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On the spectral theory of a functional-difference
operator in conformal field theory

L. A. Takhtajan and L. D. Faddeev

Abstract. We consider the functional-difference operator H = U +
U−1 + V , where U and V are the Weyl self-adjoint operators satisfying
the relation UV = q2V U , q = eπiτ , τ > 0. The operator H has applica-
tions in the conformal field theory and representation theory of quantum
groups. Using the modular quantum dilogarithm (a q-deformation of the
Euler dilogarithm), we define the scattering solution and Jost solutions,
derive an explicit formula for the resolvent of the self-adjoint operator H
on the Hilbert space L2(R), and prove the eigenfunction expansion theorem.
This theorem is a q-deformation of the well-known Kontorovich–Lebedev
transform in the theory of special functions. We also present a formulation
of the scattering theory for H.
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§ 1. Introduction

Quantum mechanics gave a powerful impetus to the development of the spectral
theory of differential operators. In particular, various spectral problems for the
Schrödinger operator were studied very extensively. The direct and inverse scat-
tering problems for the Schrödinger operator were studied in the classical papers
of Gel’fand, Krein, Levitan, Marchenko and Povzner in the 1950s (see the sur-
veys [1], [2] and references therein). The fundamental role of these papers in the
development of the theory of classical integrable systems is well known.

Since its formulation in the 1980s, two-dimensional conformal field theory [3] stim-
ulated further the development of the representation theory of infinite-dimensional
Lie groups and Lie algebras. One of the fundamental models in conformal field
theory is the quantum Liouville model, whose discrete version was considered by us
more than 30 years ago (see the lecture [4] published in 1986). It is in the explicit
construction of the L-operator in [4] that the quantum group SLq(2,R) was first

The first author’s work was partially supported by NSF grant no. DMS-1005769. The second
author’s work was partially supported by RFBR grants nos. 14-01-00341, 13-01-12405-ofi-m and
by the RAS programme ‘Mathematical Problems of Non-linear Dynamics’.

AMS 2010 Mathematics Subject Classification. 33D05, 34K06, 39A70.

c© 2015 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.



Spectral theory of a functional-difference operator 389

introduced. The matrix trace of the L-operator is a functional-difference operatorH
which plays an important role in the quantization of the Teichmüller space [5], [6]
and representation theory of the non-compact quantum group SLq(2,R) [7]. In
the notation of § 2.1 this operator is of the form H = U + U−1 + V . It acts on the
functions ψ(x) on the real line by the formula

(Hψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′) + e
πix
ω ψ(x).

Here ω and ω′ are pure imaginary with positive imaginary parts, and the func-
tion ψ(x) is assumed to be analytic in the strip | Im z| 6 2|ω′|, z = x+ iy (see § 2.1
and § 4 for precise definitions). The operator H is closely related to the represen-
tation theory of the quantum group SLq(2,R) with q = eπiτ , where τ = ω′/ω > 0
(see [7], [8]).

The eigenvalue problem for H has the form

ψ(x+ 2ω′, λ) + ψ(x− 2ω′, λ) + e
πix
ω ψ(x, λ) = λψ(x, λ) (1.1)

and is a functional-difference analogue of the Schrödinger operator whose poten-
tial decays exponentially as x → −∞ and grows exponentially as x → ∞. The
continuous limit of (1.1) is the equation

−ψ̃′′(x, λ) + e2xψ̃(x, λ) = λψ̃(x, λ) (1.2)

for the modified Bessel functions of ex.
In [6], the eigenfunction expansion theorem for H in the momentum representa-

tion was stated as formal completeness and orthogonality relations in the sense of
distributions. A detailed derivation of these relations using properties of the mod-
ular quantum dilogarithm (see § 2.2) was given in [8]. Nevertheless, the spectral
theory of H as an unbounded self-adjoint operator on the Hilbert space L2(R) has
not been previously considered.

In the present paper we fill this gap and give a complete analytic study of the
functional-difference operator H. Namely, we define the scattering solution and
Jost solutions of (1.1), present an explicit formula for the resolvent of the self-
adjoint operator H on L2(R), and prove the eigenfunction expansion theorem. We
also give a formulation of the scattering theory for H.

We now discuss the content of the paper in more detail. In § 2 we collect all
necessary concepts and notation. Specifically, in § 2.1 we define a Weyl pair U , V
of unbounded self-adjoint operators on L2(R) satisfying the relation UV = q2V U ,
and § 2.2 contains the properties of the modular quantum dilogarithm γ(z), which
is a q-deformation of the Euler dilogarithm and is expressed in terms of the ratio
of the Alekseevskii–Barnes double gamma functions.

In § 3 we investigate the free operator H0, formally given by the expression

(H0ψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′).

Thus, in § 3.1 we define H0 as an unbounded self-adjoint operator on L2(R) with
domain D(H0) and with absolutely continuous spectrum of multiplicity 2 fill-
ing [2,∞). In § 3.2 we use the Fourier transform to give an explicit expression for the
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resolvent R0(λ) of H0 in the form of an integral operator with kernel R0(x− y;λ);
see (3.5). Note that in contrast to the case of the Schrödinger operator, where
the resolvent kernel is obtained by the method of variation of parameters using the
simple formula θ′(x) = δ(x) (θ(x) is the Heaviside function), the main equation

R0(x+ 2ω′;λ) +R0(x− 2ω′;λ)− λR0(x;λ) = δ(x)

for the resolvent of H0 holds because of the Sokhotski–Plemelj formula

1
2πi

(
1

x− i0
− 1
x+ i0

)
= δ(x)

from the theory of distributions.
In § 4 we study the operator H. Following [6], we consider the Fourier transform

of (1.1) (this is the functional-difference equation (4.2) of the first order) and its spe-
cial solution ϕ̂(p, k) in § 4.1. This solution is expressed in terms of the modular quan-
tum dilogarithm using the convenient parametrization λ = 2 cosh

(
πik
ω

)
. In § 4.2 we

define a solution ϕ(x, k) of (1.1) as the inverse Fourier transform of ϕ̂(p, k). The
necessary properties of ϕ(x, k) are collected in Lemma 4.1. They show that ϕ(x, k)
plays the role of the scattering solution of (1.1). In particular, for real x and k
the solution ϕ(x, k) decays exponentially as x → +∞ and oscillates as x → −∞.
Moreover, ϕ(x, k) is an entire function of x and analytically continues to the strip
0 < Im k 6 |ω|, which corresponds to the values λ ∈ C\[2,∞). In § 4.3 we introduce
the Jost solutions f±(x, k) of (1.1) as the solutions with the following asymptotic
behaviour for real k:

f±(x, k) = e±2πikx + o(1) as x→ −∞.

