On V.I. Smirnov Thesis, Projective Structures with Real Holonomy, and Liouville Equation

Leon A. Takhtajan

Department of Mathematics
Stony Brook University

Mathematics - XXI century
Saint-Petersburg, September 13 – 18, 2010

PDMI 70th Anniversary
Plan

1. Uniformization of Riemann surfaces and Liouville equation

2. V.I. Smirnov Thesis (Petrograd, January 1918)

3. Black-hole solutions of the Liouville equation
1. Uniformization of Riemann surfaces and Liouville equation

Let X be a compact Riemann surface of genus g with n distinct marked points P_1, \ldots, P_n and a sequence of integers $2 \leq k_1 \leq k_2 \leq \cdots \leq k_n \leq \infty$ satisfying

$$2g + \sum_{i=1}^{n} \left(1 - \frac{1}{k_i}\right) > 2,$$

and let

$$\mathbb{H} = \{w \in \mathbb{C} : w = u + iv, v > 0\}$$

be the upper half-plane model of the Lobachevsky plane with the hyperbolic metric

$$ds^2 = \frac{du^2 + dv^2}{v^2}$$

and the group of motions $\text{PSL}(2, \mathbb{R})$.
The Uniformization Theorem (Klein, Poincaré, Koebe): There is a unique complex-analytic covering $J : \mathbb{H} \to X$, ramified over the marked points P_i with ramification indices k_i, such that the group of deck transformations is isomorphic, up to a conjugation in $\text{PSL}(2, \mathbb{C})$, to the Fuchsian group Γ of the first kind satisfying

$$X \simeq \Gamma \backslash \mathbb{H}^*.$$

$J^{-1} : X \to \mathbb{H}$ is a “linearly-polymorphic function” — a multi-valued function whose branches are related by Möbius transformations in $\Gamma \subset \text{PSL}(2, \mathbb{R})$. The pullback of the hyperbolic metric on \mathbb{H} by J^{-1} is well-defined and is a hyperbolic metric $e^{\varphi} |dz|^2$ on X, where

$$e^{\varphi(z, \bar{z})} = \frac{|(J^{-1})'(z)|^2}{(\text{Im} J^{-1}(z))^2},$$

and z is a local complex coordinate on X.

(1)
It satisfies the so-called Liouville equation

\[\frac{\partial^2 \varphi}{\partial z \partial \bar{z}} = \frac{1}{2} e^\varphi \quad \text{on} \quad X \setminus \{ P_1, \ldots, P_n \} \]

(Gaussian curvature = -1), and has the following asymptotic behavior near the marked points:

\[e^\varphi \simeq \frac{c_i}{|z|^{2\alpha_i}}, \quad \alpha_j = 1 - \frac{1}{k_i} \quad \text{and} \quad z(P_i) = 0. \quad (2) \]

(For the case \(\alpha = 1 \), the factor \(|z|^{-2\alpha}\) should be replaced by \((|z|^2 \log^2 |z|)^{-1}\)).

According to Picard (1893, 1905) and Poincaré (1898), the Liouville equation on \(X \setminus \{ P_1, \ldots, P_n \} \) with asymptotics (2) has a unique solution. (Locally, general solution of the Liouville equation is given by the Liouville formula (1), with arbitrary holomorphic function \(J^{-1} \).)
Conversely, the Liouville equation be used to prove the uniformization theorem. Namely, introduce the so-called stress-energy tensor (Poincaré 1898):

\[T_\varphi = \frac{\partial^2 \varphi}{\partial z^2} - \frac{1}{2} \left(\frac{\partial \varphi}{\partial z} \right)^2. \]

Then \(T_{cl}(z) \) — the stress-energy tensor evaluated on the solution of the Liouville equation — defines a holomorphic projective connection on \(X \setminus \{P_1, \ldots, P_n\} \) such that second order differential equation

\[\frac{d^2 y}{d z^2} + \frac{1}{2} T_{cl}(z)y = 0 \quad (3) \]

has regular singular points at \(P_1, \ldots, P_n \) and monodromy group \(\Gamma \), so that the inverse function to the ratio \(y_1/y_2 \) of its two linearly independent solutions defines to the covering map \(J : \mathbb{H} \to X \). The key fact is that \(e^{-\varphi/2} \) satisfies (3). The existence of such a projective connection on \(X \) — the Fuchsian projective connection — cannot be proved by complex-analytic methods only, as Klein and Poincaré were trying to prove.)
Definition

