Practice Final Exam MAT 127 May 10, 2002

Name:	ID #:	Section:

No books, notes, or calculators.

You do not have to simplify numerical answers or write their approximate values: if the answer you got is $\sqrt{2}$, you should not replace it by 1.414. Double-check your answers, and remember to include units in word problems!

The real exam will be much shorter; this is just to give you a lot of practice.

(1) Match each of the differential equations with their direction field below. (No justification required.)

aboundation requirea.)		
(a) $y' = y(y - 1.5)$	(b) $y' = xy$	(c) $y' = -xy$
(d) $y' = \frac{x}{y}$ (e)	$y' = x - y \tag{f}$	y' = (y - 1)(y + 2)
[°] (1)	(2)	(3)
$\begin{array}{c} \cdot \cdot$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-B y -y -y -y -y 1 1 2 3 1 1 1 1 1 1 1 1 - - 1 1 1 - - 1 1 1 - - 1 1 1 - - 1 1 1 - - 1 1 - - - 1 1 - - - 1 1 - - - 1 1 - - - 1 1 - - - 1 1 - - - 1 1 - - -
(4)	(5)	(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{1}{2} \frac{1}{2} 1$
$\begin{array}{c} \langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} \langle \ \langle $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(2) Which of the following functions is a solution to the differential equation

$$y'' - y' = 2e^{-x}?$$

(a) $y = e^{x} + 2e^{-x}$ (b) $y = 2e^{x} + e^{-x}$ (c) $y = 2 + e^{x}$ (d) $y = 2e^{x} + 1$ (3) Solve the initial value problem

$$y' = y^2 \cos x, \quad y(0) = 5.$$

(4) A turkey is removed from the oven at a temperature of 100°C. The surrounding room is at 20°C. After an hour, the turkey is at 60°C. Assuming that the turkey obeys Newton's law of cooling, find the time at which the turkey temperature is 30°C.

(5) A tank contains 1000L of brine with 15kg of dissolved salt. Pure water enters the tank at a rate of 10L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank after 20 minutes?

(6) Determine whether each of the following series is convergent or divergent. Justify each answer and state which test (Integral, Ratio, p-series, Comparison, etc.) you are using.

NOTE: If the series is convergent, you do not need to find its sum.

(a)
$$\sum_{n=1}^{\infty} \cos(n\pi/2)$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

(c)
$$\sum_{n=3}^{\infty} \frac{n}{2n^2 + 3}$$

(d)
$$\sum_{n=1}^{\infty} \cos(e^{-n})$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n3^n}$$

(f)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n^2)}{n}$$

(7) For each of the following power series, find the interval of convergence. Note that this could be a single point, all of ℝ, or an interval of the form (a, b), [a, b], [a, b], or (a, b].

(a)
$$\sum_{n=0}^{\infty} (x-5)^n$$

(b)
$$\sum_{n=0}^{\infty} 3^n x^n$$

(c)
$$\sum_{n=1}^{\infty} n! x^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n \ln n}$$

(8) Compute the Taylor series for each of the following functions f(x) about the given point a.
(a) f(x) = e^x, a = 2

(b)
$$f(x) = \frac{1}{1+x}, \quad a = 0$$

(c)
$$f(x) = \sin(x^3), \quad a = 0$$

(d)
$$f(x) = \frac{1}{(1-x)^3}, \quad a = 0$$

(e)
$$f(x) = (x-1)^3 \ln x$$
, $a = 1$

(9) Find the sum of the series.

(a)
$$1 - \ln 3 + \frac{(\ln 3)^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{(-\ln 3)^n}{n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{(2n)!}$$

(10) Compute the indefinite integral $\int \frac{\sin x}{x}$ as an infinite series, then evaluate $\int_0^1 \frac{\sin x}{x}$ correct to within 3 decimal points.

(11) Use a Taylor series to compute $1/\sqrt{e}$ to within an error of 1/100 (give the answer as a fraction). Is your approximation an overestimate or an underestimate?

- (12) Use Maclaurin series for $\sin x$ and $\cos x$ to approximate the following numbers with ratio of integers,
 - (a) sin 1 up to the 3rd decimal point

(b) $\cos \frac{1}{2}$ correct to within $\frac{1}{100}$

- (13) (a) Find a power series solution to the initial value problem y' = xy, y(0) = 1.
 - (b) Solve the equation explicitly (note that it's separable) to find the solution of the initial value problem.
 - (c) Identify the 2 solutions from (a) and (b), to obtain a power series expansion of the function you found in (b).

(14) Use series to evalute the limits (a) $\lim_{x\to 0} \frac{\sin x}{x}$

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{e^x - 1 - x}$$