We note that unlike the differential equation (1.2), which has two linearly
independent solutions, the functional-difference equation (1.1) has an infinite-
dimensional space of solutions since one can multiply a solution by a quasi-constant,
a holomorphic 2ω′-periodic function of x. Therefore determining the Jost solutions
is a non-trivial problem. Using the analogy between (1.1) and (1.2) along with
the properties of the solutions of (1.2) collected in § 6, we define the Jost solu-
tions f±(x, k) by the integral representation (4.12). The properties of the solutions
f±(x, k) are contained in Lemma 4.2. In particular, they admit analytic continua-
tion to the strip 0 < Im k 6 |ω|, and

ϕ(x, k) = M(k)f+(x, k) +M(−k)f−(x, k),

where the function M(k) is analytic in the strip 0 6 Im k 6 |ω| and is explicitly
expressed in terms of the modular quantum dilogarithm (see Lemma 4.1).

The analytic properties of the solutions ϕ(x, k) and f±(x, k) are used in § 5.1 to
show that the resolvent Rλ(H) = (H − λI)−1 of H is defined for λ /∈ [2,∞) and is
a bounded integral operator on L2(R) whose integral kernel R(x, y;λ) is given by
the explicit formula (5.1) (see Proposition 5.1). In § 5.2 we prove the eigenfunction
expansion theorem for scattering solutions of H. Namely, computing the jump of
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the resolvent across the continuous spectrum, we prove (see Theorem 5.1) that the
operator

(U ψ)(k) =
∫ +∞

−∞
ψ(x)ϕ(x, k) dx

is an isometric isomorphism between the Hilbert spaces L2(R) and H0 =
L2([0,∞), ρ(k)dk), where

ρ(k) =
1

M(k)M(−k)
= 4 sinh

(
πik

ω

)
sinh

(
πik

ω′

)
is the spectral function of H. Moreover, U HU −1 is the operator of multiplication
by λ = 2 cosh

(
πik
ω

)
on H0. Hence H has a simple absolutely continuous spectrum

filling [2,∞).
Comparison of the equations (1.1) and (1.2) shows that the eigenfunction expan-

sion for H is a q-analogue of the well-known Kontorovich–Lebedev transform in
the theory of Bessel functions (see Remark 5.4). In § 5.3 we give a formulation
of the scattering theory for H and show that the scattering operator is the opera-
tor of multiplication by the function

S(k) =
M(−k)
M(k)

.

The appendix (§ 6) contains known properties of the solutions of (1.2).
The first author is grateful to A. M. Polyakov for interesting discussions.

§ 2. Basic concepts and notation

2.1. Weyl’s operators. Let L2(R) be the Hilbert space of functions that are
square integrable over the real axis with respect to the Lebesgue measure. The
Weyl operators in quantum mechanics are the following unitary operators U(u)
and V (v) on L2(R), where u, v ∈ R:

(U(u)ψ)(x) = ψ(x− u), (V (v)ψ)(x) = e−ivxψ(x), ψ ∈ L2(R)

(see, for example, [9], Ch. 2, where Planck’s constant ~ is chosen to be 1). The
operators U(u) and V (v) satisfy Weyl’s commutation relations

U(u)V (v) = eiuvV (v)U(u).

In the representation theory of the quantum group SLq(2,R) it is necessary to
use complex u and v. Then the Weyl operators U(u) and V (v) become unbounded
self-adjoint operators on L2(R). Namely, using the classical Weierstrass notation,
we write 2ω, 2ω′ for the generators of a lattice in C such that Im τ > 0, where
τ = ω′

ω , and put q = eπiτ . The key role in the representation theory of SLq(2,R)
is played by operators U and V which are formally defined by

(Uψ)(x) = ψ(x+ 2ω′), (V ψ)(x) = e
πix
ω ψ(x) (2.1)
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and satisfy the relation
UV = q2V U (2.2)

on the common domain of U and V . Especially interesting is the representation
theory of real forms of SLq(2,R) that correspond to the cases q ∈ R and |q| = 1.
In the first case we have ω′ ∈ iR, ω ∈ R and 0 < q < 1, which corresponds to
a rectangular period lattice. In the second case the half-periods ω, ω′ are pure
imaginary and the theory of elliptic functions is inapplicable.

It is the latter case that arises in applications to conformal field theory. We
shall consider the Weyl pair U , V with |q| = 1. This corresponds to the case when
the half-periods ω and ω′ are pure imaginary with positive imaginary parts. It is
convenient to use the normalization

ωω′ = −1
4
, (2.3)

which is assumed to hold throughout the paper. In papers on quantum Liouville
theory it is customary to use the parametrization ω = i

2b , ω
′ = ib

2 (where τ = b2

and b > 0) as is done in [10].
The operators U and V defined by (2.1) are unbounded self-adjoint operators

on L2(R). This follows from von Neumann’s general spectral theorem since they are
real-valued functions of the self-adjoint operators P and Q in quantum mechanics:
U = e2iω′P and V = e

πiQ
ω , where P = −i d

dx and Q is the operator of multiplication
by the independent variable x.

The Weyl operators U and V can also be defined directly. Namely, U is a self-
adjoint operator on L2(R) with domain

D(U) =
{
ψ(x) ∈ L2(R) : e−

πip
ω ψ̂(p) ∈ L2(R)

}
,

where

ψ̂(p) = F (ψ)(p) =
∫ +∞

−∞
ψ(x)e−2πipx dx

is the Fourier transform1 on L2(R). Equivalently, D(U) consists of those functions
ψ(x) which admit analytic continuation to the strip {z = x+ iy ∈ C : 0<y< 2|ω′|}
such that ψ(x+ iy) ∈ L2(R) for all 0 6 y < 2|ω′| and there is a limit

ψ(x+ 2ω′ − i0) = lim
ε→0+

ψ(x+ 2ω′ − iε)

in the sense of convergence in L2(R). We have (Uψ)(x) = ψ(x + 2ω′ − i0) for
ψ ∈ D(U). The domain D(U−1) of the inverse operator U−1 is defined in a similar
way and (U−1ψ)(x) = ψ(x − 2ω′ + i0). The domain D(V ) of the self-adjoint
operator V consists of functions ψ(x) ∈ L2(R) such that e

iπx
ω ψ(x) ∈ L2(R). Thus

we have
U−1 = F−1VF ,

where the inverse Fourier transform is given by

ψ(x) =
∫ +∞

−∞
ψ̂(p)e2πipx dp.

1We use the normalization of the Fourier transform adopted in analytic number theory.
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Remark 2.1. An important role in representation theory is played by the modular
double of SLq(2,R) introduced in [11]. Its principal series representations are real-
ized in L2(R) and use the dual Weyl operators Ǔ and V̌ along with U and V . They
satisfy the relation dual to (2.2):

Ǔ V̌ = q̌2V̌ Ǔ , q̌ = eπi/τ

and are given by the formulae

(Ǔψ)(x) = ψ(x+ 2ω), (V̌ ψ)(x) = e
πix
ω′ ψ(x),

which are obtained from (2.1) by interchanging the half-periods ω and ω′.

