Assignment 1: due date February 3rd-5th

Problems 1.1: 1, 4, 5: Verify by substitution that each given function is a solution of the given differential equation.

\[y' = 3x^2; \quad y = x^3 + 7 \]
\[y'' = 9y; \quad y_1 = e^{3x}, \quad y_2 = e^{-3x} \]
\[y' = y + 2e^{-x}; \quad y = e^x - e^{-x} \]

Problem 1.1: 32: Write a differential equation that is a mathematical model of the situation described.

The time rate of a population \(P \) is proportional to the square root of \(P \).

Problem 1.2: 2, 7: Solve the following IVP.

\[\frac{dy}{dx} = (x - 2)^2, \quad y(2) = 1 \]
\[\frac{dy}{dx} = \frac{10}{x^2 + 1}, \quad y(0) = 0 \]

Problems 1.2: 11, 14: Find the position function \(x(t) \) of a moving particle with the given acceleration \(a(t) \), initial position \(x_0 = x(0) \), and initial velocity \(v_0 = v(0) \).

\[a(t) = 50, \quad v_0 = 10, \quad x_0 = 20 \]
\[a(t) = 2t + 1, \quad v_0 = -7, \quad x_0 = 4 \]

Problems 1.2: 25: The brakes of a car are applied when it is moving at 100 \(Km/h \) and provide a constant deceleration of 10 meters per second per second \((m/s^2) \). How far does the car travel before coming to a stop?

Problem 1.2: 27: A ball is thrown straight downward from the top of a tall building. The initial speed of the ball is 10 \(m/s \). It strikes the ground with a speed of 60 \(m/s \). How tall is the building?

Problem 1.2: 37: At noon a car starts from rest at point \(A \) and proceeds at constant acceleration along a straight road toward point \(B \). If the car reaches \(B \) at 12 : 50 PM with a velocity of 60 \(mi/h \), what is the distance from \(A \) to \(B \)?