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Foreword

The material presented is this note1 is classical. The notes are an extended version of a minicourse

I gave in the Spring 2022 at the KIT Karlsruhe and at the University of Heidelberg. The aim

is to introduce the notions of representation and character varieties, taking into account various

approaches found in the literature. We cover both the analytic and algebraic perspectives and

insist on the symplectic geometry aspects of character varieties at the end of the notes. Most of it

is inspired from [Sik12], [Mon16, §2], [Lab13], and [BGPGW07].

1version 1.0, compiled on May 4, 2022
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Chapter 1

Representation varieties

A representation variety is an analytic, sometimes algebraic, object associated to a finitely generated

group Γ and a Lie group G. It consists of the space of group homomorphisms from Γ to G. We start

by recalling some generalities about Lie groups, including algebraic groups, and finitely generated

groups. Most of the results later in this note require to restrict the groups Γ and G to finer classes.

The relevant notions are presented in the next section.

1.1 Setting: Lie groups and finitely generated groups

1.1.1 Lie groups

A Lie group G is a real smooth manifold with a group structure for which the operations of

multiplication and inverse are smooth maps. Lie groups always admit an analytic atlas, unique up

to analytic diffeomorphism, such that multiplication and inverse are analytic maps1. Lie groups

are not necessarily connected. We denote by G� the identity component of G. The centralizer of

a subset S � G is denoted ZpSq :� tg P G : gsg�1 � s, @s P Su. It is a closed subgroup of G and

hence a Lie subgroup of G. The standard examples of Lie groups are GLpn,Rq and GLpn,Cq, and

all their closed subgroups, called linear Lie groups, which include SLpn,Rq, SUpp, qq, Spp2n,Rq or

SOpn,Rq.
The Lie algebra of a Lie group G is denoted g. Most of the time, we will think of g as the tangent

space to G at the identity. In various places we will make use of the Lie theoretic exponential map

exp: g Ñ G, which, in the case that G is a linear Lie group, is the matrix exponential map. The

adjoint representation of G on g is denoted by Ad: GÑ Autpgq and is defined by

Adpgqpξq :�
d

dt

����
t�0

g expptξqg�1, g P G, ξ P g.

A Lie algebra g is

� simple if it is not abelian and if its only proper ideal is the zero ideal. Since ideals of g are in

one-to-one correspondence with sub-representations of its adjoint representation, g is simple

1This is a consequence of the Campbell-Hausdorff formula, see e.g. [Ser06, Chap. IV, §7-8]

4



if and only if its adjoint representation is irreducible and g is not a one-dimensional abelian

Lie algebra.

� semisimple if it has no nonzero abelian ideals. Equivalently, a Lie algebra is semisimple if it

is a direct sum of simple Lie algebras [Bou98, Chap. I, §6.2, Cor. 1]. By Cartan’s criterion, g

is semisimple if and only if its Killing form

K : g� gÑ R

pξ1, ξ2q ÞÑ Trpadpξ1q adpξ2qq

is nondegenerate [Bou98, Chap. I, §6.1, Thm. 1].

� reductive if it is the direct sum of an abelian and a semisimple Lie algebra. Equivalently, g

is reductive if and only if its adjoint representation is completely reducible2, which is further

equivalent to g admitting a faithful, completely reducible, finite-dimensional representation

[Bou98, Chap. I, §6.4, Prop. 5].

We call a connected Lie group simple, semisimple or reductive if its Lie algebra is simple,

semisimple or reductive, respectively. Simple Lie groups are semisimple and semisimple Lie groups

are reductive. The groups SLpn,Rq for n ¥ 2, Spp2n,Rq and SUpp, qq for p � q ¥ 2 are simple.

The group SOpn,Rq� is simple for n ¥ 3, n � 4 and semisimple for n � 4. In contrast, the group

GLpn,Rq� is not semisimple for any n ¥ 1 (its Killing form is degenerate). It is however reductive,

because its Lie algebra is the direct sum of the simple Lie algebra of traceless matrices and the

abelian Lie algebra of diagonal matrices. It is worth observing that a connected linear Lie group

G � GLpn,Rq is reductive if and only if the trace form

Tr: g� gÑ R

pξ1, ξ2q ÞÑ Trpξ1ξ2q

is nondegenerate. This can be seen as a consequence of the classification of semisimple Lie algebras

and [Bou98, Chap. I, §6.4, Prop. 5]. The previous statement also holds for connected linear Lie

groups G � GLpn,Cq. If the (in this case, complex-valued) trace form is nondegegenrate, then so is

its real part <pTrq : g � g Ñ R which gives a nondegenerate, symmetric, Ad-invariant, real-valued

bilinear form.

A Lie group is called a complex Lie group if it has the structure of a complex manifold and the

group operations are holomorphic. Standard examples of complex Lie groups include GLpn,Cq and

SLpn,Cq.

1.1.2 Quadrable Lie groups

An important class of Lie groups for the purpose of this work are those that admit a nondegenerate,

symmetric and Ad-invariant pairing on their Lie algebra. Such Lie groups carry different names

throughout the literature, see [Ova16] for an overview. We opt for the name quadrable.

2Recall that a completely reducible representation is a representation that decomposes as a direct sum of irreducible
representations. Such representations are sometimes called semisimple.
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Definition 1.1.1 (Quadrable Lie groups). A Lie group G is called quadrable if there exists a

bilinear form (also called pairing)

B : g� gÑ R

which is nondegenerate, symmetric and Ad-invariant.

Quadrable Lie groups are common among the standard Lie groups. For example, all semisimple

Lie groups, and more generally all reductive Lie groups, are quadrable. Indeed, a nondegenerate,

symmetric and Ad-invariant bilinear form on a reductive Lie algebra can be taken to be the Killing

form on the semisimple part and any nondegenerate, symmetric bilinear form on the abelian part.

Alternatively, one may consider the trace form associated to a faithful, finite-dimensional represen-

tation3 of g. We point out that not all quadrable Lie groups are reductive, see [Gol84, Footnote p.

204].

Example 1.1.2. For instance, G � SLp2,Rq is quadrable. We usually chose to work with the

pairing given by the trace form: Tr: sl2R � sl2R Ñ R, pξ1, ξ2q ÞÑ Trpξ1ξ2q. The trace of a matrix

is invariant under conjugation, so the trace form is Ad-invariant. In the basis

sl2R �

C�
1 0

0 �1

�
,

�
0 1

0 0

�
,

�
0 0

1 0

�G
,

the trace form is given by the pairing 2x1x2�y1y2�z1z2. It is clearly symmetric and nondegenerate.

Actually, in this case, the pairing Tr: sl2R� sl2R is also positive-definite.

Example 1.1.3. The Heisenberg group H is an example of a non-quadrable Lie group. Recall that

H is defined to be the group of strictly upper triangular 3� 3 real matrices:

H �

$'&'%
���1 a b

0 1 c

0 0 1

��: a, b, c P R

,/./- .

The Lie algebra h of H is generated by the three matrices

X :�

���0 1 0

0 0 0

0 0 0

��, Y :�

���0 0 0

0 0 1

0 0 0

��, Z :�

���0 0 1

0 0 0

0 0 0

��.
A simple computation shows that Z commutes with any element of H. Further

Ad

���1 0 0

0 1 1

0 0 1

��pXq � X � Z, Ad

���1 0 0

0 1 1

0 0 1

��pY q � Y, (1.1.1)

3The trace form of a representation ρ : g Ñ GLpn,Rq is the symmetric bilinear form g � g Ñ R given by
pξ1, ξ2q ÞÑ Trpρpξ1qρpξ2qq. For instance, the Killing form is the trace form of the adjoint representation.
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and

Ad

���1 1 0

0 1 0

0 0 1

��pXq � X, Ad

���1 1 0

0 1 0

0 0 1

��pY q � Y � Z. (1.1.2)

So, because of (1.1.1), any symmetric and Ad-invariant bilinear form B : h� hÑ R, must satisfy

BpX,Zq � BpX � Z,Zq and BpX,Y q � BpX � Z, Y q

which implies BpZ,Zq � 0 and BpY, Zq � 0. Moreover, because of (1.1.2), it must also satisfy

BpX,Y q � BpX,Y � Zq

and thus BpX,Zq � 0. This shows that B is degenerate.

1.1.3 Algebraic groups

A group G is called an algebraic group if it is an algebraic variety4 and if the operations are regular

maps. The Zariski closure of any subgroup of G is an algebraic subgroup [Mil17, Lem. 1.40] and

any algebraic subgroup of G is Zariski closed [Mil17, Prop. 1.41]. For instance, the centralizer ZpSq

of a subset S � G is Zariski closed and hence an algebraic subgroup. All algebraic groups over the

fields of real or complex numbers, respectively called real or complex algebraic groups, are also Lie

groups, see [Mil13, III, §2] and references therein. Let K denote either R or C. The group GLpn,Kq,
and all its Zariski closed subgroups, such as SLpn,Kq, Spp2n,Kq or SOpn,Kq, are algebraic groups.

They are called linear algebraic groups. Algebraic groups, however, are not necessarily linear (for

instance, elliptic curves are non-linear algebraic groups). The group SUpp, qq is a real algebraic

group, but is not a complex algebraic variety, see e.g. [SKKT00, Exercise 1.1.2].

Any algebraic group contains a unique maximal normal connected solvable subgroup called the

radical, see [Mil17, Chap. 6, §h]. A reductive algebraic group is a connected algebraic group whose

radical over C is an algebraic torus, i.e. isomorphic to pC�qn for some n ¥ 0. A reductive algebraic

group over the fields of real or complex numbers is a reductive Lie group in the previous sense,

hence quadrable [Mil13, II, §4].

Connected linear algebraic groups G � GLpn,Cq are reductive if and only if the trace form

g � g Ñ C, pξ1, ξ2q ÞÑ Trpξ1ξ2q is nondegenerate. In particular, SLpn,Cq for n ¥ 2, Spp2n,Cq and

SOpn,Cq for n ¥ 3 are reductive algebraic groups.

1.1.4 Finitely generated groups

The second ingredient of a representation variety is a finitely generated group Γ. Finitely generated

groups are always equipped with the discrete topology. Our guiding example of finitely generated

groups are surface groups.