2.2. The modular quantum dilogarithm. We put

γ(z) = exp
{
−1

4

∫ +∞

−∞

eitz

sin(ωt) sin(ω′t)
dt

t

}
, (2.4)

where | Im z| < |ω|+ |ω′| and the contour of integration passes above the singularity
at t = 0. The function γ(z) plays a fundamental role in the definition of the
modular double of SLq(2,R) given by the second author in [11]. It was later called
the modular quantum logarithm. Here the adjective ‘modular’ accounts for the
invariance of γ(z) under the interchange of ω and ω′, that is, of τ and 1/τ . The
words ‘quantum dilogarithm’ refer to the asymptotics of γ(z) as τ = b2 → 0, which
is easily obtained for real z from the representation (2.4):

γ

(
z

b

)
= exp

{
1

2πτ
Li2(−e−2πz) +O(1)

}
as τ → 0,

where

Li2(z) =
∞∑

n=1

zn

n2

is the Euler dilogarithm.

Remark 2.2. The function γ(z) has an interesting history. It appears in number
theory under the name of double sine [12], [13] and in the theory of quantum inte-
grable systems of Calogero–Moser type under the name of hyperbolic gamma func-
tion [14]. It also plays the role of S-matrix in the quantum non-linear σ-model [15]
and occurs in form-factors for the quantum sine-Gordon model [16]. The function
γ(z) is expressed in terms of the ratio of the second-order gamma functions, which
were introduced by Barnes [17] in 1899 and earlier investigated in Alekseevskii’s
thesis [18] in 1889.

We shall use the following remarkable properties of the modular quantum dilog-
arithm (see [6], [19]).

Proposition 2.1. 1) The function γ(z) admits a meromorphic continuation to
the whole complex z-plane with poles at z = −(2m + 1)ω − (2n + 1)ω′ for integer
m,n > 0. Moreover,

γ(z − ω′′) =
c

z
+O(1), z → 0,
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where ω′′ = ω + ω′ and

c =
ei( π

4−β)

2π
, β =

π

12

(
τ +

1
τ

)
.

2) The function γ(z) satisfies the difference equations

γ(z + ω) = (1 + e−
πiz
ω′ )γ(z − ω), γ(z + ω′) = (1 + e−

πiz
ω )γ(z − ω′).

3) The following reflection formula holds :

γ(z)γ(−z) = eiβ+iπz2
.

Hence γ(z) has zeros at z = (2m+ 1)ω + (2n+ 1)ω′ for integer m,n > 0.
4) The following reality property holds :

γ(z) =
1

γ(z̄)
.

5) The function γ(z) has the following asymptotics as z → ∞ with | arg z| <
π
2 − δ:

γ(z) = 1 + o(1)

uniformly in z for every δ, 0 < δ < π
2 .

§ 3. The operator H0

Here we consider the free operator H0 = U + U−1. Formally, it acts on the
functions ψ(x) on the real line by the formula

(H0ψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′), (3.1)

where ψ(x) is assumed to be analytic in the strip | Im z| 6 2|ω′|, z = x+iy. Clearly,
the operator b−2(H0 − 2I) turns into − d2

dx2 as 2ω′ = ib→ 0.

3.1. The domain. The formula (3.1) determines an unbounded self-adjoint oper-
ator H0 on L2(R). Its domain D(H0) consists of those functions ψ(x) which admit
an analytic continuation to the strip {z = x + iy ∈ C : |y| < 2|ω′|} such that
ψ(x+ iy) ∈ L2(R) for all y, |y| < 2|ω′|, and the limits

ψ(x+ 2ω′− i0) = lim
ε→0+

ψ(x+ 2ω′− iε), ψ(x− 2ω′ + i0) = lim
ε→0+

ψ(x− 2ω′ + iε)

exist in the sense of convergence in L2(R). For ψ ∈ D(H0), the formula (3.1) is
understood as (H0ψ)(x) = ψ(x+ 2ω′ − i0) + ψ(x− 2ω′ + i0).

In the momentum representation, the operator Ĥ0 = FH0F−1 is the operator
of multiplication by the function 2 cosh

(
πip
ω

)
and is naturally self-adjoint. Thus

D(H0) can equivalently be defined as

D(H0) =
{
ψ(x) ∈ L2(R) :

∫ +∞

−∞
cosh2

(
πip

ω

)
|ψ̂(p)|2 dp <∞

}
.

This is a hyperbolic analogue of the Sobolev space W 2,2(R).
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3.2. The resolvent of H0. In the momentum representation, the operator

R0(λ) = (H0 − λI)−1

is the operator of multiplication by (2 cosh
(

πip
ω

)
− λ)−1. It is a bounded operator

on L2(R) for λ ∈ C \ [2,∞). Since the function 2 cosh
(

πip
ω

)
is a two-to-one map

of the real axis −∞ < p < +∞ onto [2,∞), the spectrum of H0 is absolutely
continuous and fills the semi-infinite interval [2,∞) with multiplicity 2.

In the coordinate representation, the operator R0(λ) for λ ∈ C \ [2,∞) is an
integral operator on L2(R) with kernel depending on the difference of the arguments:

(R0(λ)ψ)(x) =
∫ +∞

−∞
R0(x− y;λ)ψ(y) dy, (3.2)

where

R0(x;λ) =
∫ +∞

−∞

e2πipx

2 cosh
(

πip
ω

)
− λ

dp. (3.3)

In what follows we use the convenient parametrization

λ = 2 cosh
(
πik

ω

)
, (3.4)

mapping the resolvent set C\[2,∞) onto the physical sheet (the strip 0 < Im k 6 |ω|)
and covering the continuous spectrum [2,∞) twice by the real axis −∞ < k < +∞.
In the parametrization (3.4) we easily calculate the integral (3.3) using the residue
theorem and obtain

R0(x;λ) =
ω

sinh
(

πik
ω

)(
e−2πikx

1− e−4πiωx
+

e2πikx

1− e4πiωx

)
. (3.5)

Note that the function R0(x;λ) is regular at x = 0. We immediately conclude
from (3.5) that the following estimate holds for 0 < Im k 6 |ω|:

|R0(x;λ)| 6 Ce−2π Im k|x|,

where C > 0 is a constant.2 Hence the formulae (3.2) and (3.5) indeed determine
a bounded operator on L2(R) for λ /∈ [2,∞).

