1. **The Oriented Cobordism Ring**

Definition 1.1. Let M be an oriented manifold with boundary. Then the boundary ∂M also has a natural orientation as follows: If we have any local oriented chart

$$\tau : U \rightarrow \mathbb{H}^n \equiv \{(x_1, \cdots, x_n : x_1 \geq 0)\}$$

then x_2, \cdots, x_n is an oriented chart for ∂M.

Another way of describing this for smooth manifolds is as follows: Let V be a vector field defined near ∂M which points outwards. In other words, in any chart τ as above, V is equal to $f(x_1, \cdots, x_n) \frac{\partial}{\partial x_1} + V_2$ in this chart where $f(0, x_2, \cdots, x_n) < 0$ and V_2 is tangent to ∂M. Let $E \subset TM|_{\partial M}$ be the one dimensional sub-bundle spanned by V. Then

$$TM|_{\partial M}/E \cong T\partial M$$

and hence $TM|_{\partial M} \cong E \oplus T\partial M$. Since we have a natural trivialization $T : E \rightarrow \partial M \times \mathbb{R}$ sending V to 1, and since $TM|_{\partial M}$ is oriented, we get that $T\partial M$ has a natural orientation and hence ∂M is oriented.

Here is a third way of describing this. An orientation on a smooth n-manifold M corresponds a choice of n-form Ω which does not vanish anywhere. Let V be the vector field as above. Then $i_V(\Omega)|_{\partial M}$ is a nowhere vanishing $n-1$ form on ∂M and hence gives us a natural orientation on ∂M.

(Exercise: show that these three definitions are equivalent).

Theorem 1.2. (Collar Neighborhood Theorem) Let M be a smooth paracompact manifold with boundary. Then there is a neighborhood of ∂M diffeomorphic to $(0, 1] \times \partial M$.

Oriented Cobordism

Definition 1.3. If M is an oriented manifold then we write $-M$ for the same manifold but with opposite orientation.

Two smooth manifold M, M' are said to be **oriented cobordant** or **belong to the same cobordism class** if if there is an oriented compact manifold with boundary X and an orientation preserving diffeomorphism

$$\Phi : M \sqcup (-M') \rightarrow \partial X.$$

Example 1.4. Suppose that there is an orientation preserving diffeomorphism $\Psi : M \rightarrow M'$ then M and M' are oriented cobordant by the cobordism $X = [0, 1] \times M$ and the diffeomorphism

$$\Phi : M \sqcup (-M') \rightarrow X, \quad \left\{ \begin{array}{ll} \Phi(x) = (0, x) & \text{if } x \in M \\ \Phi(x) = (1, \Psi(x)) & \text{if } x \in M' \end{array} \right.$$

Definition 1.5. We define Ω_n to be the set of all oriented cobordism classes of n manifolds. If M is an oriented manifold, then we write $[M]$ for the corresponding element in Ω_n.

Note, one may wonder if Ω_n is actually a set at all. Since every n-manifold can be embedded in to \mathbb{R}^{2n} by Whitehead’s theorem, one sees that every n-manifold is diffeomorphic submanifold of \mathbb{R}^{2n}. This implies that each manifold is oriented cobordant to a manifold diffeomorphic to a submanifold of \mathbb{R}^{2n}. Therefore the size of Ω_n is at most the power set of \mathbb{R}^{2n} and hence must be a set.
Lemma 1.6. (Exercise). Being oriented cobordant is a reflexive, symmetric and transitive relation. Also \(\Omega_n \) becomes an abelian group where the group operation is disjoint union.

Also \(\Omega_n \equiv \sqcup_{n \geq 0} \Omega_n \) is a ring with addition equal to disjoint union and multiplication corresponds to the cross product. The identity element is the positively oriented point \(\{ \star \} \) in \(\Omega_0 \). Also \([M_1^n] \times [M_2^m] = (-1)^{mn}[M_2^m] \times [M_1^n] \) which means that \(\Omega_* \) is a graded commutative ring.