4In the context of this work, an algebraic variety is understood to be the zero locus of a set of polynomial equations
over R or C (in other words, algebraic varieties are always affine). We make no assumption about irreducibility and, in
particular, we don’t distinguish algebraic varieties and algebraic sets. Morphisms of algebraic varieties are restrictions
of polynomial maps and are called regular maps.
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Definition 1.1.4 (Surface group). Let g ¥ 0 and n ¥ 0 be two integers. A group is called a surface

group if it can presented as

πg,n :�

C
a1, b1, . . . , ag, bg, c1, . . . , cn :

g¹
i�1

rai, bis �
n¹
j�1

cj � 1

G
, (1.1.3)

where rai, bis � aibia
�1
i b�1

i denotes the commutator of ai and bi. If n � 0, then it is called a closed

surface group.

The closed surface groups πg,0 are pairwise non-isomorphic (because their cohomology with real

coefficients differs in degree 1), non-free for g ¥ 1 and non-abelian for g ¥ 2. If n ¥ 1, then the

surface group πg,n is isomorphic to the free group on 2g � n � 1 generators. The name “surface

group” is explained by the following lemma.

Lemma 1.1.5. Let Σg,n denote a connected orientable topological surface of genus g ¥ 0, with

n ¥ 0 punctures. The fundamental group of Σg,n is isomorphic to πg,n.

Proof. The proof for the case n � 0 is explained in [Lab13, Thm. 2.3.15]. Its generalization to

punctured surfaces can be understood in two steps. First, observe that a sphere with n ¥ 1

punctures is homotopy equivalent to the wedge of n � 1 circles. Hence, its fundamental group is

the free group on n� 1 generators. Similarly, a surface of genus g with one puncture is homotopy

equivalent to the wedge of 2g circles. Thus, its fundamental group is the free group on 2g generators.

Now, note that Σg,n is the union of two sub-surfaces Σg,1 and Σ0,n�1. The conclusion now follows

from Van Kampen’s Theorem.

The generators ci in (1.1.3) will play a central role later in Section 4.2 in the context of relative

representation varieties. They should be thought of as homotopy classes of based loops enclosing

the ith puncture of Σg,n.

1.2 Definition

Definition 1.2.1 (Representation variety). The representation variety associated to a finitely

generated group Γ and a Lie group G is the set of group homomorphisms from Γ to G and is

denoted by

HompΓ, Gq.

The elements φ P HompΓ, Gq are called representations.

The topology on the representation variety HompΓ, Gq is defined to be the subspace topology

induced by the compact-open topology on the space GΓ of all (necessarily continuous) functions

Γ Ñ G.

Let pγ1, . . . , γnq be a set of generators of Γ. We introduce the subspace

XpΓ, Gq :�
 �
φpγ1q, . . . , φpγnq

�
: φ P HompΓ, Gq

(
� Gn.
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Lemma 1.2.2. Let G be a Lie group equipped with an analytic atlas. The set XpΓ, Gq is an

analytic subvariety5 of Gn and is homeomorphic to HompΓ, Gq. In particular, HompΓ, Gq has a

natural structure of analytic variety and the structure does not depend on the choice of generators

of Γ.

Proof. Let R � triu denote a (maybe infinite) set of relations for the generators γ1, . . . , γn. Each

relation ri defines an analytic map ri : G
n Ñ G because multiplication and inverse are assumed to

be analytic operations on G. The map ri is called a word map. The set XpΓ, Gq is the analytic

subset of Gn cut out by the relations ripg1, . . . , gnq � 1 for every i.

Since a group homomorphism φ : Γ Ñ G is determined by the images of a set of generators of

Γ, the map

Π: HompΓ, Gq Ñ XpΓ, Gq

φ ÞÑ
�
φpγ1q, . . . , φpγnq

�
is a bijection. We prove that Π is a homeomorphism. Recall that all the sets

V pK,Uq :� tf : Γ Ñ G : K � Γ finite, U � G open, fpKq � Uu

form a sub-basis for the compact-open topology on HompΓ, Gq. To see that Π is a continuous map,

observe that, for a collection of open sets U1, . . . , Un � G,

Π�1 pXpΓ, Gq X U1 � . . .� Unq � HompΓ, Gq X
n£
i�1

V ptγiu, Uiq.

To prove that the inverse map Π�1 is also continuous, note that any element k P Γ, seen as a word

in the generators γ1, . . . , γn, determines an analytic function k : Gn Ñ G. Now, given a finite set

K � Γ and an open set U � G, we have

Π pHompΓ, Gq X V pK,Uqq � XpΓ, Gq X
£
kPK

k�1pUq.

We conclude that both Π and its inverse are continuous. Hence, Π is a homeomorphism.

If pγ11, . . . , γ
1
n1q is another set of generators of Γ and X 1pΓ, Gq is the associated space, then the

map from XpΓ, Gq to X 1pΓ, Gq defined as the composition

XpΓ, Gq Ñ HompΓ, Gq Ñ X 1pΓ, Gq

is an isomorphism of analytic varieties. Indeed, the map sends
�
φpγ1q, . . . , φpγnq

�
to

�
φpγ11q, . . . , φpγ

1
n1q

�
.

Now, since γ1i is a word in the generators γ1, . . . , γn, it follows that φpγ1iq is a word in φpγ1q, . . . , φpγnq.

This shows that the map is analytic because word maps are analytic by assumption on G.

Lemma 1.2.3. Assume that G has the structure of a real or complex algebraic group, then XpΓ, Gq

is an algebraic subset of Gn. In particular, HompΓ, Gq has a natural structure of real or complex

algebraic variety and the structure does not depend on the choice of generators of Γ.

5An analytic variety is understood to be the zero locus of a set of analytic functions over R or C.
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Proof. The argument is analogous to the proof of Lemma 1.2.2. The key observation is that the

relations R � triu give regular maps ri : G
n Ñ G by assumption on G.

Remark 1.2.4 (Finitely generated versus finitely presented). Since we assumed Γ to be finitely

generated, and not finitely presented, the set of equations that define XpΓ, Gq might be infinite.

However, Hilbert’s basis theorem implies that any algebraic variety over a field can be described as

the zero locus of finitely many polynomial equations, see e.g. [SKKT00, §2.2].

Remark 1.2.5 (Standard topology versus Zariski topology). If G is a real or complex algebraic

group, then it is also a Lie group, as mentioned earlier. This means that the representation variety

HompΓ, Gq has both the structure of an analytic variety and of an algebraic variety. The underlying

topology of the analytic structure is called the standard topology and that of the algebraic structure

the Zariski topology. The standard topology on an algebraic variety is always Hausdorff. The

Zariski topology is coarser than the standard topology. Indeed, Zariski open sets are open in the

standard topology because polynomials are continuous functions. A nonempty Zarsiki open set is

also dense in both the standard and the Zariski topology.

Example 1.2.6 (Surface groups). Representations πg,n Ñ G typically arise as holonomies (or

monodromies) of pG,Xq-structures on Σg,n, see [Gol21] for further details. Not all the representa-

tions πg,n Ñ G are holonomies of pG,Xq-structures. However, if n � 0, then the set of holonomies

is an open subset of Hompπg,0, Gq [Gol21, Cor. 7.2.2]. For instance, if G � PSLp2,Rq, then the

holonomies of hyperbolic structures on the closed surface Σg,0, g ¥ 2, are precisely the discrete

and faithful representations in Hompπg,0,PSLp2,Rqq. They form two connected components of the

representation variety.

In the vocabulary of category theory, we can say that representation variety is a bifunctor from

the product of the category of finitely generated groups and the category of Lie/algebraic groups

to the category of analytic/algebraic varieties. This is a consequence of Lemmata 1.2.2 and 1.2.3,

and of the following.

Lemma 1.2.7. Let Γ be a finitely generated group and G be a Lie/algebraic group.

1. If τ : Γ1 Ñ Γ2 is a morphism of finitely generated groups, then the induced map τ� : HompΓ2, Gq Ñ

HompΓ1, Gq is an analytic/regular map.

2. If r : G1 Ñ G2 is a morphism of Lie groups or of algebraic groups, then the induced map

r� : HompΓ, G1q Ñ HompΓ, G2q is an analytic map or a regular map, respectively.

Proof. The second assertion is immediate. To prove the first statement, note that if pγ1
1 , . . . , γ

1
nq is

a set of generators for Γ1 and pγ2
1 , . . . , γ

2
mq is a set of generators for Γ2, then pτ�φqpγ1

i q � φpτpγ1
i qq

is a word in φpγ2
1q, . . . , φpγ

2
mq. Word maps are analytic, respectively regular, and thus so is τ�.

1.3 Symmetries

The representation variety HompΓ, Gq has two natural symmetries given by the right action of

the group AutpΓq of automorphisms of Γ by pre-composition and the left action of AutpGq by

post-composition:

AutpGq ýHompΓ, Gq üAutpΓq.
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An immediate consequence of Lemma 1.2.7 is

Lemma 1.3.1. The actions of the groups AutpΓq and AutpGq on HompΓ, Gq preserve its ana-

lytic/algebraic structure.

There is a normal subgroup of AutpGq that is of particular interest: namely, the subgroup

of inner automorphisms of G, denoted InnpGq. Recall that an inner automorphism of G is an

automorphism given by conjugation by a fixed element of G. In particular, InnpGq � G{ZpGq,

where ZpGq denotes the centre of G (which is a closed and normal subgroup of G). The action of

InnpGq on HompΓ, Gq is relevant in many concrete cases. For instance, the holonomy representations

mentioned in Example 1.2.6 are really defined up to conjugation by an element of G and so it makes

sense to see them as elements of the quotient

HompΓ, Gq{ InnpGq. (1.3.1)

The quotient (1.3.1) is the prototype of the notion of character variety introduced below.

The action of AutpΓq on the representation variety descends to an action of AutpΓq{ InnpΓq on

the quotient (1.3.1). The group AutpΓq{ InnpΓq is denoted OutpΓq and is called the group of outer

automorphisms of Γ.

Example 1.3.2 (Surface groups). The group of outer automorphisms of the surface group πg,n

has a particular significance. It contains the (pure) mapping class group of the surface Σg,n as a

subgroup. This is known as the Dehn–Nielsen Theorem. We develop this observation further in

Section 6.2.

1.4 Zariski tangent spaces

In this section, we would like to determine the Zariski tangent spaces to representation varieties.

We start by recalling the classical notion of Zariski tangent spaces for analytic varieties in Rn.