The eigenvalue equation

ψ(x+ 2ω′, k) + ψ(x− 2ω′, k) = 2 cosh
(
πik

ω

)
ψ(x, k) (3.6)

has solutions f−(x, k) = e−2πikx and f+(x, k) = e2πikx, which are analogues of the
Jost solutions in the theory of one-dimensional Schrödinger operators. In terms of
the Jost solutions, (3.5) takes the form

R0(x− y;λ) =
2ω

C(f−, f+)(k)

(
f−(x, k)f+(y, k)

1− e
πi
ω′ (x−y)

+
f−(y, k)f+(x, k)

1− e−
πi
ω′ (x−y)

)
, (3.7)

2Here and in what follows we denote different constants by C.
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where
C(f, g)(x, k) = f(x+ 2ω′, k)g(x, k)− f(x, k)g(x+ 2ω′, k)

is the so-called Casorati determinant (a difference analogue of the Wronskian) of
the solutions of the functional-difference equation (3.6). It is a 2ω′-periodic function
of x. For the Jost solutions, C(f−, f+)(x, k) = 2 sinh

(
πik
ω

)
.

Remark 3.1. Using formula (3.7), one can check directly that the integral opera-
tor (3.2) is inverse to H − λI for λ ∈ C \ [2,∞). Indeed, for smooth compactly
supported functions g(x) we easily see that

h(x) =
∫ +∞

−∞
R0(x− y;λ)g(y) dy ∈ D(H0)

and (H0 − λI)h = g. The last assertion reduces to verifying that

R0(x+ 2ω′ − y − i0;λ) +R0(x− 2ω′ − y + i0;λ)− λR0(x− y;λ) = δ(x− y) (3.8)

in the sense of distributions. Since the functions f±(x, k) satisfy (3.6), the distri-
bution on the left-hand side of (3.8) is supported only at x = y, and its singular
part coincides with the singular part of the distribution

− 2ωω′

πiC(f−, f+)(k)

(
f−(x+ 2ω′, k)f+(y, k)− f−(y, k)f+(x+ 2ω′, k)

x− y − i0

+
f−(x− 2ω′, k)f+(y, k)− f−(y, k)f+(x− 2ω′, k)

x− y + i0

)
in the neighbourhood of x = y. This singular part is equal to

−2ωω′

πi

(
1

x− y − i0
− 1
x− y + i0

)
= δ(x− y),

where we have used the definition of the Casorati determinant, the normalization
(2.3) and the Sokhotski–Plemelj formula.

Remark 3.2. It is instructive to compare the formula (3.7) for the resolvent of H0

with that for the one-dimensional Schrödinger operator. The latter formula (see,
for example, [2], Ch. 1, § 1 and [9], Ch. 3) is

G(x, y;λ) =
1

W (k)
(
f−(x, k)f+(y, k)θ(y − x) + f−(y, k)f+(x, k)θ(x− y)

)
, (3.9)

where λ = k2, f−(x, k) and f+(x, k) are the Jost solutions normalized at −∞
and +∞ respectively, and W (k) is their Wronskian. A key role in the process of
verification of the analogue of (3.8) is played by the formula θ′(x) = δ(x), where
θ(x) is the Heaviside function, θ(x) = 1 when x > 0 and θ(x) = 0 when x < 0.
The formula (3.7) has a remarkable similarity to (3.9) with θ(x) replaced by the
smoothed analogue

θω′(x) =
1

1− e−
πix
ω′
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of the Heaviside function. The analogue of the formula θ′(x) = δ(x) is

θω′(x+ 2ω′ − i0)− θω′(x+ 2ω′ + i0) = 2ω′δ(x),

which is equivalent to the Sokhotski–Plemelj formula.

Remark 3.3. Polyakov noted that if we identify x with the energy ε, and πi
ω′ = 2π

b

with the inverse temperature 1
kT , then the function θω′(x) coincides with the

one-particle partition function Z = (1− e−
ε

kT )−1 in Bose–Einstein statistics.

§ 4. The operator H

The operator H = H0 +V is given by the formal functional-difference expression

(Hψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′) + e
πix
ω ψ(x)

on D(H0) ∩D(V ). In particular, H is defined and symmetric on the domain D ⊂
D(H0)∩D(V ) consisting of linear combinations of the functions p(x)e−x2+cx, where
p(x) is a polynomial and c ∈ C. The domain D is dense in L2(R) and invariant
under H. We shall prove that H is essentially self-adjoint on D , and its unique self-
adjoint extension, still denoted by H, has a simple absolutely continuous spectrum
filling [2,∞). As in the case of the free operatorH0, we use the parametrization (3.4)
and pose the following problem for generalized eigenfunctions of H:

ψ(x+ 2ω′, k) + ψ(x− 2ω′, k) + e
πix
ω ψ(x, k) = 2 cosh

(
πik

ω

)
ψ(x, k). (4.1)

4.1. The momentum representation and the Kashaev wave function.
In the momentum representation, the eigenfunction problem for H is the first-
order functional-difference equation

ψ̂(p+ 2ω′, k) = 2
(

cosh
(
πik

ω

)
− cosh

(
πip

ω

))
ψ̂(p, k), p ∈ R, (4.2)

where ψ̂ = F (ψ). Remarkably, the general solution of (4.2) (up to multiplication
by a quasi-constant) is explicitly expressible in terms of the modular quantum
dilogarithm:

ψ̂(p, k) = c(k)e−πi(p−ω′′)2γ(p+ k − ω′′)γ(p− k − ω′′), 0 6 Im k 6 |ω|, (4.3)

where c(k) is a constant to be chosen later. For real k, the product of γ-functions
is singular at p = ±k and is understood as the distribution γ(p + k − ω′′ + i0) ×
γ(p− k − ω′′ + i0).

The fundamental role of the generalized solution (4.3) of (4.2) was revealed in [6].
We call this solution the Kashaev wave function. The distribution ψ̂(p, k) has the
following asymptotics:

ψ̂(p, k) =

{
c(k)e−πi(p−ω′′)2(1 + o(1)) as p→ +∞,

c(k)eπi(p−ω′′)2+2iβ+2πik2
(1 + o(1)) as p→ −∞,

(4.4)
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and decays exponentially for large p :

|ψ̂(p, k)| = |c(k)| exp
{
−2π|p| |ω′′|

}
(1 + o(1)) as |p| → ∞. (4.5)

Putting
c(k) = e−iβ−πik2

(4.6)

in (4.3) and denoting the corresponding solution by ϕ̂(x, k), we obtain an important
property,

ϕ̂(p, k) = ϕ̂(−p,−k̄). (4.7)

Moreover, the definition of ϕ̂(p, k) shows that ϕ̂(p,−k) = ϕ̂(p, k) for real k.