Let \(\{U_\alpha, z_\alpha\}_{\alpha \in A} \) be a complex-analytic covering of a Riemann surface, where \(z_\alpha \) are local coordinates and \(z_\alpha = f_{\alpha \beta}(z_\beta) \) are the transition functions. The set \(R = \{r_\alpha\}_{\alpha \in A} \), where \(r_\alpha \in \mathcal{O}(U_\alpha) \), is called a holomorphic projective connection, if

\[
r_\beta = r_\alpha \circ f_{\alpha \beta}(f'_{\alpha \beta})^2 + \mathcal{S}(f_{\alpha \beta}),
\]

one each intersection \(U_\alpha \cap U_\beta \), where

\[
\mathcal{S}(f) = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'} \right)^2
\]

is the Schwarzian derivative. With every projective connection there is an associated second order linear ordinary differential equation

\[
\frac{d^2 y_\alpha}{dz^2_\alpha} + \frac{1}{2} r_\alpha y_\alpha = 0, \quad \alpha \in A.
\]
Will consider only the special case of Riemann sphere \mathbb{CP}^1 with $n \geq 3$ marked points. Namely,

$$\frac{\partial^2 \varphi}{\partial z \partial \bar{z}} = \frac{1}{2} e^\varphi, \quad z \in \mathbb{C} \setminus \{z_1, \ldots, z_{n-3}, 0, 1\},$$

and

$$\varphi = \begin{cases} -2\alpha_i \log |z - z_i| + O(1), & z \to z_i, \ i = 1, \ldots, n - 1; \\ -2(2 - \alpha_n) \log |z| + O(1), & z \to \infty. \end{cases}$$

In this case

$$T_{cl}(z) = \sum_{i=1}^{n-1} \left(\frac{h_i}{2(z - z_i)^2} + \frac{c_i}{z - z_i} \right) + h_i = \alpha_i(2 - \alpha_i),$$

and

$$T_{cl}(z) = \frac{h_n}{2z^2} + O\left(|z|^{-3}\right), \quad z \to \infty,$$

so that

$$\sum_{i=1}^{n-1} c_i = 0 \quad \text{and} \quad \sum_{i=1}^{n-1} (h_i + 2c_i z_i) = h_n. \quad (4)$$

In modern terminology, $\frac{d^2}{dz^2} + \frac{1}{2} T_{cl}(z)$ is called “oper”.

- Liouville equation is Euler-Lagrange equation for the functional $S(\varphi)$.

- Liouville equation is Euler-Lagrange equation for the functional $S(\varphi)$.
- The critical value S_{cl} of the functional $S(\varphi)$ defines a smooth function on the configuration space on n points

$$\mathcal{M}_{0,n} = \{(z_1, \ldots, z_{n-3}) \in \mathbb{C}^{n-3} | z_i \neq 0, 1; z_i \neq z_j, i \neq j\}$$

and

$$c_i = -\frac{1}{2\pi} \frac{\partial S_{\text{cl}}}{\partial z_i}, \quad i = 1, \ldots, n-3.$$

- Liouville equation is Euler-Lagrange equation for the functional $S(\varphi)$.
- The critical value S_{cl} of the functional $S(\varphi)$ defines a smooth function on the configuration space on n points

$$\mathcal{M}_{0,n} = \{(z_1, \ldots, z_{n-3}) \in \mathbb{C}^{n-3} | z_i \neq 0, 1; z_i \neq z_j, i \neq j\}$$

and

$$c_i = -\frac{1}{2\pi} \frac{\partial S_{\text{cl}}}{\partial z_i}, \quad i = 1, \ldots, n-3.$$

- For every set of $\alpha_1, \ldots, \alpha_n$ satisfying $0 < \alpha_i \leq 1$ and $\sum_{i=1}^{n} \alpha_i > 2$ the function $-S_{\text{cl}}$ is a Kähler potential of a Kähler metric on the moduli space $\mathcal{M}_{0,n}$. For the case all $\alpha_i = 1$ this metric is the celebrated Weil-Petersson metric.

