product map (or external product) is the map:

x : H"(X)@ H"(Y) — H™™(X xY), xxy=(piz)U (psy).
Similarly this can be defined for pairs:
x: H™(X,A) @ H"(Y,B) — H™™(X xY,(Ax Y)U (X x B).
Theorem 1.8. Let X,Y be CW complexes such that each H*(X) is a torsion free A module

(e.g. when A is a field) and Y only has finitely many cells in each dimension. Then the cross
product map above is an isomorphism.

homology of manifolds.

Lemma 1.9. Let M be a smooth manifold. Then H, (M; M —x) = A and H;(M; M —z) =0
for all i # n for all z € M.



This is done by excision. L.e. H, (M, M — z) = H,(R",R" — x).

Definition 1.10. An orientation on M is a choice u, € H,(M, M —z) — 0 for each z € M
so that p, ‘varies continuously’ with respect to z.

I.e. For each z € M, there is a relatively compact neighborhood N > z and a class
pun € Hy(M, M — N) so that the image of py in Hy(M, M —y) is p, for each y € N.

A manifold with orientation is called an orientated manifold. If a manifold admits an
orientation then we call it orientable.

The following Lemma is important.

Lemma 1.11. Let M be an oriented manifold with orientation (p)zens. For each compact
K C M, there is a unique px € H"(M, M — K) which maps to p, for each y € K.

The uniqueness part is not too difficult. The existence part is difficult. See Milnor Appen-
dix A Lemma A.7. The key idea is to construct px, for compact (K;);c; which are contractible
with non-empty interiors covering M and then ‘glue’ together these pix;’s together.

Definition 1.12. If M is a compact oriented manifold with orientiation (j;)zcps then its
fundamental class [M] € H,(M) is the unique class whose restriction to H, (M, M — x) is
uy for all x € M.

cohomology with compact support.

Definition 1.13. A cochain ¢ has compact support in X if there is a compact set K C X so
that c([o]) = 0 for each 0 : A — M — K C M. In other words, ¢ belongs to C*(X, X — K) C
C'(X). The cochains with compact support form a A submodule Cg(X;A) C C*(X;A).
Hence we have a cohomology group CL(X;A) = CL(X).

Note if X is compact then H!(X) = H'(X).

Definition 1.14. If M is an oriented n-manifold with orientation (u;)zens then we have an
integration map

/ CHMOM) — A, [ — ()

where K C M is a compact set containing the support of the cochain ¢ representing a class
in H'(M) and pux € Hp(M, M — K) is the class from Lemma 1.11.

Exercise: show that this does not depend on K or the choice of representative ¢ of the
homology class [c] € H(M).

Note that in de Rham cohomology, we have A = R and the orientation corresponds to a
volume form, and the integration map in this definition corresponds exactly to integration
with respect ot the chose volume form.

Cap product operation:

Definition 1.15. We have the following map called the cap product:
N:CYX)®CRX) — Cry(X), a®oc—ano=(-1)*(a([o0ps])ooar;
where o o 3; is the back i-face of ¢ and ¢ o ay_; is the front k& — ¢ face of o.
We have the following identities:
(buc)né&=bn(cng)

Ing=¢
A(bNE) = (6b) NE+ (—1)4mPh N (9¢). (1)



Definition 1.16. By Equation 1, we get that the cap product descends to a map
N: H(X)® Hy(X) — Hy,_;(X)
which we call the cap product.

Theorem 1.17. Suppose that M is oriented and compact then the map H*(M) — H,,_;(M)
is an isomorphism under the map a — a N [M] where [M] is Defined in Definition 1.12.

Theorem 1.18. Suppose that M is oriented and not-necessarily compact then the we have
an isomorphism D : H)(M) — H,_;(M) is an isomorphism under the map a — a N ux
where K contains the support of ¢ and pg is from Lemma 1.11.

Theorem 1.18 generalizes Theorem 1.17 and one can prove 1.18 by first proving it when
K = pt and then by a patching argument (by Mayor-Vietoris).