Definition 1.4.1 (Zariski tangent spaces). Let X � Rn is an analytic variety defined as the zero

locus of some analytic functions f1, . . . , fm : Rn Ñ R. The Zariski tangent space at x P X is the

kernel of the m� n Jacobi matrix �
Bfi
Bxj

pxq



i,j

. (1.4.1)

Equivalently, the Zariski tangent space at x consists of all tangent vectors x1p0q tangent to a

smooth path xptq inside Rn with xp0q � x and that satisfies the relations fi � 0 up to first order

by which we mean that fipxp0qq � 0 and d
dt

��
t�0

fipxptqq � 0.

To specialize to the case of representation varieties, we need a notion of Zariski tangent spaces

for analytic varieties in the infinite product GΓ. We follow the approach of [Kar92] and refer the

reader to that paper for more details. The relevant notion here is that of real valued ringed space.

Definition 1.4.2 (Real valued ringed space). A real valued ringed space is a topological space with

a sheaf of real valued continuous functions.
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Examples of real valued ringed spaces include smooth manifolds together with the sheaf of

smooth functions, analytic varieties together with the sheaf of analytic functions or algebraic vari-

eties together with the sheaf of rational maps. There is a notion of Zariski tangent space for real

valued ringed spaces that generalizes the notion of tangent spaces for manifolds and that of Zariski

tangent spaces for analytic and algebraic varieties.

On the space GΓ, one can define a notion of smooth functions. A function F : GΓ Ñ R is

called locally smooth if it is locally a smooth function of a finite number of coordinates. The space

GΓ, together with the sheaf of locally smooth real-valued functions on GΓ, is a real valued ringed

space. In the case of GΓ, the Zariski tangent space at any point can be identified with gΓ via left

translation.

The representation variety HompΓ, Gq is the subspace of the space GΓ cut out by the equations

φpxyqφpyq�1φpxq�1 � 1, @x, y P Γ.

As such, it has an induced ringed space structure. Previously, in the context of Lemma 1.2.2, we

explained that HompΓ, Gq inherits its structure from the embedding inside Gn that depends on a

choice of generators for Γ. In contrast, the embedding HompΓ, Gq � GΓ does not require to fix a

set of generators for Γ. The disadvantage is that GΓ, unlike Gn, is an infinite product.

Lemma 1.4.3 ([Kar92]). Fix a set of n generators of Γ and let Fn be the free group on n generators.

The following diagram is a commutative diagram of real valued ringed spaces:

Gn

HompΓ, Gq GFn

GΓ

In particular, the structures induced by Gn and GΓ on HompΓ, Gq coincide.

We refer the reader to [Kar92] for a proof of Lemma 1.4.3.

Working with the embedding HompΓ, Gq � GΓ, we can determine the Zariski tangent space to

the representation variety without referring to a presentation of Γ. Let Fx,y : GΓ Ñ G be defined by

Fx,ypfq :� fpxyqfpyq�1fpxq�1. The Zariski tangent space to HompΓ, Gq at φ is the intersection of

the kernels of the linear forms DφFx,y : gΓ Ñ g for all x, y P Γ (each tangent space to G is naturally

identified to g via left translation).

Lemma 1.4.4. It holds that

DφFx,ypvq � vpxyq � vpxq �Adpφpxqqvpyq

for v P gΓ and φ P HompΓ, Gq.
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Proof. By definition, we have that

DφFx,ypvq �
d

dt

����
t�0

Fx,ypexpptvqφq

�
d

dt

����
t�0

expptvpxyqqφpxyqφpyq�1 expp�tvpyqqφpxq�1 expp�tvpxqq

� vpxyq � vpxq �Adpφpxqqvpyq.

Here exp: gÑ G denotes the Lie theoretic exponential map.

We conclude

Corollary 1.4.5 ([Gol84], [Kar92]). The Zariski tangent space to HompΓ, Gq at φ is

Tφ HompΓ, Gq �
 
v P gΓ : vpxyq � vpxq �Adpφpxqqvpyq, @x, y P Γ

(
.

Corollary 1.4.5 can be reformulated in terms of group cohomology6. A representation φ P

HompΓ, Gq equips g with the structure of a Γ-module by

Γ
φ
ÝÑ G

Ad
ÝÑ Autpgq.

The resulting Γ-module is denoted by gφ. The set of 1-cochains in the bar complex that computes

the cohomology of Γ with coefficients in gφ is gΓ, see Appendix B.2 for more details on the bar

complex. The space of 1-cocycles is

Z1pΓ, gφq :�
 
v P gΓ : vpxyq � vpxq �Adpφpxqqvpyq, @x, y P Γ

(
and thus identifies with the Zariski tangent space to HompΓ, Gq at φ. The space of 1-coboundaries,

defined by

B1pΓ, gφq :�
 
v P gΓ : Dξ P g, vpxq � ξ �Adpφpxqqξ, @x P Γ

(
,

also plays a role in this context. They can be identified with the Zarisiki tangent space to the

InnpGq-orbit of φ P HompΓ, Gq at φ (recall from Section 1.3 that InnpGq acts on the representation

variety by post-composition). We denote this orbit by

Oφ � HompΓ, Gq.

Proposition 1.4.6 ([Gol84], [Kar92]). The Zariski tangent space to Oφ at φ is

TφOφ �
 
v P gΓ : Dξ P g, vpxq � ξ �Adpφpxqqξ, @x P Γ

(
.

Proof. The orbit Oφ is a smooth manifold isomorphic to the quotient of G by the stabilizer of φ

for the conjugation action. The stabilizer of φ is the centralizer Zpφq :� ZpφpΓqq of φpΓq inside G,

which is a closed subgroup of G. In particular, the Zariski tangent space to Oφ at φ coincides with

the usual notion of tangent space.

6We provide an introduction to group (co)homology, containing all the relevant notions for this work, in Appendix
B.
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A smooth deformation of φ inside Oφ is of the form φt � gptqφgptq�1, where gptq is a smooth

1-parameter family inside G with gp0q � 1. The tangent vector to φt at t � 0 is the coboundary

vpxq � ξ � Adpφpxqqξ where ξ P g is the tangent vector to gptq at t � 0. Conversely, for any ξ P g,

the coboundary vpxq � ξ �Adpφpxqqξ is tangent to expptξqφ expp�tξq at t � 0.

Observe that B1pΓ, gφq can be identified with the quotient g{zpφq, where zpφq is the Lie algebra

of Zpφq. In particular, it holds that

dimB1pΓ, gφq � dimOφ � dimG� dimZpφq. (1.4.2)

We mention that the quotient

H1pΓ, gφq � Z1pΓ, gφq{B
1pΓ, gφq

is known as the first cohomology group of the group Γ with coefficients in the Γ-module gφ intro-

duced in Definition B.2.

Example 1.4.7 (Surface groups). In the special case of a closed surface group, one can obtain

the conclusion of Corollary 1.4.5 from the embedding Hompπg,0, Gq � G2g. Let φ P Hompπg,0, Gq

and let Ai :� φpaiq and Bi :� φpbiq, where ai and bi are the generators of πg,0 in the presentation

(1.1.3). The Zariski tangent space to Hompπg,0, Gq at φ is isomorphic to the kernel of the differential

of the map

F : G2g Ñ G

pX1, . . . , Xg, Y1, . . . , Ygq ÞÑ
g¹
i�1

rXi, Yis

at pA1, . . . , Ag, B1, . . . , Bgq. A simple computation shows that the kernel of DpAi,BiqF corresponds

to the subset of g2g that consists of all those pα1, . . . , αg, β1, . . . , βgq such that

�
α1 �AdpA1qβ1

�
�Ad

�
rA1, B1s

��
β1 �AdpB1qα1

�
�Ad

�
rA1, B1s

��
α2 �AdpA2qβ2

�
�Ad

�
rA1, B1srA2, B2s

��
β2 �AdpB2qα2

�
� . . .

�
ģ

i�1

Ad

�
i�1¹
j�1

rAj , Bjs

��
αi �AdpAiqβi

�
�Ad

�
i¹

j�1

rAj , Bjs

��
βi �AdpBiqαi

�
(1.4.3)

vanishes, compare [Lab13, Prop. 5.3.12]. Once again, we identified TAiG � g and TBiG � g via left

translation.

To see the correspondence between this description of the Zariski tangent space and that of

Corollary 1.4.5, we proceed as follows. First, if one defines v : πg,0 Ñ g by vpaiq :� αi and

vpbiq :� βi for pα1, . . . , αg, β1, . . . , βgq that satisfy (1.4.3), and extend to πg,0 using vpxyq � vpxq �

Adpφpxqqvpyq, then v defines an element of Z1pπg,0, gφq. Indeed, it is sufficient to check that

v
�±

rai, bis
�
� 0. If one develops v

�±
rai, bis

�
using vpxyq � vpxq � Adpφpxqqvpyq and vprx, ysq �

vpxyq � Adpφprx, ysqqvpyxq, then one gets that v
�±

rai, bis
�
� 0 is equivalent to (1.4.3) vanishing.
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Conversely, given v P Z1pπg,0, gφq, then pvpa1q, . . . , vpagq, vpb1q, . . . , vpbgqq satisfies 1.4.3 by the

same argument as above.

1.5 Smooth points

Smooth points of analytic varieties in Rn are defined as follows.

Definition 1.5.1 (Smooth points). A point x of an analytic variety X � Rn is a smooth point if

there is an open neighbourhood U � X of x such that U is an embedded submanifold of Rn.

Using the Implicit Function Theorem, we can reformulate the condition and say that x is a

smooth point of X if and only if the rank of the Jacobi matrix (1.4.1) at x is maximal. By the

Rank-Nullity Theorem, this happens if and only if the dimension of the Zariski tangent space to X

at x is minimal. If every point of an analytic variety is smooth, then it is an analytic manifold.

In the context of representation varieties, we will use the characterization of smooth points as

the ones that minimize the dimension of the Zariski tangent space. For instance, if Γ is a free

group, then HompΓ, Gq is an analytic manifold because of the absence of relations (recall from

Lemma 1.2.2 that representation varieties are analytic varieties).

Lemma 1.5.2. The set of smooth points of HompΓ, Gq is invariant under the InnpGq-action.