- Liouville equation is Euler-Lagrange equation for the functional $S(\varphi)$.
- The critical value S_{cl} of the functional $S(\varphi)$ defines a smooth function on the configuration space on n points

$$M_{0,n} = \{(z_1, \ldots, z_{n-3}) \in \mathbb{C}^{n-3} | z_i \neq 0, 1; z_i \neq z_j, \ i \neq j\}$$

and

$$c_i = - \frac{1}{2\pi} \frac{\partial S_{\text{cl}}}{\partial z_i}, \ \ i = 1, \ldots, n - 3.$$

- For every set of $\alpha_1, \ldots, \alpha_n$ satisfying $0 < \alpha_i \leq 1$ and $\sum_{i=1}^{n} \alpha_i > 2$ the function $-S_{\text{cl}}$ is a Kähler potential of a Kähler metric on the moduli space $M_{0,n}$. For the case all $\alpha_i = 1$ this metric is the celebrated Weil-Petersson metric.
- “The function” $\exp \left\{ \frac{1}{12\pi} S_{\text{cl}} \right\}$ defines an Hermitian metric on the holomorphic line bundle λ_S over the moduli space M_g of genus $g > 1$ compact Riemann surfaces, and the is an isomorphism of Hermitian line bundles over M_g,

$$\left(\lambda_S, \exp \left\{ \frac{1}{12\pi} S_{\text{cl}} \right\} \right) \simeq (\lambda_{\text{Hodge}}, \| \cdot \|_{\text{Quillen}}).$$
Questions

Q1. “Geometric meaning” of the monodromy group of the ordinary differential equation (3) for generic α_i (i.e., not of the form $1 - 1/n_i$, $n_i \geq 2$ an integer)?

Answers
Questions

Q1. “Geometric meaning” of the monodromy group of the ordinary differential equation (3) for generic α_i (i.e., not of the form $1 - 1/n_i$, $n_i \geq 2$ an integer)?

Q2. How to characterize the ordinary differential equation (3) with $T = T_{cl}$ among all equations of the same type?

Answers
Questions

Q1. “Geometric meaning” of the monodromy group of the ordinary differential equation (3) for generic α_i (i.e., not of the form $1 - 1/n_i$, $n_i \geq 2$ an integer)?

Q2. How to characterize the ordinary differential equation (3) with $T = T_{cl}$ among all equations of the same type?

Answers

A1. The answer is not known, though it should be related to A. Connes “non-commutative differential geometry”.
Questions

Q1. “Geometric meaning” of the monodromy group of the ordinary differential equation (3) for generic α_i (i.e., not of the form $1 - 1/n_i$, $n_i \geq 2$ an integer)?

Q2. How to characterize the ordinary differential equation (3) with $T = T_{cl}$ among all equations of the same type?

Answers

A1. The answer is not known, though it should be related to A. Connes “non-commutative differential geometry”.

A2. Naive answer: “the monodromy group of the differential equation (3) should be a subgroup of $\text{PSL}(2, \mathbb{R})$” (as some physicists think) is wrong, as it was shown by V.I. Smirnov in 1918 for the case $n = 4$.
2. V.I. Smirnov Thesis
V.I. Smirnov Thesis and Liouville Equation

Leon A. Takhtajan

Uniformization of Riemann surfaces and Liouville equation

V.I. Smirnov Thesis (Petrograd, January 1918)

Black-hole solutions of the Liouville equation
Consider the case $n = 4$ with $z_1 = 0$, $z_2 = a$, $z_3 = 1$, $z_4 = \infty$, where $0 < a < 1$ and $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$. Writing the general solution of (4) as

$$
c_1 = 1 + \frac{1}{a} + \frac{2\lambda}{a}, \quad c_2 = -\frac{1}{a} + \frac{1}{a-1} + \frac{2\lambda}{a(a-1)},
$$

$$
c_3 = -1 - \frac{1}{a-1} - \frac{2\lambda}{a-1}
$$

and setting $y = \sqrt{z(z-a)(z-1)} u$, one transforms ordinary differential equation (3), where $z = x \in \mathbb{R}$, to the classical Sturm-Liouville form

$$
\frac{d}{dx} \left(p(x) \frac{du}{dx} \right) + (x + \lambda)u = 0, \quad p(x) = x(x-a)(x-1) \quad (5)
$$

considered, respectively, by Poincaré, Klein and Hilbert. Let $u_0(x, \lambda)$, $u_a(x, \lambda)$, $u_1(x, \lambda)$ and $u_\infty(x, \lambda)$ be solutions of (5) which are holomorphic, respectively, near $x = 0$, $x = a$, $x = 1$ and $x = \infty$, and given by power series with real coefficients.
Theorem (Klein, 1892, 1907; Hilbert 1912)