4.2. The scattering solution. For real x and k we put

ϕ(x, k) =
∫ +∞

−∞
ϕ̂(p, k)e2πipx dp, (4.8)

where ϕ̂(p, k) is given by (4.3) and (4.6), and the contour of integration passes above
the singularities at p = ±k. Comparing (4.8) with formula (6.3) in the appendix, we
see that ϕ(x, k) plays the role of a q-deformed modified Bessel functionK2πik(ex). It
follows from the asymptotic formulae (4.4) that the Kashaev wave function decays
exponentially as |Re p| → ∞ along the lines Im p = σ < |ω′′|. Therefore,

ϕ(x, k) =
∫ +∞+iσ

−∞+iσ

ϕ̂(p, k)e2πipx dp. (4.9)

The formula (4.9) determines the function ϕ(x, k) for real x and k in the physical
strip 0 < Im k 6 |ω|, where |ω| < σ < |ω′′|.

The analytic properties of the function ϕ(x, k) are described in the following
lemma.

Lemma 4.1. (i) The function ϕ(x, k) has the following asymptotic behaviour for
real x and k:

ϕ(x, k) = M(k)e2πikx +M(−k)e−2πikx + o(1) as x→ −∞,

where
M(k) = ei(β+ π

4 )−2πik(k−ω′′)γ(2k − ω′′).

We have M(k) = M(−k) and

1
|M(k)|2

= 4 sinh
(
πik

ω

)
sinh

(
πik

ω′

)
.

(ii) For real x, the function ϕ(x, k) admits analytic continuation to the physical
strip 0 < Im k 6 |ω| and satisfies the reality condition

ϕ(x, k) = ϕ(x,−k̄).

For real x and k, ϕ(x, k) is an even real-valued function of k.
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(iii) For every fixed k in the physical strip, the function ϕ(x, k) extends to an
entire function of the complex variable x and satisfies the equation

ϕ(x+ 2ω′, k) + ϕ(x− 2ω′, k) + e
πix
ω ϕ(x, k) = 2 cosh

(
πik

ω

)
ϕ(x, k).

(iv) The following estimates hold :

|ϕ(x, k)| 6 Ce−2πκx

uniformly in −∞ < x 6 a, where 0 6 κ = Imk 6 |ω|, and

|ϕ(x, k)| 6 Ce−2π(|ω|+|ω′|)x, |ϕ(x± 2ω′, k)| 6 Ce2π(|ω′|−|ω|)x

uniformly in a 6 x <∞.

Proof. Shifting the contour of integration in (4.8) to the lower half-plane for nega-
tive x and passing through the poles of the integrand at p = −k and p = k, we get
the first formula in (i). The formulae for the coefficient M(k) are obtained from
parts 1)–4) of Proposition 2.1. Part (ii) follows directly from Proposition 2.1 and
property (4.7). In particular, M(k) = M(−k̄).

To prove (iii), we deform the contour of integration in (4.9) to a contour L by
replacing the semi-infinite intervals −∞ < Re p 6 −|Re k| − 1 and |Re k| + 1 6
Re p <∞ on the line Im p = σ by the rays p = −|Re k|−1+iσ+e

πi
4 t, −∞ < t 6 0,

and p = |Re k|+1+ iσ+e−
πi
4 t, 0 6 t <∞ (Fig. 1 shows the contour L for real k).

Figure 1

Thus,

ϕ(x, k) =
∫

L

ϕ̂(p, k)e2πipx dp, (4.10)

and it follows from Proposition 2.1 that the integrand in (4.10) decays along L at
the rate of e−πt2 as t → ±∞. Hence the formula (4.10) determines ϕ(x, k) as an
entire function of x. The difference equation for ϕ(x, k) is obtained from (4.2) using
the Fourier transform.

Finally, (iv) follows in the standard way from the integral representation (4.10)
using the asymptotic behaviour of γ(z) in Proposition 2.1 and the method of steep-
est descent. �

Remark 4.1. The function ϕ(x, k) is invariant under the interchange of ω and
ω′ and satisfies the dual equation Ȟϕ = λ̌ϕ, where Ȟ = Ǔ + Ǔ−1 + V̌ (see
Remark 2.1) and λ̌ = 2 cosh

(
πik
ω′

)
.
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4.3. Jost solutions. Since equation (4.1) takes the free form (3.6) as x → −∞,
it is natural to assume that it has Jost solutions, that is, solutions f±(x, k) with
the asymptotic behaviour

f±(x, k) = e±2πikx + o(1) as x→ −∞. (4.11)

Here we prove the existence of such solutions. We first compare equation
(4.1) with equation (1.2). Comparison of the formulae (6.3) and (6.4) in the
appendix with formula (4.10) suggests considering the solution of (4.2) obtained by
multiplying ϕ̂(p, k) by the quasi-constant sinh

(
πip
ω′

)
+ sinh

(
πik
ω′

)
. Thus, for real x

and k we put

f(x, k) =
1

2 sinh
(

πik
ω′

)
M(k)

∫
L

ϕ̂(p, k)
(

sinh
(
πip

ω′

)
+ sinh

(
πik

ω′

))
e2πipx dp. (4.12)

The following lemma shows that the functions f+(x, k) = f(x, k) and f−(x, k) =
f(x,−k) indeed play the role of Jost solutions of (4.1).

Lemma 4.2. (i) For real x and k, the functions f±(x, k) have the following asymp-
totics as x→ −∞:

f±(x, k) = e±2πikx + o(1).

(ii) For real x, the functions f±(x, k) admit analytic continuation to the physical
strip 0 < Im k 6 |ω| and satisfy

f±(x, k) = f±(x,−k̄).

(iii) For every fixed k in the physical strip, the functions f±(x, k) are entire
functions of x and satisfy (4.1). The asymptotic formulae in part (i) remain valid
in the strip 0 6 Imx 6 2|ω′|.

(iv) We have
ϕ(x, k) = M(k)f+(x, k) +M(−k)f−(x, k).

(v) The following estimates hold :

|f±(x, k)| 6 Ce∓2πκx

uniformly in −∞ < x 6 a, where 0 6 κ = Im k 6 |ω|, and

|f±(x, k)| 6 Ce2π(|ω|−|ω′|)x, |f±(x+ 2ω′, k)| 6 Ce2π(|ω|+|ω′|)x

uniformly in a 6 x <∞.

Proof. To prove (i), it suffices to shift the contour of integration in (4.12) to the
lower half-plane for negative x and use the regularity of the integrand at p = −k
(because of multiplication by the quasi-constant sinh

(
πip
ω′

)
+ sinh

(
πik
ω′

)
). Parts

(ii)–(iv) follow immediately from the representation (4.12) written in the form

f(x, k) =
1

4 sinh
(

πik
ω′

)
M(k)

(
ϕ(x− 2ω, k)− ϕ(x+ 2ω, k) + 2 sinh

(
πik

ω′

)
ϕ(x, k)

)
(4.13)

and similar properties of the function ϕ(x, k) in Lemma 4.1. Since the potential
e

πix
ω in (4.1) has period 2ω, the functions ϕ(x± 2ω, k) also satisfy (4.1). The proof

of (v) is standard and uses the integral representation (4.12). �
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Remark 4.2. The formula (4.13) is a difference analogue of (6.7). The function
f(x, k) is not invariant under the interchange ω and ω′ and, therefore, does not
satisfy the dual eigenvalue equation (compare with Remark 4.1).