Proof. The action of G on itself by conjugation is analytic. Therefore, it preserves smooth neigh-

bourhoods of points inside HompΓ, Gq. We can give an alternative argument by observing that

the Zariski tangent spaces at φ and gφg�1 are isomorphic as Γ-modules, and hence have the same

dimension. The isomorphism is given by

Z1pΓ, gφq Ñ Z1pΓ, ggφg�1q

v ÞÑ Adpgqv.

In the case that Γ � πg,0 is a closed surface group and G is quadrable, it is possible to describe

the smooth points of the representation variety explicitly.

Proposition 1.5.3 ([Gol84]). Let G be a quadrable Lie group. The smooth points of Hompπg,0, Gq

are those representations φ satisfying

dimZpGq � dimZpφq,

where ZpGq denotes the centre of G and Zpφq is the centralizer of φpπg,0q inside G (the dimensions

are to be understood in terms of manifolds here).

Proof. We compute the dimension of the Zariski tangent space to Hompπg,0, Gq at φ. We use the

identification with Z1pπg,0, gφq provided by Corollary 1.4.5. Recall that the group cohomology of

πg,0 with coefficients in gφ is isomorphic to the de Rham cohomology of the surface Σg,0 with

coefficients in the flat vector bundle Eφ associated to gφ (i.e. the adjoint bundle of the principal

G-bundle prΣg,0 �Gq{πg,0 built from φ, see [Gol84] for more details):

H�pπg,0, gφq � H�
dRpΣg,0, Eφq.
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In particular, it vanishes in degrees larger than 2.

Goldman observed that the quantity

dimH0pπg,0, gφq � dimH1pπg,0, gφq � dimH2pπg,0, gφq (1.5.1)

is independent of φ. Indeed, using that the space of cochains C�pΣg,0, Eφq in the de Rham complex

is finite-dimensional in every degree, we conclude that (1.5.1) is equal to the alternating sum of

the dimensions of the spaces of cochains in the de Rham complex. The latter is independent of φ,

because the structure of πg,0-module of gφ only intervenes in the differential, see the definition of

the bar resolution (B.2). If φ is the trivial representation, then gφ is the trivial πg,0-module and

(1.5.1) is equal to the Euler characteristic of Σg,0 times the dimension of G. We conclude

dimH1pπg,0, gφq � p2g � 2q dimG� dimH0pπg,0, gφq � dimH2pπg,0, gφq.

Poincaré duality (see Appendix B.7) implies H2pπg,0, gφq � H0pπg,0, g
�
φq
�. The existence of a non-

degenerate, Ad-invariant, symmetric, bilinear form on g implies that gφ � g�φ as πg,0-modules.

Hence, dimH0pπg,0, gφq � dimH2pπg,0, gφq. It is easy to see that H0pπg,0, gφq is the space of

Adpφq-invariant elements of g, namely zpφq. Hence

dimH1pπg,0, gφq � p2g � 2q dimG� 2 dimZpφq.

Recall from (1.4.2) that the dimension of B1pπg,0, gφq is equal to dimG � dimZpφq. Finally, we

obtain

dimZ1pπg,0, gφq � p2g � 1q dimG� dimZpφq.

Since ZpGq � Zpφq, it holds that dimZpGq ¤ dimZpφq, and we conclude that φ minimizes the

dimension of its Zariski tangent space if and only if dimZpGq � dimZpφq.

Alternative proof. Instead of using group cohomology (and the embedding of the representation

variety in GΓ), one can alternatively compute the dimension of the Zariski tangent space at a

representation φ from the embedding Hompπg,0, Gq � G2g, compare [Lab13, Prop. 5.3.12]. The

infinitesimal kernel of the unique relation of a closed surface group is described by (1.4.3), where

Ai � φpaiq and Bi � φpbiq.

Consider the orthogonal complement V in g, with respect to the Ad-invariant pairing B coming

from the quadrability of G, of the image of the map µ : g2g Ñ g defined by (1.4.3). A simple

computation leads to

µpα1, . . . , αg, β1, . . . , βgq �
ģ

i�1

�¹
j i

Ad
�
rAj , Bjs

��
pαi �AdpAiBiA

�1
i qαiq

�
ģ

i�1

�¹
j¤i

Ad
�
rAj , Bjs

��
pβi �AdpBiAiB

�1
i qβiq.

The orthogonal complement of the Lie algebra of the centralizer Zpgq of any element g P G is equal

to the image of the map g Ñ g given by ξ ÞÑ ξ � Adpgqξ. Therefore, using the general fact that
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Zpghg�1q � gZphqg�1 for any g, h P G, we obtain that V must contain the Lie algebra of

g£
i�1

¹
j i

Ad
�
rAj , Bjs

��
ZpAiBiA

�1
i q X ZpAiBiAiB

�1
i A�1

i q
�

�
g£
i�1

¹
j i

Ad
�
rAj , Bjs

�
AdpAiBiq

�
ZpBiq X ZpAiq

�
�

g£
i�1

¹
j i

Ad
�
rAj , Bjs

��
ZpBiq X ZpAiq

�
�

g£
i�1

�
ZpAiq X ZpBiq

�
.

Hence, Zpφq � V . The reverse inclusion is obvious. Using the Rank-Nullity Theorem, we conclude,

as before, that the dimension of the Zariski tangent space at the representation φ is

dimZ1pπg,0, gφq � dim Kerpµq � p2g � 1q dimG� dimZpφq.

Proposition 1.5.3 applies to closed surface groups. In Proposition 4.2.5 below, we will discuss

an analogous description of smooth points for fundamental groups of punctured surfaces.
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Chapter 2

The action by conjugation

In this section, we elaborate on the action of InnpGq on HompΓ, Gq by post-composition. We

sometimes refer to this action as the the conjugation action of G on the representation variety.

2.1 Freeness

The action of InnpGq � G{ZpGq on HompΓ, Gq is never free, since the trivial representation is

always a global fixed point. It is easy to see that the stabilizer of a representation φ P HompΓ, Gq

is Zpφq{ZpGq. In particular

Lemma 2.1.1. The InnpGq-action is free on the InnpGq-invariant subset that consists of all the

representations φ such that

ZpGq � Zpφq.

There is a neat characterization of the points where the action is locally free. Recall that the

action of a topological group on a set X is locally free at x P X if the stabilizer of x is discrete.

Proposition 2.1.2 ([Gol84]). The action of InnpGq on HompΓ, Gq is locally free at φ if and only

if

dimZpGq � dimZpφq.

Proof. The action of InnpGq on HompΓ, Gq induces, for any representation φ, a surjective linear

map InnpGq Ñ TφOφ, where InnpGq denotes the Lie algebra of InnpGq and Oφ the InnpGq-orbit of

φ. The map is given by

ξ ÞÑ
d

dt

����
t�0

expptξqpφq.

Observe that the action of InnpGq on HompΓ, Gq is locally free at φ if and only if the induced map

InnpGq Ñ TφOφ is injective. Since the map is always surjective, this is equivalent to asking that

both spaces InnpGq and TφOφ have the same dimension. The dimension of InnpGq is dimG �

dimZpGq and the dimension of TφOφ is dimG � dimZpφq, as computed in (1.4.2). Hence, the

dimensions coincide if and only if dimZpGq � dimZpφq.
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Example 2.1.3 (Surface groups). It is striking that the condition of Proposition 2.1.2 coincides

with that of Proposition 1.5.3. This means that if Γ � πg,0 is a closed surface group, then the

smooth points of Hompπg,0, Gq are precisely those where the action of InnpGq is locally free.

Proposition 2.1.2 motivates the following definition.

Definition 2.1.4 (Regular representations). A representation φ P HompΓ, Gq is called regular if

dimZpGq � dimZpφq.

We denote by HomregpΓ, Gq the InnpGq-invariant subspace of regular representations. If it further

holds that ZpGq � Zpφq, we say that φ is very regular. The InnpGq-invariant subspace of very

regular representations is denoted by HomvRegpΓ, Gq.

We will see later that if G is a reductive algebraic group, then most representations are regular,

see Proposition 2.2.9.

Example 2.1.5. In the case G � PSLp2,Rq, the representations φ : Γ Ñ PSLp2,Rq that are not

regular are of a particular kind. We use the description of centralizers in PSLp2,Rq provided by

Lemma A.9. It tells us that a non-regular representation is of one of the following kinds:

1. φ is the trivial representation.

2. The elements of φpΓq are rotations around the same point of H and Zpφq � PSOp2,Rq.

3. The elements of φpΓq fix a common geodesic in H and Zpφq � R¡0.

4. The elements of φpΓq fix the same point in the boundary of H and Zpφq � R.

As soon as the image of φpΓq contains, for instance, two elements of different nature (elliptic,

hyperbolic or parabolic) or two rotations around different points, then Zpφq � ZpPSLp2,Rqq is

trivial and φ is regular, actually very regular.

2.2 Properness

The conjugation action of G on HompΓ, Gq is in general not proper.

Example 2.2.1. Consider the case where Γ � F2 � xa, by is the free group on two generators

and G � PSLp2,Rq. Let φ1 : F2 Ñ PSLp2,Rq be the representation given by φ1paq � par� (see

(A.6)) and φ1pbq is the identity. Let φ2 denote the trivial representation. Since the closure of the

conjugacy class of any parabolic element of PSLp2,Rq contains the identity, we observe that

φ2 P Oφ1
rOφ1

and tφ2u � Oφ2
.

So, the orbits Oφ1
and Oφ2

cannot be separated by disjoint open sets in the (topological) quotient

HompF2,PSLp2,Rqq{ InnpPSLp2,Rqq. In particular, the quotient is not Hausdorff and the conjugacy

action of PSLp2,Rq on HompF2,PSLp2,Rqq is not proper.
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Example 2.2.1 hints at the pathological behaviour of representations whose image lies in a

parabolic subgroup. This is essentially a worst case scenario, as we explain below.

Definition 2.2.2 (Borel and parabolic subgroups). Let G be an algebraic group. A Borel subgroup

of G is a maximal, Zariski closed, solvable connected subgroup of G. A Zariski closed subgroup of

G that contains a Borel subgroup is called a parabolic subgroup of G.

By definition, a Borel subgroup of G is automatically a Borel subgroup of G�. Similarly, P is a

parabolic subgroup of G if and only if P � is a parabolic subgroup of G�. If G is connected, then

all parabolic subgroups are connected [Mil17, Cor. 17.49].