For real λ differential equation (5) will have a monodromy group — a subgroup of $\text{PSL}(2, \mathbb{R})$ — if and only if one of the following conditions is satisfied.
Theorem (Klein, 1892, 1907; Hilbert 1912)

For real λ differential equation (5) will have a monodromy group — a subgroup of $\text{PSL}(2, \mathbb{R})$ — if and only if one of the following conditions is satisfied.

I. Solution $u_0(x, \lambda)$ is also holomorphic at $x = a$.

II. Solution $u_a(x, \lambda)$ is also holomorphic at $x = 1$.

III. Under real continuation through point $x = a$ solution $u_0(x, \lambda)$ is holomorphic at $x = 1$. (By definition, real continuation of $\log(a - x)$ from $x < a$ to $x > a$ is $\log(x - a)$.)

In case I the ratio $\eta = iu_1/u_0$ will transform by real Möbius transformations when continued around singular points $0, a, 1$ and ∞. In case II it will be the ratio $\eta = iu_a/u_\infty$, and in case III — the ratio $\eta = iu_0/u_a$. This leads to three Sturm-Liouville boundary problems for differential equation (5) on the intervals $[0, a]$, $[a, 1]$ and $[0, 1]$ with respective boundary conditions I, II and III.
Theorem (Klein, 1892, 1907; Hilbert 1912)

For real λ differential equation (5) will have a monodromy group — a subgroup of $\text{PSL}(2, \mathbb{R})$ — if and only if one of the following conditions is satisfied.

I. Solution $u_0(x, \lambda)$ is also holomorphic at $x = a$.

II. Solution $u_a(x, \lambda)$ is also holomorphic at $x = 1$.
Theorem (Klein, 1892, 1907; Hilbert 1912)

For real \(\lambda \) differential equation (5) will have a monodromy group — a subgroup of \(\text{PSL}(2, \mathbb{R}) \) — if and only if one of the following conditions is satisfied.

I. Solution \(u_0(x, \lambda) \) is also holomorphic at \(x = a \).

II. Solution \(u_a(x, \lambda) \) is also holomorphic at \(x = 1 \).

III. Under **real continuation** through point \(x = a \) a solution \(u_0(x, \lambda) \) is holomorphic at \(x = 1 \). (By definition, real continuation of \(\log(a - x) \) from \(x < a \) to \(x > a \) is \(\log(x - a) \).)
Theorem (Klein, 1892, 1907; Hilbert 1912)

For real λ differential equation (5) will have a monodromy group — a subgroup of $\text{PSL}(2, \mathbb{R})$ — if and only if one of the following conditions is satisfied.

I. Solution $u_0(x, \lambda)$ is also holomorphic at $x = a$.

II. Solution $u_a(x, \lambda)$ is also holomorphic at $x = 1$.

III. Under real continuation through point $x = a$ a solution $u_0(x, \lambda)$ is holomorphic at $x = 1$. (By definition, real continuation of $\log(a - x)$ from $x < a$ to $x > a$ is $\log(x - a)$.)

In case I the ratio $\eta = iu_1/u_0$ will transform by real Möbius transformations when continued around singular points 0, a, 1 and ∞. In case II it will be the ratio $\eta = iu_a/u_\infty$, and in case III — the ratio $\eta = iu_0/u_a$. This leads to three Sturm-Liouville boundary problems for differential equation (5) on the intervals $[0, a]$, $[a, 1]$ and $[0, 1]$ with respective boundary conditions I, II and III.
Theorem (V.I. Smirnov, 1918)

Each of these three Sturm-Liouville problems have simple discrete unbounded spectrum:

\[-a < \mu_1 < \mu_2 < \ldots\]

for the boundary condition I,

\[-a > \mu_{-1} > \mu_{-2} > \ldots\]

for the boundary condition II, and

\[\ldots < \lambda_{-1} < \lambda_0 < \lambda_1 < \ldots\]

for the boundary condition III. These eigenvalues are arranged as follows:

\[\ldots < \mu_{-2} < \lambda_{-1} < \mu_{-1} < \lambda_0 < \mu_1 < \lambda_1 < \mu_2 < \ldots\]
The case $\lambda = \lambda_0$ corresponds to the Fuchsian uniformization of the Riemann surface $X = \mathbb{C} \setminus \{0, a, 1\}$, where the image of \mathbb{H} under the developing map η, which is 1-1 in this case, is the following geodesic quadrilateral with zero angles (see Fig. 1).