Remark 4.3. In the case when Im τ > 0, the Jost solutions f±(x, k) can be defined
using power series in e

πix
ω . These series converge absolutely for all x ∈ R. In our

case when τ = b2 > 0, we encounter the problem of small denominators and the
corresponding series are no longer absolutely convergent for all x. This is why we
are using the integral representation (4.12).

4.4. The Casorati determinant. As in § 3.2, a direct verification shows that
the Casorati determinant

C(f, g)(x, k) = f(x+ 2ω′, k)g(x, k)− f(x, k)g(x+ 2ω′, k)

of two solutions of (4.1) is a 2ω′-periodic function of x. The Casorati determinant
need not in general be a constant, unlike its continuous analogue (the Wronskian).
Nevertheless, the following assertion holds.

Lemma 4.3. We have

C(f−, f+)(x, k) = 2 sinh
(
πik

ω

)
.

Proof. Put F (x) = C(f−, f+)(x, k). It follows from parts (i) and (iii) of Lemma 4.2
that the following asymptotics as x→ −∞ holds in the strip 0 6 Imx 6 2|ω′|:

F (x) = 2 sinh
(
πik

ω

)
+ o(1).

When x→∞, using the formula

F (x) = 2 sinh
(
πik

ω′

)
C(f−, ϕ)(x, k)

and the bounds in Lemma 4.1(iv) and Lemma 4.2(v), we obtain that the func-
tion F (x) is bounded on the lines Imx = 0 and Imx = 2|ω′|. Furthermore, it
follows from the integral representation (4.12) that F (x) has at most exponential
growth as x → ∞. Using the Phragmén–Lindelöf theorem, we conclude that the
2ω′-periodic function F (x) is bounded in the strip 0 6 Imx 6 2|ω′|. Therefore,
F (x) = 2 sinh

(
πik
ω

)
. �

§ 5. The eigenfunction expansion theorem

5.1. The resolvent of H. Consider an integral operator R(λ) on L2(R) with
integral kernel

R(x, y;λ) =
ω

sinh
(

πik
ω

)
M(k)

(
f−(x, k)ϕ(y, k)

1− e
πi
ω′ (x−y)

+
f−(y, k)ϕ(x, k)

1− e−
πi
ω′ (x−y)

)
, (5.1)

so that
R(y, x;λ) = R(x, y;λ), R(x, y;λ) = R(x, y; λ̄).
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Proposition 5.1. The operator R(λ), λ ∈ C \ [2,∞), is the resolvent of H . In
other words, R(λ) = (H − λI)−1.

Proof. As in the case of H0 (see Remark 3.1), we claim that for every smooth
compactly supported function g(x) we have

h(x) =
∫ +∞

−∞
R(x, y;λ)g(y) dy ∈ D(H)

and (H − λI)h = g. Indeed, it suffices to verify that

R(x+ 2ω′− i0, y;λ) +R(x− 2ω′ + i0, y;λ) + (e
πix
ω −λ)R(x, y;λ) = δ(x− y) (5.2)

in the sense of distributions. As in Remark 3.1, since ϕ(x, k) and f−(x, k) satisfy
equation (4.1), we see that the distribution on the left-hand side of (5.2) is supported
only at x = y, and its singular part coincides with the singular part of the function

− 2ωω′

2π sinh
(

πik
ω

)
M(k)

(
f−(x+ 2ω′, k)ϕ(y, k)− f−(y, k)ϕ(x+ 2ω′, k)

x− y − i0

+
f−(x− 2ω′, k)ϕ(y, k)− f−(y, k)ϕ(x− 2ω′, k)

x− y + i0

)
in a neighbourhood of x = y. Arguing as in Remark 3.1, we deduce (5.2) from the
formula

C(f−, ϕ)(x, k) = 2 sinh
(
πik

ω

)
M(k),

which in turn follows from Lemma 4.3 and the Sokhotski–Plemelj formula.
It remains to show that the kernel (5.1) determines a bounded operator on L2(R)

for λ ∈ C \ [2,∞). This follows immediately from the bound

|R(x, y;λ)| 6 Ce−2πκ|x−y|, κ = Im k,

which is a consequence of the bounds in Lemmas 4.1, 4.2. Indeed, since R(x, y;λ) =
R(y, x;λ), we may assume that y 6 x. Rewrite (5.1) in the form

R(x, y;λ) =
ω(f−(x, k)ϕ(y, k)e2πiω(x−y) − f−(y, k)ϕ(x, k)e−2πiω(x−y))

2 sinh(2πiω(x− y)) sinh
(

πik
ω

)
M(k)

and consider first the case when 0 6 y6x. Using Lemma 4.1(iv) and Lemma 4.2(v),
we get

|R(x, y;λ)| 6 Ce−2π|ω|(x−y)(e2π(|ω|−|ω′|)xe−2π(|ω|+|ω′|)ye−2π|ω|(x−y)

+ e−2π(|ω|+|ω′|)xe−2πκye2π|ω|(x−y)) 6 2Ce−2π|ω|(x−y).

In the case y < 0 6 x we have

|R(x, y;λ)| 6 Ce−2π|ω|(x−y)(e2π(|ω|−|ω′|)xe−2πκye−2π|ω|(x−y)

+ e−2π(|ω|+|ω′|)xe2πκye2π|ω|(x−y))

6 C(e2π(|ω|−κ)ye−2π|ω|(x−y) + e−2π|ω|xe2πκy) 6 2Ce−2πκ(x−y).
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Finally, in the remaining case y 6 x < 0 we have

|R(x, y;λ)| 6 Ce−2π|ω|(x−y)(e2πκxe−2πκye−2π|ω|(x−y)

+ e−2πκxe2πκye2π|ω|(x−y)) 6 2Ce−2πκ(x−y). �

Remark 5.1. Formula (5.1) can also be used as the definition of the operator H.