Example 2.2.3. Let G � GLpn,Cq. The subgroup of upper triangular matrices is a Borel subgroup

of G. More generally, the Borel subgroups of GLpn,Cq are the ones that preserve a full flag in Cn

and the parabolic subgroups are those that preserve a (partial) flag in Cn [Bou05, Chap. VIII, §13].

Definition 2.2.4 (Irreducible representations). Let G be an algebraic group. A representation

φ : Γ Ñ G is called irreducible if the image of φ does not lie in a proper parabolic subgroup of G.

We denote by HomirrpΓ, Gq the InnpGq-invariant subspace of irreducible representations.

Observe that if G � GLpn,Cq, then φ being irreducible in the sense of Definiton 2.2.4 is equiv-

alent to Cn being an irreducible Γ-module (i.e. φ is an irreducible representation in the classical

sense). This is a consequence of Example 2.2.3.

Example 2.2.5. Let G � SLp2,Cq. The irreducible representations into SLp2,Cq can be charac-

terized in terms of traces:

Lemma 2.2.6. A representation φ : Γ Ñ G is irreducible if and only there exists an element

γ P rΓ,Γs � Γ of the commutator subgroup of Γ such that Trpφpγqq � 2.

A proof of Lemma 2.2.6 can be found in [CS83, Lem. 1.2.1]. The argument relies on the following

observation: if A,B P SLp2,Cq are two upper-triangular matrices, then their commutator rA,Bs is

upper-triangular and has trace 2 (i.e. upper-triangular with ones on the diagonal).

Definition 2.2.7 (Irreducible subgroups). A subgroup of an algebraic group G is called irreducible

if it is not contained in a proper parabolic subgroup of G.

In particular, a representation φ : Γ Ñ G is irreducible if and only if its image is an irreducible

subgroup of G. The centralizer of an irreducible subgroup in a reductive group G is a finite extension

of ZpGq [Sik12, Prop. 15] (see also [Sik12, Cor. 17]). Hence

Lemma 2.2.8. Let G be a reductive algebraic group. Irreducible representations into G are regular:

HomirrpΓ, Gq � HomregpΓ, Gq.

It is important to note the following

Proposition 2.2.9. Let G be a reductive algebraic group. The subspace of irreducible representa-

tions HomirrpΓ, Gq is Zariski open in the representation variety HompΓ, Gq. Moreover, if Γ � πg,n

is a surface group, then Homirrpπg,n, Gq is dense in a nonempty set of irreducible components of

Hompπg,n, Gq.
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We refer the reader to [Sik12, Prop. 27 & 29] for a proof. The main result of this section says

that if one restricts to irreducible representations, then the conjugation action of G becomes proper.

Theorem 2.2.10 ([JM87]). Let G be a reductive algebraic group. The InnpGq-action on HomirrpΓ, Gq

is proper.

We refer the reader to [JM87, Prop. 1.1] and references therein for a proof of Theorem 2.2.10.

Following [JM87], we introduce the notion of good representations.

Definition 2.2.11 (Good representations). Let G be an algebraic group. A representation φ : Γ Ñ

G is called good1 if it is irreducible and very regular. We denote by HomgoodpΓ, Gq the InnpGq-

invariant subspace of good representations.

Lemma 2.1.1 implies that the InnpGq-action on HomgoodpΓ, Gq is free and by Theorem 2.2.10 it

is also proper. It is, however, not clear a priori whether good representations exist. However, one

can prove the following

Lemma 2.2.12 ([JM87]). Let G be a reductive algebraic group. The set of good representations

HomgoodpΓ, Gq is Zariski open in the representation variety HompΓ, Gq.

Lemma 2.2.12 is proven in [JM87, Prop 1.3 & Lem. 1.3]. In general, HomgoodpΓ, Gq might not

be a smooth manifold. However, it is the case for closed surface groups by Proposition 1.5.3. We

conclude from Theorem 2.2.10 and Lemma 2.1.1 that

Corollary 2.2.13. Let G be a reductive algebraic group. Let Γ � πg,0 be a closed surface group.

The space of good representations Homgoodpπg,0, Gq is an analytic manifold of dimension p2g �

1q dimG� dimZpGq. The InnpGq-action on Homgoodpπg,0, Gq is proper and free, and the quotient

Homgoodpπg,0, Gq{ InnpGq

is an analytic manifold of dimension p2g � 2q dimG� 2 dimZpGq.

Note that the dimension of the quotient in Corollary 2.2.13 is always even. This observation

will be relevant later in Section 4 when we discuss the symplectic nature of character varieties.

The notion of irreducible representations can be generalized to the notion of reductive repre-

sentations.

Definition 2.2.14 (Linearly reductive groups). An algebraic group is called linearly reductive if

all its finite-dimensional representations are completely reducible.

Equivalently, over the fields of real or complex numbers, an algebraic group G is linearly reduc-

tive if and only if the algebraic subgroup that consists of the identity component for the Zariski

topology is reductive [Mil17, Cor. 22.43].

Definition 2.2.15 (Completely reducible subgroups). A subgroup of an algebraic group is called

completely reducible if and only if its Zariski closure is linearly reductive.

1In [JM87] and [Sik12] a good representation is defined to be a very regular reductive representation (see Definition
2.2.16). If G is reductive, then their definition is equivalent to ours (see Lemma 2.2.18).
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Definition 2.2.16 (Reductive representations). Let G be an algebraic group. A representation

φ : Γ Ñ G is called reductive (or completely reducible) if φpΓq � G is completely reducible. We

denote by HomredpΓ, Gq the InnpGq-invariant subspace of reductive representations.

In particular, a representation φ : Γ Ñ GLpn,Cq is reductive if and only if Cn is a completely

reducible Γ-module (i.e. a direct sum of irreducible Γ-modules).

Lemma 2.2.17. Let G be a reductive algebraic group. Irreducible representations φ : Γ Ñ G are

reductive:

HomirrpΓ, Gq � HomredpΓ, Gq.

Proof. The proof relies on the observation that irreducible subgroups of reductive algebraic groups

are completely reducible. This is proved in [Sik12, §3] using the notion of Levi subgroups.

The converse of Lemma 2.2.17 is not true in general. However

Lemma 2.2.18. Let G be a reductive algebraic group. A reductive representation into G is irre-

ducible if and only if it is regular:

HomirrpΓ, Gq � HomredpΓ, Gq XHomregpΓ, Gq.

The reader is referred to [Sik12, Cor. 17] for a proof of Lemma 2.2.18. Reductive representations

can be characterized as follows:

Proposition 2.2.19. Let G be a reductive algebraic group. A representation φ : Γ Ñ G is reductive

if and only if the the InnpGq-orbit Oφ of φ is closed in HompΓ, Gq.

A proof of Proposition 2.2.19 can be found in [Sik12, Thm. 30], based on an argument of

[JM87]. An immediate consequence of Proposition 2.2.19 is that the points of the topological

quotient HomredpΓ, Gq{ InnpGq are closed, i.e. it is a T1 space2.

Proposition 2.2.20 ([RS90]). Let G be a reductive algebraic group. The topological quotient

HomredpΓ, Gq{ InnpGq

is Hausdorff.

The reader is referred to [RS90, §7.3] and references therein for a proof of Proposition 2.2.20.

Some authors favour the notion of Zariski dense representations over irreducible representations,

see for instance [Lab13], [Mon16].

Definition 2.2.21 (Zariski dense representations). Let G be an algebraic Lie group. A repre-

sentation φ P HompΓ, Gq is called Zariski dense if φpΓq is a Zariski dense subgroup of G. It

is called almost Zariski dense if the Zariski closure of φpΓq contains G�. The InnpGq-invariant

spaces of Zariski dense and almost Zariski dense representations are denoted HomZdpΓ, Gq and

HomaZdpΓ, Gq, respectively.

2See Section 3 for a reminder of some notions of separability.

22



Recall that a subgroup H of an algebraic groups G is Zariski dense if and only if any regular

function that vanishes on H also vanishes on G.

Lemma 2.2.22. Let G be an algebraic Lie group. Almost Zariski dense representations are irre-

ducible:

HomaZdpΓ, Gq � HomirrpΓ, Gq.

Proof. Let φ : Γ Ñ G be almost Zariski dense. By definition, the Zariski closure of φpΓq contains

G�. In particular, no proper parabolic subgroups of G� can contain the identity component of

the Zariski closure of φpΓq. Since parabolic subgroups are by definition Zariski closed, no proper

parabolic subgroup of G can contain φpΓq.

Example 2.2.23. Let α1, . . . , αn P p0, 2πq
n be angles such that α1�. . .�αn � 2kπ for some integer

k. Let Fn � xa1, . . . , any denote the free group on n generators. We consider the representation

φ : Fn Ñ PSLp2,Rq defined by φpaiq � rotαi (see (A.2)). The representation φ is not Zariski

dense because its image lies inside PSOp2,Rq which is Zariski closed in PSLp2,Rq. However, φ

is irreducible as one can check that φpΓq has no fixed point in RP1 � R2{R�. Consider now the

representation φ defined as the composition of φ with the inclusion PSLp2,Rq � PSLp2,Cq. Observe

that φ : Fn Ñ PSLp2,Cq is reducible since it fixes r1 : is P CP1 � C2{C�, but it is still not Zariski

dense because its image lies inside PSOp2,Cq which is Zariski closed in PSLp2,Cq.

Lemma 2.2.24. Let G be an algebraic group such that ZpGq � ZpG�q. If φ P HomaZdpΓ, Gq, then

φ is very regular, i.e.

ZpGq � Zpφq.

In particular, almost Zariski dense representations are good:

HomaZdpΓ, Gq � HomgoodpΓ, Gq.

Proof. The argument is taken from [Lab13, §5.3]. Denote by ZpZpφqq the centralizer of Zpφq �

ZpφpΓqq in G. It is a Zariski closed subgroup of G that contains φpΓq. Hence, by almost Zariski

density of φpΓq, it holds G� � ZpZpφqq and thus Zpφq � ZpG�q. Since we assumed ZpG�q � ZpGq,

we conclude that ZpGq � Zpφq. It now follows from 2.2.22 that almost Zarsiki dense representations

are good.

It follows from Theorem 2.2.10 and Lemma 2.2.22 that, for a reductive algebraic group G (hence

connected) and Γ � πg,0 a closed surface group, the InnpGq-action on the subspace of Zariski dense

representations is free and proper, compare [Lab13, Thm. 5.2.6] and [Mon16, Lem. 2.10]. It is

interesting to note that the resulting quotient, at least in the case when ZpGq is finite, has the

same dimension as the quotient from Corollary 2.2.13.