For cases $\lambda = \mu_{-1}$ and $\lambda = \mu_1$ the monodromy groups are real Schottky groups. Corresponding developing map η is still 1-1 (these are the only three cases) and the image of \mathbb{H} are, respectively, the following circular domains (see Fig. 2).
When $\lambda = \lambda_k$, the image of \mathbb{H} is the annulus with the quadrilateral wrapping around itself $|k|$ times, and similarly for the cases $\lambda = \mu_k$ and $\lambda = \mu_{-k}$ (see Fig. 3 and Fig. 4).
Now setting $J^{-1} = \eta$, one can pull-back the hyperbolic metric from $\mathbb{C} = \mathbb{H} \cup \mathbb{R} \cup \bar{\mathbb{H}}$. We get a \mathbb{Z}-lattice of solutions of the Liouville equation with singularities at $z = 0, a, 1$ and ∞ and possible additional singularities along the union of finitely many non-intersecting simple, analytic, closed curves, the pre-image of \mathbb{R} under the developing map η — “black-hole” solutions. Namely

- When $\lambda = \lambda_k$, the set $\eta^{-1}(\mathbb{R})$ is the union of $2|k|$ non-intersecting simple, analytic, closed curves around points 0 and a for $k > 0$, and around a and 1 for $k < 0$.

Now setting $J^{-1} = \eta$, one can pull-back the hyperbolic metric from $\mathbb{C} = \mathbb{H} \cup \mathbb{R} \cup \bar{\mathbb{H}}$. We get a \mathbb{Z}-lattice of solutions of the Liouville equation with singularities at $z = 0, a, 1$ and ∞ and possible additional singularities along the union of finitely many non-intersecting simple, analytic, closed curves, the pre-image of \mathbb{R} under the developing map η — “black-hole” solutions. Namely

- When $\lambda = \lambda_k$, the set $\eta^{-1}(\mathbb{R})$ is the union of $2|k|$ non-intersecting simple, analytic, closed curves around points 0 and a for $k > 0$, and around a and 1 for $k < 0$.
- When $\lambda = \mu_k$, $k > 0$, the set $\eta^{-1}(\mathbb{R})$ is the union of $2k - 1$ non-intersecting simple, analytic, closed curves around points 0 and a.
Now setting $J^{-1} = \eta$, one can pull-back the hyperbolic metric from $C = \mathbb{H} \cup \mathbb{R} \cup \bar{\mathbb{H}}$. We get a \mathbb{Z}-lattice of solutions of the Liouville equation with singularities at $z = 0, a, 1$ and ∞ and possible additional singularities along the union of finitely many non-intersecting simple, analytic, closed curves, the pre-image of \mathbb{R} under the developing map η — “black-hole” solutions. Namely

- When $\lambda = \lambda_k$, the set $\eta^{-1}(\mathbb{R})$ is the union of $2|k|$ non-intersecting simple, analytic, closed curves around points 0 and a for $k > 0$, and around a and 1 for $k < 0$.
- When $\lambda = \mu_k$, $k > 0$, the set $\eta^{-1}(\mathbb{R})$ is the union of $2k - 1$ non-intersecting simple, analytic, closed curves around points 0 and a.
- When $\lambda = \mu_{-k}$, $k > 0$, the set $\eta^{-1}(\mathbb{R})$ is the union of $2k - 1$ non-intersecting simple, analytic, closed curves around points a and 1.
The V.I. Smirnov theorem was the first result on classification of projective connections with real monodromy on a given Riemann surface. This problem was discussed by Faltings in 1983 and by Goldman in 1987.

Initially Faltings have thought that there is a unique projective structure with real monodromy and later conjectured that there infinitely many real projective structures.

