
Homework 10 Solutions

Due: Thursday December 6th at 10:00am in Physics P-124

Please write your solutions legibly; the TA may disregard solutions that are not readily
readable. All solutions must be stapled (no paper clips) and have your name (first name
first) and HW number in the upper-right corner of the first page.

Problem 1: Suppose X and Y are random variables on some probability space (Ω,F, P )
with joint density

f(X,Y ) : R2 −→ R, f(X,Y ) =

{
3
4

+ xy if (x, y) ∈ (0, 1)2

0 otherwise.

Compute
(a) P (X < Y, Y < 1

2
).

(b) P (X ∈ (0, 1/2) | Y ∈ (1/2, 3/4)).
(c) The density function f(X|Y ∈(0,1/2)) of the random variable (X|Y ∈ (0, 1/2)).

Solution:
(a) P (X < Y, Y < 1

2
) =

∫
{(x,y)∈R2 : x<y, y< 1

2
} f(X,Y ) dm

2 =∫ 1
2

0

∫ y

0

3

4
+ xy dxdy =

∫ 1
2

0

3

4
y +

y3

2
dy =

3

32
+

1

128
=

13

128
.

(b) P (X ∈ (0, 1/2)|Y ∈ (1/2, 3/4)) = P (X∈(1/2),Y ∈(1/2,3/4)
P (Y ∈(1/2,3/4)) . Now

P (Y ∈ (1/2, 3/4)) =

∫ 3/4

1/2

∫ 1

0

3

4
+ xy dxdy =

∫ 3/4

1/2

3

4
+
y

2
dy

=
3

16
+

9

64
− 1

16
=

17

64
.

Also

P (X ∈ (0, 1/2), Y ∈ (1/2, 3/4)) =

∫ 3/4

1/2

∫ 1/2

0

3

4
+ xy dxdy =

∫ 3/4

1/2

3

8
+
y

8
dxdy =

3

32
+

9

256
− 1

64
=

29

256
.

So

P (X ∈ (0, 1/2)|Y ∈ (1/2, 3/4)) =
29/256

17/64
=

29

68
.
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(c) The conditional density function is equal to

f(X|Y ∈(0,1/2)) : R −→ R, f(X|Y ∈(0,1/2))(x) =

∫ 1
2

0
f(X,Y )(x, y) dy

P (Y ∈ (0, 1/2))
.

Now

P (Y ∈ (0, 1/2)) =

∫ 1/2

0

∫ 1

0

3

4
+ xy dxdy =

∫ 1/2

0

3

4
+
y

2
dxdy

=
3

8
+

1

16
=

7

16
.

Also ∫ 1
2

0

f(X,Y )(x, y) dy =

∫ 1
2

0

3

4
+ xy dy =

3 + x

8

if x ∈ (0, 1). This integral is 0 if x /∈ (0, 1). Hence

f(X|Y ∈(0,1/2))(x) =

{
16
7

(
3+x
8

)
if x ∈ (0, 1)

0 otherwise
=

{
6+2x
7

if x ∈ (0, 1)
0 otherwise.

For Problems 2,3,4 below we need the following two definitions.

Definition: Let F be a σ-field and let µ, ν be measures on F. We say that ν is
absolutely continuous with respect to µ if for each N ∈ F satisfying µ(N) = 0, we have
ν(N) = 0. We write ν � µ if ν is absolutely continuous with respect to µ.

Definition: Let F be a σ-field and let ν1 and ν2 on be measures on F. We write
ν1 ⊥ ν2 if there are elements E1, E2 ∈ F satisfying E1 ∩ E2 = ∅ and

νj(E) = νj(E ∩ Ej), ∀ E ∈ F, j = 1, 2.

Problem 2: Let F be a σ-field on a set Ω. Let µ, ν1, ν2 be measures on F. Show that
(a) if ν1, ν2 � µ then ν1 + ν2 � µ,
(b) if ν1, ν2 ⊥ µ then (ν1 + ν2) ⊥ µ
(c) and if ν1 � µ and ν2 ⊥ µ then ν1 ⊥ ν2.

Solution:
(a) Let N ∈ F satisfy µ(N) = 0. Then ν1(N) = ν2(N) = 0 by definition.

Hence

(ν1 + ν2)(N) = ν1(N) + ν2(N) = 0 + 0 = 0.

Therefore ν1 + ν2 � µ.
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(b) Suppose ν1, ν2 ⊥ µ. Then, by definition, there are elementsM1,M2, N1, N2 ∈
F satisfying

M1 ∩N1 = M2 ∩N2 = ∅
and

µ(E) = µ(E ∩M1) = µ(E ∩M2), ∀ E ∈ F

ν1(E) = ν1(E ∩N1), ν2(E) = ν2(E ∩N2), ∀ E ∈ F.