By way of conclusion, we provide the reader with a Venn diagram that illustrates the different

relations of inclusion between the various notions of representations introduced in this section, see

Figure 2.1.
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reductive

regular♥

irreducible♠,♥,♦

good♠,♥,♦ very regular♥

Zd♥,♦

♠ : Zariski open

♥ : locally free

♥ : free

♦ : proper

Figure 2.1: We assume for simplicity that G is a reductive algebraic group (hence connected). The
two largest families of representations are the regular and the reductive ones. Their intersection is
the set of irreducible representations. A representation that is irreducible and very regular is called
good. Zariski dense representations are good.

2.3 Invariant functions

The real- or complex-valued functions of HompΓ, Gq that are invariant under the conjugation action

of G are called invariant functions of the representation variety. We consider the case where G is

an algebraic group over C. The algebra of regular functions on the variety HompΓ, Gq, a.k.a. its

coordinate ring, is denoted CrHompΓ, Gqs and the subalgebra of invariant functions is denoted by

CrHompΓ, GqsG.

In this section, we will only consider the case of a linear algebraic group G � GLpm,Cq. The main

example of invariant functions are the so-called trace functions (recall that Tr: GLpm,Cq Ñ C is a

conjugacy invariant).

Definition 2.3.1 (Trace functions). Let γ P Γ. The function

Trγ : HompΓ, Gq Ñ C

φ ÞÑ Trpφpγqq.

is called the trace function of γ. We denote by T pΓ, Gq the subalgebra of CrHompΓ, GqsG generated

by trace functions.

In most cases, as for instance when G is one of the classical complex Lie groups, invariant

functions of the representation variety are generated by trace functions. In other words, T pΓ, Gq �
CrHompΓ, GqsG. This is a consequence of Procesi’s Theorem (see Theorem 2.3.3 below) on invariants

24



of matrices.

Remark 2.3.2. Nagata’s Theorem implies that, ifG is a reductive algebraic group, then CrHompΓ, GqsG

is finitely generated, see for instance [Dol03, Thm. 3.3].

Let K denote either the field of real or complex numbers. We denote by MmpKq the algebra of

m�m matrices with coefficients in K. Let MmpKqn �MmpKq � . . .�MmpKq and KrMmpKqns be

the algebra of polynomial functions in n matrix variables ξk � pxki,jqi,j�1,...,m. The group GLpm,Kq
acts diagonally on MmpKqn by conjugation. For any subgroup G � GLpm,Kq, the subalgebra of

KrMmpKqns that consists of G-invariant polynomials is denoted KrMmpKqnsG.

Theorem 2.3.3 ([Pro76]). The following hold:

� If G P tGLpm,Kq,SLpm,Kqu, then KrMmpKqnsG is finitely generated by trace polynomials

TrpW q, where W is a reduced word in ξ1, . . . , ξn of length at most 2m � 1.

� If G P tOpm,Kq,SOpm,Kqu, then KrMmpKqnsG is finitely generated by trace polynomials

TrpW q, where W is a reduced word of length at most 2m�1 in ξ1, . . . , ξn and their orthogonal

transposes3.

� If G � Spp2m,Kq, then KrM2mpKqnsG is finitely generated by trace polynomials TrpW q, where

W is a reduced word of length at most 2m � 1 in ξ1, . . . , ξn and their symplectic transposes4.

The reader is referred to [Pro76] for the proof of Theorem 2.3.3, see also [DCP17].

Back to the context of representation varieties: Assume that Γ admits a generating family

pγ1, . . . , γnq, then the embedding ı : HompΓ, Gq � Gn induces a surjective morphism

ı� : CrGns� CrHompΓ, Gqs. (2.3.1)

The morphism ı� maps invariant functions to invariant functions and thus restricts to a morphism

pı�qG : CrGnsG Ñ CrHompΓ, GqsG. (2.3.2)

If we further assume G to be reductive, then pı�qG is surjective. This is a consequence of the

existence of Reynolds operators, see [Sik13, Rem. 25] or [Hos15, Cor. 4.23]. The morphism pı�qG

maps trace functions to trace functions in the following sense.

Lemma 2.3.4. Let W be a reduced word in the matrices variables ξ1, . . . , ξn. It holds that

pı�qGpTrpW qq � TrW pγ1,...,γnq .

Proof. The word W induces a word map W : Gn Ñ G. The trace function TrpW q : Gn Ñ C sends

pg1, . . . , gnq to TrpW pg1, . . . , gnqq. The image pı�qGpTrpW qq is the invariant function HompΓ, Gq Ñ

C given by φ ÞÑ TrpW pφpγ1q, . . . , φpγnqqq. Because φ is a group homomorphism, it holds that

3The orthogonal transpose of a matrix is the inverse of its transpose. The orthogonal group Opm,Kq consists
precisely of the matrices that are equal to their orthogonal transposes.

4The symplectic transpose of a matrix A P M2mpKq is the matrix JAtJ , where J �

�
0 Im

�Im 0



and Im is the

m �m identity matrix. The symplectic group Spp2m,Kq consists precisely of the matrices that are equal to their
symplectic transposes.
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TrpW pφpγ1q, . . . , φpγnqqq � TrpφpW pγ1, . . . , γnqq, where we now think of W as a function W : Γn Ñ

Γ. We conclude that pı�qGpTrpW qq � TrW pγ1,...,γnq.

Lemma 2.3.5. Let G � GLpm,Cq be a reductive linear algebraic group. If the algebra CrGnsG is

generated by trace functions, then

CrHompΓ, GqsG � T pΓ, Gq.

Proof. If G is reductive, then pı�qG is surjective and so pı�qGpCrGnsGq � CrHompΓ, GqsG. More-

over, pı�qG maps trace functions to trace functions, thus, if CrGnsG is generated by trace functions,

then it holds pı�qGpCrGnsGq � T pΓ, Gq.

Lemma 2.3.6. Let G be one of the reductive groups GLpm,Cq or SLpm,Cq with m ¥ 2, Opm,Cq�

or SOpm,Cq with m ¥ 3, or Spp2m,Cq. Then CrGnsG is generated by trace functions.

Proof. The inclusion G � MmpCq induces a surjective morphism CrMmpCqnsG � CrGnsG. Theo-

rem 2.3.3 says that CrMmpCqnsG is generated by trace of words of matrices and their transposes.

In particular, a similar argument as in the proof of Lemma 2.3.5 implies that CrGnsG is generated

by traces of words. We used here that the inverse transpose and the symplectic transpose of any

matrix in Opm,Cq and Spp2m,Cq, respectively, is the matrix itself.

We conclude

Corollary 2.3.7. Let G be one of the reductive groups GLpm,Cq or SLpm,Cq with m ¥ 2, Opm,Cq�

or SOpm,Cq with m ¥ 3, or Spp2m,Cq. Then

CrHompΓ, GqsG � T pΓ, Gq.

Example 2.3.8. Let G � SLp2,Cq. Corollary 2.3.7 says that the algebra of invariant functions

CrHompΓ,SLp2,CqqsSLp2,Cq is generated by Trγ for γ P Γ. The trace formula TrpAqTrpBq �

TrpABq � TrpAB�1q for 2� 2 matrices gives the relation

Trγ1 Trγ2 � Trγ1γ2 �Trγ1γ�1
2
.

It is folklore knowledge (see [MS21, §1]) that the trace formula, together with the relation Tr1 � 2,

is a complete set of relations. In other words, there is an isomorphism of C-algebras

CrHompΓ,SLp2,CqqsSLp2,Cq � CrXγ : γ P Γs
N�

X1 � 2, Xγ1Xγ2 �Xγ1γ2 �Xγ1γ
�1
2

	
.

2.4 Characters

A character is the analogue of a trace function where a representation is now fixed and γ P Γ is the

variable. We assume again that G � GLpm,Cq is a linear algebraic group.
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Definition 2.4.1 (Characters). The character of a representation φ P HompΓ, Gq is the function

χφ : Γ Ñ C

γ ÞÑ Trpφpγqq.

In other words, χφpγq � Trγpφq. We denote by χpΓ, Gq � CΓ the set of all characters of representa-

tions in HompΓ, Gq equipped with the subspace topology inherited from the compact-open topology

on CΓ.

Note that χpΓ, Gq � CΓ is automatically a Hausdorff space because CΓ is a Hausdorff space.

Theorem 2.4.2 ([CS83]). The space χpΓ, Gq � CΓ is a closed algebraic variety for G � SLp2,Cq.

We refer the reader to [CS83, Cor. 1.4.5] for a proof of Theorem 2.4.2. The natural projection

HompΓ, Gq Ñ χpΓ, Gq

factors through the quotient HompΓ, Gq{ InnpGq. A character does not necessarily determine a

unique conjugacy class of representations. For instance, the two representations of Example 2.2.1

are not conjugate but determine the same character. However, the following is true.

Proposition 2.4.3. Let G � GLpm,Cq be a linear algebraic group. Conjugacy classes of irreducible

representations are determined by their characters.

Culler–Shalen provide a proof of Proposition 2.4.3 in [CS83, Prop. 1.5.2] for the case G �

SLp2,Cq and claim that the result still holds when SLp2,Cq is replaced by GLpm,Cq. The analogous

result for almost Zariski dense representations can be found in [Lab13, Cor. 5.3.7].
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Chapter 3

Character varieties

The previous sections highlighted the relevance of the quotient space HompΓ, Gq{ InnpGq. However,

it was also explained that there is no reason to expect that this quotient has any nice structure,

since the action of G by conjugation on the representation variety is non-free and non-proper in

general. The goal of this section is to construct an alternative space, with a nicer structure than the

topological quotient HompΓ, Gq{ InnpGq and with a projection from HompΓ, Gq that factors through

HompΓ, Gq{ InnpGq. The specification is to construct the largest possible space, while ensuring some

regularity such as being Hausdorff or being a variety or manifold. The resulting space will be called

a character variety of the finitely generated group Γ and the Lie group G. Several constructions

explained below lead to richer structures but require more assumptions on the Lie group G.

