
1. The Oriented Cobordism Ring

Definition 1.1. Let M be an oriented manifold with boundary. Then the boundary ∂M
also has a natural orientation as follows: If we have any local oriented chart

τ : U −→ Hn ≡ {(x1, · · · , xn : x1 ≥ 0)}

then x2, · · · , xn is an oriented chart for ∂M .
Another way of describing this for smooth manifolds is as follows: Let V be a vector field

defined near ∂M which points outwards. In other words, in any chart τ as above, V is equal
to f(x1, · · · , xn) ∂

∂x1
+ V2 in this chart where f(0, x2, · · · , xn) < 0 and V2 is tangent to ∂M .

Let E ⊂ TM |∂M be the one dimensional sub-bundle spanned bay V . Then

TM |∂M/E ∼= T∂M

and hence TM |∂M ∼= E ⊕ T∂M . Since we have a natural trivialization T : E −→ ∂M × R
sending V to 1, and since TM |∂M is oriented, we get that T∂M has a natural orientation
and hence ∂M is oriented.

Here is a third way of describing this. An orientation on a smooth n-manifold M corre-
sponds a choice of n-form Ω which does not vanish anywhere. Let V be the vector field as
above. Then iV (Ω)|∂M is a nowhere vanishing n−1 form on ∂M and hence gives us a natural
orientation on ∂M .

(Exercise: show that these three definitions are equivalent).

Theorem 1.2. (Collar Neighborhood Theorem) Let M be a smooth paracompact manifold
with boundary. Then there is a neighborhood of ∂M diffeomorphic to (0, 1]× ∂M .

Oriented Cobordism

Definition 1.3. If M is an oriented manifold then we write −M for the same manifold but
with opposite orientation.

Two smooth manifold M,M ′ are said to be oriented cobordant or belong to the
same cobordism class if if there is an oriented compact manifold with boundary X and
an orientation preserving diffeomorphism

Φ : M t (−M ′) −→ ∂X.

Example 1.4. Suppose that there is an orientation preserving diffeomorphism Ψ : M −→
M ′ then M and M ′ are oriented cobordant by the cobordism X = [0, 1] × M and the
diffeomorphism

Φ : M t (−M ′) −→ X,

{
Φ(x) = (0, x) if x ∈M

Φ(x) = (1,Ψ(x)) if x ∈M ′

Definition 1.5. We define Ωn to be the set of all oriented cobordism classes of n manifolds.
If M is an oriented manifold, then we write [M ] for the corresponding element in Ωn.

Note, one may wonder if Ωn is actually a set at all. Since every n-manifold can be em-
bedded in to R2n by Whitehead’s theorem, one sees that every n-manifold is diffeomorphic
submanifold of R2n. This implies that each manifold is oriented cobordant to a manifold
diffeomorphic to a submanifold of R2n. Therefore the size of Ωn is at most the power set of
R2n and hence must be a set.
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Lemma 1.6. (Exercise). Being oriented cobordant is a reflexive, symmetric and transitive
relation. Also Ωn becomes an abelian group where the group operation is disjoint union.

Also Ω∗ ≡ tn≥0Ωn is a ring with addition equal to disjoint union and multiplication corre-
sponds to the cross product. The identity element is the positively oriented point {?} in Ω0.
Also [Mn

1 ]× [Mm
2 ] = (−1)mn[Mm

2 ]× [Mn
1 ] which means that Ω∗ is a graded commutative

ring.

Definition 1.7. Ω∗ is called the oriented cobordism ring.

Lemma 1.8. (Pontryagin) If M and M ′ are oriented cobordant 4k manifolds then they have
the same Pontryagin numbers.

Proof. Since M t −M ′ is the oriented boundary of a 4k + 1 manifold, we get that all the
Pontryagin numbers of M t−M ′ are trivial. Let pI(M), pI(M ′) be two Pontryagin numbers
where I is a partition of k. Then

0 = pI(M t −M ′) = pI(M) + pI(−M ′) = pI(M)− pI(M ′)

and hence they have the same Pontryagin numbers. �

Corollary 1.9. For any partition I of k, we get a group homomorphism

Ω4k −→ Z, [M ] −→ pI(M).

Corollary 1.10. The products
CPi1 × · · · × CPir

as i1, · · · , ir range over all partitions of k are linearly independent inside the group Ω4k.
Hence Ω4k has rank greater than or equal to p(k) which is the number of partitions of k.

Proof. This follows from the fact (from the previous section) that the p(k)× p(k)-matrix[
pi1 · · · pir [CP2j1 × · · · × CP2js ]

]
where i1, · · · , ir and j1, · · · , js run over all partitions of k.

Hence we get a surjective group homomorphism

Ω4k −→ ZPk , M −→ (pi1 · · · pir [M ])i1,··· ,ir∈Pk

where Pk is the set of partitions of k. �
Here is Ωk for some small k:

• Ω0 = Z since every 0 manifold is a set of signed points.
• Ω1 = 0 since every compact oriented 1-manifold is the boundary of a disjoint union

of disks.
• Ω2 = 0 since every compact oriented 2-manifold is a genus g surface and hence is the

boundary of a 3 manifold with g handles.
• Ω3 = 0. (Rohlin).
• Ω4 = Z and is generated by CP2.
• Ω5 = Z/2 generated by Y 5, a non-singular hypersurface of degree (1, 1) inside RP2 ×
RP4.
• Ω6 = 0
• Ω7 = 0
• Ω8 = Z⊕ Z generated by CP4 and CP2 × CP2

• Ω9 = Z/2⊕Z/2 generated by Y 5×CP2 and Y 9, a non-singular hypersurface of degree
(1, 1) inside RP2 × RP8.
• Ω10 = Z/2 generated by Y 5 × Y 5
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• Ω11 = Z/2 generate by Y 11, a non-singular hypersurface of degree (1, 1) inside RP4×
RP8.