Hence

µ(E) = µ(E ∩M1) = µ(E ∩ (M1 ∩M2)) ∀ E ∈ F.

Also

(ν1 + ν2)(E) = ν1(E) + ν2(E) = ν1(E ∩N1) + ν2(E ∩N2)

≤ ν1(E ∩ (N1 ∪N2)) + ν2(E ∩ (N1 ∪N2))

for each E ∈ F. Since E ∩ (N1 ∪N2) ⊂ E, we get

(ν1 + ν2)(E) ≥ ν1(E ∩ (N1 ∪N2)) + ν2(E ∩ (N1 ∪N2))

and hence

(ν1 + ν2)(E) = ν1(E ∩ (N1 ∪N2)) + ν2(E ∩ (N1 ∪N2))

for each E ∈ F. Finally (M1 ∩M2) ∩ (N1 ∪N2) = ∅. Hence ν1 + ν2 ⊥ µ.
(c) Suppose ν1 � µ and ν2 ⊥ µ. Then, by definition, there exists N,M ∈ F

satisfying N ∩M = ∅ and

ν2(E) = ν2(E ∩N), µ(E) = µ(E ∩M), ∀ E ∈ F.

Since µ(E) = µ(E ∩M), we get that µ(E) = 0 for each E ∈ F satisfying
E ⊂ M c. Hence ν1(E) = 0 for each E ∈ F satisfying E ⊂ M c. Hence
ν1(E) = ν1(E ∩M c) + ν1(E ∩M) = ν1(E ∩M). Since N ∩M = ∅, we get
ν1 ⊥ ν2.

Problem 3: Let M be the set of Lebesgue measurable sets in R and let m be the standard
Lebesgue measure. Define

µ : M −→ [0,∞], µ(E) := m(E) +
∑

n∈Z∩E

2−n.

and
ν : M −→ [0,∞], ν(E) := m(E) +

∑
n∈N∩E

n2

(a) Show that ν � µ.
(b) Show that µ is not absolutely continuous with respect to ν.
(c) Find a measurable function

h : R −→ [0,∞]

so that

ν(E) =

∫
E

h dµ, ∀ E ∈M.
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Solution:
(a) Suppose µ(E) = 0. Then m(E) +

∑
n∈Z∩E 2−n = 0. Hence m(E) = 0 and

Z ∩ E = ∅. Therefore N ∩ E = ∅. Hence

ν(E) = m(E) +
∑

n∈N∩E

= 0 +
∑
n∈∅

n2 = 0.

Hence ν � µ.
(b) Let E = {−1} ∈M. Then

µ(E) = m({−1}) + 2−(−1) = 0 + 2 = 2.

However ν(E) = m(E) = 0. Therefore µ is not absolutely continuous with
respect to ν.

(c) Define

h : R −→ R, h(x) =


n2

2−n if n ∈ N
0 if n ∈ Z− N
1 otherwise.

and

hk : R −→ R, hk(x) =


n2

2−n if n ∈ N, n ≤ k
0 if n ∈ Z, n /∈ [0, k],
1 otherwise.

Then hk is a simple function for each k ∈ N and h = limk→∞ hk.
Let E ∈ M. Then since hk is simple for each k ∈ N, we have by the
monotone convergence theorem∫
E

h dµ = lim
k→∞

∫
E

hk dµ = lim
k→∞

m(E − Z) +
∑

n∈N∩E∩[0,k]

h(n)2−n


= m(E) +

∑
n∈N∩E

n2

2−n
2−n = m(E) +

∑
n∈N∩E

n2 = ν(E).

Hence h = dν
dµ

and so

dν

dµ
=


n2

2−n if n ∈ N
0 if n ∈ Z− N
1 otherwise.

Problem 4: Given an example of measures ν, µ on M satisfying the property ν � µ but
not satisfying

∀ ε > 0, ∃ δ > 0 so that ∀ E ∈ F, µ(E) < δ =⇒ ν(E) < ε.

Solution: Let M ⊂ 2R be the set of Lebesgue measurable sets and let

m : M −→ [0,∞]

be the usual Lebesgue measure. Define

h : R −→ R, h(x) = x2.
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Define

mh : M −→ [0,∞], mh(E) :=

∫
E

h dm.

This is a measure. Also if m(E) = 0, we have mh(E) =
∫
E
h dm = 0 since E is

null and hence mh � m. However, define

En := [n, n+
1

n
].

Then m(En) = l(En) = 1
n
. But

mh(En) =

∫ n+ 1
n

n

x2 dm =

[
x3

3

]n+ 1
n

n

=
1

3

(
(n+

1

n
)3 − n3

)
≥ 1

3
.

Hence for each δ > 0, we have m(En) < δ for each n > 1
δ

and mh(En) ≥ 1
3
.