Definition 1.7. \(\Omega_* \) is called the oriented cobordism ring.

Lemma 1.8. (Pontryagin) If \(M \) and \(M' \) are oriented cobordant \(4k \) manifolds then they have the same Pontryagin numbers.

Proof. Since \(M \sqcup -M' \) is the oriented boundary of a \(4k + 1 \) manifold, we get that all the Pontryagin numbers of \(M \sqcup -M' \) are trivial. Let \(p_I(M), p_I(M') \) be two Pontryagin numbers where \(I \) is a partition of \(k \). Then

\[
0 = p_I(M \sqcup -M') = p_I(M) + p_I(-M') = p_I(M) - p_I(M')
\]

and hence they have the same Pontryagin numbers. \(\square \)

Corollary 1.9. For any partition \(I \) of \(k \), we get a group homomorphism

\[
\Omega_{4k} \rightarrow \mathbb{Z}, \quad [M] \rightarrow p_I(M).
\]

Corollary 1.10. The products

\[
\mathbb{CP}^{i_1} \times \cdots \times \mathbb{CP}^{i_r}
\]

as \(i_1, \cdots, i_r \) range over all partitions of \(k \) are linearly independent inside the group \(\Omega_{4k} \). Hence \(\Omega_{4k} \) has rank greater than or equal to \(p(k) \) which is the number of partitions of \(k \).

Proof. This follows from the fact (from the previous section) that the \(p(k) \times p(k) \)-matrix

\[
[p_{i_1} \cdots p_{i_r} [\mathbb{CP}^{2j_1} \times \cdots \times \mathbb{CP}^{2j_s}]]
\]

where \(i_1, \cdots, i_r \) and \(j_1, \cdots, j_s \) run over all partitions of \(k \).

Hence we get a surjective group homomorphism

\[
\Omega_{4k} \rightarrow \mathbb{Z}^{P_k}, \quad M \rightarrow (p_{i_1} \cdots p_{i_r} [M])_{i_1, \cdots, i_r \in P_k}
\]

where \(P_k \) is the set of partitions of \(k \). \(\square \)

Here is \(\Omega_k \) for some small \(k \):

- \(\Omega_0 = \mathbb{Z} \) since every 0 manifold is a set of signed points.
- \(\Omega_1 = 0 \) since every compact oriented 1-manifold is the boundary of a disjoint union of disks.
- \(\Omega_2 = 0 \) since every compact oriented 2-manifold is a genus \(g \) surface and hence is the boundary of a 3 manifold with \(g \) handles.
- \(\Omega_3 = 0 \) (Rohlin).
- \(\Omega_4 = \mathbb{Z} \) and is generated by \(\mathbb{CP}^2 \).
- \(\Omega_5 = \mathbb{Z}/2 \) generated by \(Y^5 \), a non-singular hypersurface of degree \((1, 1) \) inside \(\mathbb{RP}^2 \times \mathbb{RP}^4 \).
- \(\Omega_6 = 0 \)
- \(\Omega_7 = 0 \)
- \(\Omega_8 = \mathbb{Z} \oplus \mathbb{Z} \) generated by \(\mathbb{CP}^4 \) and \(\mathbb{CP}^2 \times \mathbb{CP}^2 \)
- \(\Omega_9 = \mathbb{Z}/2 \oplus \mathbb{Z}/2 \) generated by \(Y^9 \) and \(Y^9 \), a non-singular hypersurface of degree \((1, 1) \) inside \(\mathbb{RP}^2 \times \mathbb{RP}^8 \).
- \(\Omega_{10} = \mathbb{Z} \) generated by \(Y^5 \times Y^5 \)
\[\Omega_{11} = \mathbb{Z}/2 \] generate by \(Y^{11} \), a non-singular hypersurface of degree \((1, 1)\) inside \(\mathbb{R}P^4 \times \mathbb{R}P^8 \).