We start by recalling the definitions of two separability properties. A topological space X is

said to be

� T1 if for any pair of distinct points in X, each point lies in an open set that does not contain

the other, or, equivalently, X is T1 if the points of X are closed,

� T2 or Hausdorff if for any pair of distinct points in X, there are two disjoint open sets such

that each contains one of the two points.

Note that the quotient HompF2,PSLp2,Rqq{ InnpPSLp2,Rqq of Example 2.2.1 is not only non-

Hausdorff, but is also not T1. Indeed, the closure of the orbit of φ1 always contains the orbit of

φ2.

3.1 Hausdorff quotient

The first approach consists in considering the Hausdorffization the topological quotient. The Haus-

dorffization of a topological space X is basically the largest Hausdorff quotient of X.

Definition 3.1.1 (Hausdorffization). Consider the equivalence relation on X given by x � y if and

only if x � y for all equivalence relations � on X such that X{� is Hausdorff (such a relation �

always exists, as one can identify all the points of X). The quotient

HauspXq :� X{�
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is the Hausdorffization of X.

Lemma 3.1.2. The space HauspXq is a Hausdorff topological space. Moreover, the space HauspXq

has the following universal property: If Y is a Hausdorff topological space, then any continuous

surjective map X Ñ Y factors uniquely through the projection X Ñ HauspXq.

Proof. First we prove that HauspXq is a Hausdorff space. Let x, y P X be two points with x � y.

By definition, there exists an equivalence relation � on X with Hausdorff quotient such that x � y.

Since the projections of x and y in X{� are separable and the map X{�Ñ X{� is continuous,

the projections of x and y are also separable in X{�.

Let now Y be a Hausdorff space and f : X Ñ Y be a continuous surjection. Define an equivalence

relation on X by x � y if and only if fpxq � fpyq. The quotient X{ � is homeomorphic to the

Hausdorff space Y . This implies the existence of a continuous surjective map HauspXq Ñ Y such

that f is the composition X Ñ HauspXq Ñ Y . The factoring map is uniquely determined by f .

Corollary 3.1.3. If x and y are two points of X such that {x}X {y} � H, then x � y.

Proof. Since HauspXq is Hausdorff, its points are closed. In particular, the conjugacy classes for

the relation � are closed subsets of X. If we assume that x � y, then the conjugacy classes of x and

y are disjoint closed subsets of X. This implies that the closures of txu and tyu are disjoint.

Definition 3.1.4 (Hausdorff character variety). The Hausdorff character variety of a finitely gener-

ated group Γ and a Lie groupG is the Hausdorffization of the topological quotient HompΓ, Gq{ InnpGq

and is denoted

RepT2pΓ, Gq :� Haus
�

HompΓ, Gq
M

InnpGq

	
.

The construction of character varieties by Hausdorff quotients has the advantage to work in a

broad sense (it could even be defined for topological groups G). It is the approach favoured in

[Mon16], for instance.

3.2 T1 quotient

An alternative to the Hausdorff quotient is the T1 quotient used in [RS90, §7]. Let G be a topological

group acting on a space X. For any x P X, we denote the G-orbit of x by Ox. We make the following

crucial assumption:

@x P X, Ox � X contains a unique closed G-orbit. (3.2.1)

Let X {{G denote the set of closed orbits for the action of G on X and define

π : X Ñ X {{G

to be the map that sends x to the unique closed orbit contained in Ox. A topology on X {{ G is

defined by declaring π to be a quotient map, i.e Z � X {{G is closed if and only if π�1pZq � X is

closed. Define a relation on X by

x � y ô Ox XOy � H.
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Lemma 3.2.1. Under the assumption (3.2.1), the relation � is an equivalence relation and X {{G

is homeomorphic to the quotient X{�.

Proof. The relation � is obviously symmetric and reflexive. We prove that it is also transitive.

Assume that x � y and y � z. In particular, Ox XOy is nonempty and thus contains an element

w. Since Ox XOy is closed and G-invariant, it holds Ow � Ox XOy. We conclude that Ox XOy

contains a unique closed orbit which is the one contained in Ow. Similarly, Oy X Oz contains a

unique closed orbit. By uniqueness of the closed orbit contained in Oy, the two must coincide.

Hence, Ox XOy XOz contains Ow and is therefore nonempty. This shows that x � z.

To see that X {{ G � X{ �, observe that, by the above argument, πpxq � πpyq if and only if

x � y. Both are quotients of X and therefore homeomorphic.

Lemma 3.2.2. The space X {{G has the following universal property: For every T1 space Y , any

continuous map X Ñ Y that is constant on G-orbits factors uniquely through π : X Ñ X {{G.

Proof. Let Y be T1 with a continuous map f : X Ñ Y that is constant on G-orbits. Let x P X. We

want to prove that f is constant on Ox. Let y � fpxq. Since Y is T1, the singleton tyu � Y is closed

and so is f�1pyq. Therefore, Ox � f�1pyq and f is constant on Ox. This shows that f : X Ñ Y

factors through X {{G. The factoring map f : X {{GÑ Y is continuous and uniquely determined

by f .

In the case that X {{G is a T1 space, then Lemma 3.2.2 says that X {{G is the largest T1 quotient

of X. There is a relation between X {{G and the Hausdorffization of the topological quotient X{G.

Namely

Lemma 3.2.3. There is a natural surjective continuous map

X X{G

X {{G HauspX{Gq

π

D

Proof. Let x and y be two points of X. Lemma 3.2.1 says that if πpxq � πpyq, then Ox XOy � H.

This means the closures of Ox and Oy, seen as singletons in X{G, have a nonempty intersection.

By Corollary 3.1.3, we conclude that x and y project to the same point in HauspX{Gq.

Corollary 3.2.4. If X {{G is Hausdorff, then it is homeomorphic to the Hausdorffization of X{G.

Definition 3.2.5 (T1 character variety). If the conjugation action of G on the representation

variety HompΓ, Gq satisfies property (3.2.1), we define the T1 character variety of Γ and G to be

RepT1pΓ, Gq :� HompΓ, Gq {{ InnpGq.

Note that the T1 character variety of Γ and G might not be a T1 space, but always lies over any

T1 quotient of HompΓ, Gq by Lemma 3.2.2. In particular, by Lemma 3.2.3, there is a surjection

RepT1pΓ, Gq� RepT2pΓ, Gq
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which is a homeomorphism when RepT1pΓ, Gq is Hausdorff.

3.3 GIT quotient

In this section, we sketch a construction of character variety in the case that G is a complex

reductive algebraic group. It is based on geometric invariant theory (GIT). The reader may consult

[Sik12], [Dre04, §2] or [Lou15, §B.5] for more details.

If G is a complex algebraic group then the representation variety HompΓ, Gq is an algebraic

variety by Lemma 1.2.3. Recall that the algebra of regular functions of HompΓ, Gq is denoted

CrHompΓ, Gqs and the subalgebra of G-invariant functions is denoted CrHompΓ, GqsG. Nagata’s

theorem implies that CrHompΓ, GqsG is finitely generated, see Remark 2.3.2. In particular, there

is an algebraic variety denoted SpecpCrHompΓ, GqsGq whose algebra of polynomial functions is

CrHompΓ, GqsG. This variety is also known as the GIT quotient of HompΓ, Gq.

Definition 3.3.1 (GIT character variety). The GIT character variety of a finitely generated group

Γ and a complex reductive algebraic group G is defined to be

RepGITpΓ, Gq :� SpecpCrHompΓ, GqsGq.

The GIT character variety has by definition the structure of an algebraic variety and is, in par-

ticular, a Hausdorff topological space with the standard topology. The inclusion CrHompΓ, GqsG �

CrHompΓ, Gqs induces a surjective morphism of algebraic varieties

p : HompΓ, Gq� SpecpCrHompΓ, GqsGq.

We recall here some general properties of GIT quotients and refer the reader to [Dre04, §2] and

[Lou15, §B.5], and references therein for proofs.

Lemma 3.3.2. The GIT quotient SpecpCrHompΓ, GqsGq has the following universal property: for

every algebraic variety Y , any morphism HompΓ, Gq Ñ Y that is constant on G-orbits factors

uniquely through p : HompΓ, Gq Ñ SpecpCrHompΓ, GqsGq.

Lemma 3.3.3. The GIT quotient SpecpCrHompΓ, GqsGq satisfies the following properties:

1. For two representations φ1, φ2 P HompΓ, Gq, it holds that

ppφ1q � ppφ2q ô Oφ1
XOφ2

� H.

2. Any fibre of p contains a unique closed orbit (compare (3.2.1)).

Lemma 3.3.3, combined with Lemma 3.2.1, implies that the underlying topological structure

of the GIT character variety of Γ and G coincides with the T1 character variety. Since the GIT

character variety is a Hausdorff space, it further coincides with the Hausdorff character variety by

Corollary 3.2.4:

RepGITpΓ, Gq � RepT1pΓ, Gq � RepT2pΓ, Gq.
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3.4 Analytic quotient

If one is interested in constructing a character variety that is an analytic manifold, one can restrict

to good representations defined in Definition 2.2.11. If HomgoodpΓ, Gq is a nonempty analytic

manifold (recall from Corollary 2.2.13 that it is the case if Γ � πg,0 is a closed surface group and G

is a reductive algebraic group), then the quotient HomgoodpΓ, Gq{ InnpGq is an analytic manifold.

Definition 3.4.1 (Analytic character variety). The analytic character variety of a closed surface

group Γ � πg,0 and a reductive algebraic group G is defined to be

Rep8pπg,0, Gq :� Homgoodpπg,0, Gq{G.

The topology of an analytic character variety is a Hausdorff. Hence, by Lemma 3.1.2, there is

a projection from the Hausdorff character variety (which does not need to be a homeomorphism)

RepT2pπg,0, Gq� Rep8pπg,0, Gq.

3.5 Variant of the GIT and analytic quotients

The GIT character variety can be described more concretely as follows.

Definition 3.5.1 (Stability of representations). Let G be an algebraic group. A representation

φ : Γ Ñ G is

� polystable if Oφ is closed.

� stable if φ is polystable and regular.

The InnpGq-invariant subspace of polystable representations is denoted HompspΓ, Gq and the sub-

space of stable representations is denoted HomspΓ, Gq.

These notions are redundant if G is a reductive complex algebraic group because of the following.

Proposition 3.5.2. Let G be a reductive complex algebraic group. Let φ P HompΓ, Gq be a repre-

sentation. Then

1. φ is reductive if and only if φ is polystable,

2. φ is irreducible if and only if φ is stable.