5.2. The eigenfunction expansion. The explicit formula (5.1) for the resolvent
R(λ) leads immediately to the eigenfunction expansion theorem for H. Namely, let
E(∆) be the resolution of the identity for the self-adjoint operator H, where ∆
ranges over all Borel subsets of R (see [21], [22]). When there is no point spectrum,
we have the formula

E(∆) = lim
ε→0+

1
2πi

∫
∆

(R(λ+ iε)−R(λ− iε)) dλ

(see [22], Ch. XII), which is sometimes referred to as Stone’s formula. In particular,
putting ∆ = [2,∞), we get the formula

I = lim
ε→0+

1
2πi

∫ +∞

2

(R(λ+ iε)−R(λ− iε)) dλ (5.3)

for the operator H. It is this formula that serves as a basis for the derivation of
the eigenfunction expansion theorem.

Theorem 5.1. (i) Define an operator U by the formula

(U ψ)(k) =
∫ +∞

−∞
ψ(x)ϕ(x, k) dx, ψ(x) ∈ L2(R).

Then U maps L2(R) isometrically onto the Hilbert space H0 = L2([0,∞), ρ(k)dk)
with the spectral function

ρ(k) =
1

|M(k)|2
= 4 sinh

(
πik

ω

)
sinh

(
πik

ω′

)
.

In other words, U : L2(R) → H0 and we have U ∗U = I , U U ∗ = I0, where I0 is
the identity operator on H0.

(ii) The operator U HU −1 is the operator of multiplication by the function
2 cosh

(
πik
ω

)
on H0. Hence H has a simple absolutely continuous spectrum fill-

ing [2,∞).

Proof. We claim that the following identity holds for all functions ψ(x) ∈ D :

ψ(x) =
∫ +∞

0

(∫ +∞

−∞
ψ(y)ϕ(y, k) dy

)
ϕ(x, k)ρ(k) dk. (5.4)

Indeed, using the equation (4.1) for ϕ(x, k), we see that (U ψ)(k) decays faster
than any power of e−

πik
ω as k →∞. Hence all the integrals are absolutely conver-

gent. One can prove (5.4) either by the method of complex integration as in [1], § 2
(see also [9], Ch. 3) or by using (5.3), which is what we do here. Namely, we
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apply (5.3) to the function ψ(x) ∈ D . Explicitly computing the jump of the
resolvent kernel R(x, y;λ) across the absolutely continuous spectrum and using
Lemma 4.2(iv), we get

R(x, y;λ+ i0)−R(x, y;λ− i0) =
ω

sinh
(

πik
ω

) ϕ(x, k)ϕ(y, k)
|M(k)|2

=
ω

sinh
(

πik
ω

)ϕ(x, k)ϕ(y, k)ρ(k).

Here we take into account that the case λ + i0 corresponds to the variable k > 0,
and the case λ − i0 corresponds to the variable −k. Using dλ = 2πi

ω sinh
(

πik
ω

)
dk,

we arrive at (5.4). Multiplying (5.4) by ψ(x) and integrating, we obtain

‖ψ‖2L2(R) = ‖U ψ‖2H0

(the change of order of integration is legitimate by Fubini’s theorem). Hence the
operator U , which is defined on the dense vector subspace D ⊂ L2(R), maps D
to the Hilbert space H0 and is an isometry. Therefore U admits an isometric
extension to the whole of L2(R). This proves the completeness relation

U ∗U = I.

The orthogonality relation
U U ∗ = I0

is equivalent to saying that the image of U in H0 (the closed subspace Im U )
coincides with H0. This is proved in the standard way (see, for example, [9],
Ch. 3). Namely, we have U (H − λI) = (Ĥ − λI)U on the domain D , where Ĥ is
the operator of multiplication by 2 cosh

(
πik
ω

)
on H0. Hence we get

U R(λ) = R̂(λ)U ,

where R̂(λ) is the resolvent of Ĥ. Thus Im U is an invariant subspace for R̂(λ) for
all λ ∈ C \ [2,∞). It follows that R̂(λ) commutes with the orthogonal projector P
onto the subspace Im U . Hence P is a function of Ĥ. Since Ĥ is in turn a function
of the operator of multiplication by k on H0, we obtain that P is the operator of
multiplication by the characteristic function χ∆ of some Borel subset ∆ in [0,∞).
On the other hand, if for some k > 0 we have∫ +∞

−∞
ψ(x)ϕ(x, k) dx = 0

for all ψ(x) ∈ C0(R), then ϕ(x, k) = 0 for all x, whence necessarily ∆ = [0,∞).
This completes the proof of (i). Part (ii) follows from the arguments above. �

Remark 5.2. The resolvent kernel Ř(λ̌) for the dual operator Ȟ (see Remark 4.1)
is obtained from (5.1) by interchanging ω and ω′. Therefore, repeating the proof of
Theorem 5.1, we arrive at the same operator U . Hence U also diagonalizes Ȟ, and
U ȞU −1 is the operator of multiplication by the function λ̌ = 2 cosh

(
πik
ω′

)
on H0.

As a result, we obtain that H and Ȟ commute as self-adjoint operators on L2(R).
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Remark 5.3. In the physics literature the completeness and orthogonality relations,
understood in the sense of distributions, are written as follows:∫ +∞

0

ϕ(x, k)ϕ(y, k)ρ(k) dk = δ(x− y),∫ +∞

−∞
ϕ(x, k)ϕ(x, l) dx =

1
ρ(k)

δ(k − l), k, l > 0.

As in the case of one-dimensional Schrödinger operators (see, for example, [9],
Ch. 3), the last relation can be proved directly using the Casorati determinant.
Namely, we put Φ(x) = C(ϕ(x, k), ϕ(x, l)) and integrate this function over the
contour D shown in Fig. 2.

Figure 2

By Cauchy’s theorem, ∫
D

Φ(x) dx = 0.

On the other hand, using the formula

Φ(x)− Φ(x− 2ω′) = (λ− µ)ϕ(x, k)ϕ(x, l),

where λ = 2 cosh
(

πik
ω

)
and µ = 2 cosh

(
πil
ω

)
, we get∫ N

−N

ϕ(x, k)ϕ(x, l) dx =
1

λ− µ

(∫ N

N−2ω′
Φ(x) dx−

∫ −N

−N−2ω′
Φ(x) dx

)
.

By Lemma 4.1(iv), the first integral decays exponentially asN →∞. Using parts (i)
and (iv) of Lemma 4.2 along with the well-known formula

lim
N→∞

sin(2π(k − l)N)
k − l

= πδ(k − l)

and the Riemann–Lebesgue lemma, we obtain

lim
N→∞

1
µ− λ

∫ −N

−N−2ω′
Φ(x) dx =

1
ρ(k)

δ(k − l).