Goldman generalized prior results of Hejhal, Maskit and Sullivan-Thurston and gave a description of all real projective structures on Riemann surfaces in terms of half-integer Sullivan-Thurston laminations. He proved that this space (as a set) is isomorphic to

\[T_{g,n} \times \text{“half-integer Sullivan-Thurston measured laminations”} \]

By inverting the so-called “grafting” map, Peter Zograf was able to describe all real projective structures on a given Riemann surface of finite type (work in progress).
3. Black-hole solutions of the Liouville equation

Given: \mathbb{CP}^1 with n-marked points z_1, \ldots, z_n ($n \geq 4$)

Find: Solution of the Liouville equation with singularities

$$e^\varphi \approx \frac{1}{r_i^2 \log^2 r_i} \quad \text{as} \quad r_i = |z - z_i| \to 0$$

and with the following singular behavior near some simple analytic closed curve C,

$$e^\varphi \approx \frac{-4 S'(z_0)}{(S'(z_0)(z - z_0) - (\bar{z} - \bar{z}_0))^2} \quad \text{as} \quad z \to z_0 \in C,$$

where S is the Schwarz function of the contour C:

$$C = \{z \in \mathbb{C} : \bar{z} = S(z)\}.$$

The curve C needs to be determined as well.
• Results of V.I. Smirnov thesis give a complete solution for the case of 4 real singular points.
• Results of V.I. Smirnov thesis give a complete solution for the case of 4 real singular points.
• General case is unknown (work in progress with Lev Kapitanski and Peter Zograf).
• Results of V.I. Smirnov thesis give a complete solution for the case of 4 real singular points.
• General case is unknown (work in progress with Lev Kapitanski and Peter Zograf).
• Setting $\chi = e^{-\varphi/2}$, one gets the following equation

$$-\chi \frac{\partial^2 \chi}{\partial z \partial \bar{z}} + |\chi z|^2 = \frac{1}{4}, \quad z \in X \setminus C.$$ \quad (6)
- Results of V.I. Smirnov thesis give a complete solution for the case of 4 real singular points.
- General case is unknown (work in progress with Lev Kapitanski and Peter Zograf).
- Setting $\chi = e^{-\varphi/2}$, one gets the following equation

$$- \chi \frac{\partial^2 \chi}{\partial z \partial \bar{z}} + |\chi z|^2 = \frac{1}{4}, \quad z \in X \setminus C. \quad (6)$$

- Here χ vanishes at the points z_i and on the contour C, and is positive in the interior of C and negative in the exterior domain. (This corresponds to the case φ changes to $\varphi + 2\pi i$ when crossing the contour C).
• Results of V.I. Smirnov thesis give a complete solution for the case of 4 real singular points.

• General case is unknown (work in progress with Lev Kapitanski and Peter Zograf).

• Setting $\chi = e^{-\varphi/2}$, one gets the following equation

$$-\chi \frac{\partial^2 \chi}{\partial z \partial \bar{z}} + |\chi z|^2 = \frac{1}{4}, \quad z \in X \setminus C. \quad (6)$$

• Here χ vanishes at the points z_i and on the contour C, and is positive in the interior of C and negative in the exterior domain. (This corresponds to the case φ changes to $\varphi + 2\pi i$ when crossing the contour C).

• Equation (6) is a nonlinear free-boundary problem.
• Results of V.I. Smirnov thesis give a complete solution for the case of 4 real singular points.
• General case is unknown (work in progress with Lev Kapitanski and Peter Zograf).
• Setting \(\chi = e^{-\varphi/2} \), one gets the following equation

\[
- \chi \frac{\partial^2 \chi}{\partial z \partial \bar{z}} + |\chi z|^2 = \frac{1}{4}, \quad z \in X \setminus C.
\] (6)

• Here \(\chi \) vanishes at the points \(z_i \) and on the contour \(C \), and is positive in the interior of \(C \) and negative in the exterior domain. (This corresponds to the case \(\varphi \) changes to \(\varphi + 2\pi i \) when crossing the contour \(C \)).
• Equation (6) is a nonlinear free-boundary problem.
• This type of singular solutions are important for quantum Liouville theory (for understanding the decomposition of the 4-point correlation function in terms of conformal blocks).
QUANTUM LIOUVILLE

V.I. Smirnov Thesis
and Liouville Equation

Leon A. Takhtajan

Uniformization of
Riemann surfaces and
Liouville equation

V.I. Smirnov Thesis
(Petrograd, January
1918)

Black-hole solutions of
the Liouville equation