Remark 5.4. Since W (Iν ,Kν) = −1 (see formula (6.6) in the appendix), the resol-
vent kernel R̃(λ) of the operator H̃ = − d2

dx2 + e2x is of the form

R̃(x, y;λ) =
1

2ikM̃(k)

(
f̃−(x, k)ϕ̃(y, k)θ(y − x) + f̃−(y, k)ϕ̃(x, k)θ(x− y)

)
,
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where Im k > 0 (see Remark 3.2). As in Theorem 5.1, using (6.8) and defining an
operator Ũ by the formula

(Ũ ψ)(k) =
∫ +∞

−∞
ψ(x)ϕ̃(x, k) dx,

we see that Ũ maps L2(R) isometrically onto H̃0 = L2([0,∞), ρ̃(k)dk), where

ρ̃(k) =
1

2π|M̃(k)|2
=

2k sinh(πk)
π2

by (6.9). The operator Ũ H̃Ũ −1 is the operator of multiplication by k2 on H̃0.
After the change of variables x = ln y, the formulae

ψ̃(k) =
∫ +∞

−∞
ψ(x)Kik(ex) dx, ψ(x) =

2
π2

∫ +∞

0

ψ̃(k)Kik(ex)k sinh(πk) dk

are known in the theory of special functions as the Kontorovich–Lebedev transform
and its inverse (see [23], Ch.XII), and the equality∫ +∞

−∞
|ψ(x)|2 dx =

2
π2

∫ +∞

0

|ψ̃(k)|2k sinh(πk) dk

is known as Parseval’s theorem. The eigenfunction expansion for H̃ gives a spectral
interpretation of the Kontorovich–Lebedev transform. Hence Theorem 5.1 may be
regarded as a q-analogue of this transform.

5.3. The scattering theory. Here we briefly outline the scattering theory for
the operator H. Put

ϕ(+)(x, k) =
1

M(k)
ϕ(x, k).

We have
ϕ(+)(x, k) = e2πikx + S(k)e−2πikx + o(1)

as x→ −∞, where

S(k) =
M(−k)
M(k)

= e−4πiω′′k γ(−2k − ω′′)
γ(2k − ω′′)

.

According to the stationary scattering theory (see [1], [2]), the operator of mul-
tiplication by S(k) plays the role of the scattering operator on H0 as well as
on L2([0,∞)). Defining an operator U (+) by the formula

(U (+)ψ)(k) =
∫ +∞

−∞
ψ(x)ϕ(+)(x, k) dx,

we see that U (+) maps L2(R) isometrically onto L2([0,∞)). As in [8], [24], it is
convenient to interpret the latter space as the subspace of L2(R) consisting of the
functions χ(k) such that

χ(k) = S(k)χ(−k).

We similarly define an operator U (−) using the solution ϕ(−)(x, k) = ϕ(+)(x, k).
The operators U (±) are used in the non-stationary approach to the scattering
theory (see [1], [2]), but we shall not dwell on this.
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Remark 5.5. One can similarly construct the scattering theory for H̃. By (6.9), the
scattering operator S̃ satisfies

S̃(k) =
M̃(−k)
M̃(k)

= −22ik Γ(1 + ik)
Γ(1− ik)

(compare with the formula (5.19) in [10]).

§ 6. Appendix

Here we briefly present known properties of the solutions of (1.2). In the momen-
tum representation, equation (1.2) takes the form

̂̃
ψ

(
p+

i

π
, k

)
= 4π2(k2 − p2) ̂̃

ψ(p, k), (6.1)

where we put λ = (2πk)2. A solution of (6.1) is given by the product of Euler
gamma-functions ̂̃

ψ(p, k) = 2−2πip−2Γ(πi(p+ k))Γ(πi(p− k)), (6.2)

and the general solution is obtained by multiplying by a quasi-constant (a peri-
odic function of p with period i/π). Performing the inverse Fourier transform and
putting s = −2πip, we get the Mellin–Barnes representation for the modified Bessel
function of the second kind:

Kν(ex) =
1

8πi

∫ σ+i∞

σ−i∞

(
ex

2

)−s

Γ
(
s− ν

2

)
Γ
(
s+ ν

2

)
ds, (6.3)

where ν = 2πik and σ = Re s > |Re ν| (see [20], Ch. 7, formula (27) for the
Mellin transform of Kν(z)). When Re ν = 0, the integration is performed over
the imaginary axis σ=0 bypassing the poles at s= ± ν in the half-plane Re s> 0.
The function Kν(ex) is an entire function of x.

Figure 3

The modified Bessel functions of the first kind Iν(ex) and I−ν(ex) are also solu-
tions of (1.2), where λ = −ν2. We have

W (I−ν , Iν)(x) = I−ν(x)I ′ν(x)− I ′−ν(x)Iν(x) =
2 sin(πν)

π
.

The function Iν(ex) is obtained by multiplying the solution (6.2) of equation (6.1)
by the quasi-constant e−πiν−e−πis

πi , where s = −2πip, and replacing the contour
of integration in (6.3) by the contour C shown in Fig. 3. As a result, we get the
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integral representation

Iν(ex) = − 1
8π2

∫
C

(
ex

2

)−s

Γ
(
s− ν

2

)
Γ
(
s+ ν

2

)
(e−πiν − e−πis) ds. (6.4)

Shifting the contour of integration C to the left to −∞, we obtain the standard
representation of Iν(ex) as a power series in ex. The factor e−πiν−e−πis guarantees
that there are no poles at s = ν + 2− 2n, n ∈ N. The function Iν(ex) is an entire
function of x, and Iν(ex+πi) = eπiνIν(ex). By (6.3) and (6.4),

Kν(ex) =
π

2 sin(πν)
(
I−ν(ex)− Iν(ex)

)
, (6.5)

whence
W (Iν ,Kν) = −1. (6.6)

We also have

Kν(ex+πi) =
π

2 sin(πν)
(
e−πiνI−ν(ex)− eπiνIν(ex)

)
,

whence
Iν(ex) =

1
πi

(
e−πiνKν(ex)−Kν(ex+πi)

)
. (6.7)

The function Iν(ex) has the following asymptotics as x→ −∞:

Iik(ex) =
2−ik

Γ(1 + ik)
(eikx + o(1)).

Moreover, Iν(ex) grows like a double exponent as x → ∞, whereas Kν(ex) =
O(e−ex

) as x→∞.
The role of the scattering solution of (1.2) is played by the function ϕ̃(x, k) =

Kik(ex). The corresponding Jost solutions are the functions f̃+(x, k) = 2ikΓ(1+ik)×
Iik(ex) and f̃−(x, k) = f̃(x,−k) with asymptotic behaviour f̃±(x, k) = e±ikx + o(1)
as x→ −∞. We have

ϕ̃(x, k) = M̃(k)f̃+(x, k) + M̃(−k)f̃−(x,−k), (6.8)

where

M̃(k) = − 2−1−ikπ

sin(πik)Γ(1 + ik)
= 2−1−ikΓ(−ik), |M̃(k)|2 =

π

4k sinh(πk)
. (6.9)

This concludes our description of the properties of the solutions of (1.2).
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