The first assertion of Proposition 3.5.2 was already stated in Proposition 2.2.19. The second

assertion is a consequence of Lemma 2.2.18.

Theorem 3.5.3. Let G be a reductive complex algebraic group. The topological quotient

HompspΓ, Gq{ InnpGq � HomredpΓ, Gq{ InnpGq

is homeomorphic to RepGITpΓ, Gq. It contains, as an open subset, the topological quotient

HomspΓ, Gq{ InnpGq � HomirrpΓ, Gq{ InnpGq
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which is an orbifold whenever ZpGq is finite.

Proof. Polystable representations have a closed orbit under the InnpGq-action by definition. So, the

first statement of Lemma 3.3.3 implies that the projection p : HompΓ, Gq Ñ SpecpCrHompΓ, GqsGq

factors through an injective map

HompspΓ, Gq{ InnpGq Ñ RepGITpΓ, Gq.

We can use the second statement of Lemma 3.3.3 to see that this map is also surjective.

Recall now from Proposition 2.2.9 that HomirrpΓ, Gq � HomspΓ, Gq is open in HompΓ, Gq. To

prove the orbifold statement, we use that an algebraic variety over the real or the complex numbers

has a finite number of connected components in the usual topology, see e.g. [DK81, Thm. 4.1]. So,

if ZpGq is finite, then a polystable representation φ : Γ Ñ G is stable if and only if Zpφq is finite.

Equivalently, φ is stable if and only if it has a finite stabilizer for the InnpGq-action. This shows that

the quotient is an orbifold since the InnpGq-action on HomspΓ, Gq is proper by Theorem 2.2.10.

Theorem 3.5.3 says that there is a natural structure of algebraic variety on the quotient of

the space of reductive representations by the InnpGq-action, given that G is a reductive complex

algebraic group. In the case that G is a real algebraic group, we have the following

Theorem 3.5.4 ([RS90]). Let G be a real algebraic group. The quotient

HomredpΓ, Gq{ InnpGq

is a real semialgebraic1 variety.

Theorem 3.5.4 is proved in [RS90, Thm. 7.6].

1A semialgebraic variety is defined to be a set of points satisfying polynomial equalities and inequalities.
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Chapter 4

Symplectic structure of character

varieties

Throughout this section we assume that G is a quadrable Lie group. We also fix a nondegenerate,

symmetric, Ad-invariant bilinear form B : g � g Ñ R. Goldman described in [Gol84] a natural

symplectic structure on the character variety of representations of a closed surface group into a

quadrable group. We remind the reader of the construction.

Assume for now that Γ is any finitely generated group. We explained in Corollary 1.4.5 that the

Zariski tangent space to HompΓ, Gq at a representation φ can be identified with Z1pΓ, gφq � gΓ.

To define a 2-form on the representation variety HompΓ, Gq we use the cup product in group

cohomology (B.11). Combined with the pairing B, this gives a map

ω : Z1pΓ, gφq � Z1pΓ, gφq
!

ÝÑ Z2pΓ, gφ b gφq
B�

ÝÑ Z2pΓ,Rq. (4.0.1)

The map ω is bilinear and anti-symmetric because the cup product is anti-symmetric in degree 1

(Lemma B.11) and B is symmetric.

Theorem 4.0.1 ([Kar92]). Let ϕ : Z2pΓ,Rq Ñ R be any continuous linear function that vanishes

on B2pΓ,Rq. Then, ϕ � ω is a closed 2-form on HompΓ, Gq.

The main conclusion of Theorem 4.0.1 is the statement that the form ϕ � ω is closed. Karshon

gives an elementary proof of the closeness via direct computations in group cohomology.

The cup product of coboundaries in B1pΓ, gφq is itself a coboundary inside B2pΓ, gφbgφq. This

shows that the 2-form ϕ � ω is degenerate. Recall from Proposition 1.4.6 that the tangent space at

φ to the G-orbit Oφ � HompΓ, Gq can be identified with the 1-coboundaries B1pΓ, gφq � gΓ. So,

ϕ � ω is degenerate at least along the tangent directions to the G-orbit of φ. In general, the kernel

of ϕ � ω might contain more degenerate directions than those which arise from Oφ.

Definition 4.0.2 (Goldman symplectic form). In the case that the G-orbits are the only directions

of degeneracy of ϕ � ω, we denote by ωG the induced nondegenrate closed form on cohomology:

pωGqφ : H1pΓ, gφq �H1pΓ, gφq Ñ R.
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We say that ωG is the the Goldman symplectic form on HompΓ, Gq{ InnpGq.

The index G refers to Goldman. We are abusing the terminology “symplectic form” here.

The topological quotient HompΓ, Gq{ InnpGq does not need to be a variety in general and it is

abusive to say that the “Zariski tangent space” at rφs P HompΓ, Gq{ InnpGq is the quotient space

H1pΓ, gφq � Z1pΓ, gφq{B
1pΓ, gφq. What ωG really is, is a 2-form on HompΓ, Gq that is degenerate

precisely along the orbits of the InnpGq-action.

4.1 Closed surface groups

Let Γ � πg,0 be a closed surface group. Let rπg,0s be a generator of H2pπg,0,Zq � Z (where Z is

the trivial πg,0-module). In other words, rπg,0s corresponds to an orientation of the surface Σg,0

under the isomorphism H2pπg,0,Zq � H2pΣg,0,Zq of Theorem B.8. Integration against rπg,0s gives

an isomorphism

rπg,0s" : H2pπg,0,Rq Ñ R.

Let ϕ : Z2pπg,0,Rq Ñ R be given by the composition of the quotient map Z2pπg,0,Rq Ñ H2pπg,0,Rq
and the integration against rπg,0s. Clearly, ϕ vanishes on B2pπg,0,Rq.

Lemma 4.1.1. Let Γ � πg,0 be a closed surface group. The composition of ϕ : Z2pπg,0,Rq Ñ R
with the form ω of (4.0.1) defines a 2-form on Hompπg,0, Gq whose kernel is B1pπg,0,Rq.

Proof. The proof relies on Poincaré duality in group cohomology for the group πg,0. It implies that

the cup product

H1pπg,0,Rq �H1pπg,0,Rq
!

ÝÑ H2pπg,0,Rq

is a nondegenerate pairing. This means that the form ϕ � ω is degenerate on B1pπg,0,Rq only.

The induced nondegenerate closed form pωGqφ : H1pπg,0, gφq�H
1pπg,0, gφq Ñ R is the celebrated

Goldman symplectic form for character varieties of closed surface groups representations. The

original argument of Goldman in [Gol84] to prove that the ωG is closed is inspired by the treatment

of the case when G is compact in [AB83]. The proof involves an infinite dimensional symplectic

reduction from the affine space of connections on some vector bundle, see [Gol84] and [Lab13, §6]

for more details.

Remark 4.1.2. The Goldman symplectic form depends on the pairing B on the Lie algebra of G.

Different choices of pairing for the same Lie group G may lead to different symplectic structures.

Abusing once again of the term “symplectic manifold”, one can say that Goldman’s construction

is a functor form the product category of the category of closed connected oriented surfaces Σg,0

with the category of quadrable Lie groups G with a choice of a form pairing B to the category of

“symplectic manifold”

�
Σg,0, pG,Bq

�
ù

�
Hompπ1pΣg,0q, Gq{ InnpGq, ωG

�
.

We point out that the quotients Hompπ1pΣg,0q, Gq{ InnpGq obtained for different choices of base-

points in Σg,0 are naturally isomorphic (the isomorphism does not depend on the choice of path

connecting different basepoints).
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4.2 General surface groups

Let Γ � πg,n be a surface group. We will assume in this section that n ¡ 0. As mentioned

earlier, in that case πg,n is a free group and the representation variety Hompπg,n, Gq is isomorphic

to the product G2g�n�1. It can be written as the disjoint union of so-called relative representation

varieties.

Definition 4.2.1 (Relative representation variety). Let C � pC1, . . . , Cnq be an ordered collection

of n conjugacy classes in G. The relative representation variety associated to pπg,n, G, Cq is the

subspace of Hompπg,n, Gq given by

HomCpπg,n, Gq :� tφ P Hompπg,n, Gq : φpciq P Ci, @i � 1, . . . , nu ,

where c1, . . . , cn refer to the generators of πg,n in the presentation (1.1.3).

If G{G denotes the set of conjugacy classes in G, then

Hompπg,n, Gq �
§

CPpG{Gqn
HomCpπg,n, Gq.

Relative character varieties are really associated to the particular presentation of πg,n that we fixed

in (1.1.3). The conjugation action of G on Hompπg,n, Gq restricts to HomCpπg,n, Gq.

Lemma 4.2.2. Let G be a Lie group equipped with an analytic atlas. The relative representation

variety HomCpπg,n, Gq is naturally an analytic subvariety of G2g�n. If G is a complex algebraic

group, then HomCpπg,n, Gq is an algebraic subvariety of Hompπg,n, Gq. If G is a real algebraic

group, then HomCpπg,n, Gq is a semialgebraic subvariety of Hompπg,n, Gq.

Proof. The proof is analogous to the proof of Lemma 1.2.2. A conjugacy class C P G{G is a smooth

submanifold of G isomorphic to G{Zpcq, where c is any element of C (recall that Zpcq is a closed

subgroup of G). It has a unique structure of real analytic manifold that makes the projection

map G Ñ G{Zpcq an analytic submersion. The relative representation variety HomCpπg,n, Gq is

naturally identified with the subspace of G2g � C1 � . . .� Cn cut out by the single relation of the

surface group πg,n (see (1.1.3)). This shows that HomCpπg,n, Gq is an analytic subvariety of G2g�n.

Observe now that, if G is a complex algebraic group, then conjugacy classes in G are algebraic

subvarieties of G. This can be seen as a consequence of Chevalley’s Theorem. Moreover, if G is

a real algebraic group, then conjugacy classes in G are semialgebraic subvarieties of G1. This, in

turn, is a consequence of Tarski–Seidenberg Theorem.

We would like to determine the Zariski tangent space to relative character varieties. We follow

the approach of [GHJW97, §4]. Let φ P HomCpπg,n, Gq. The Zariski tangent space to HomCpπg,n, Gq

at φ is the space of all tangent vectors in Z1pπg,n, gφq tangent to a smooth deformation φt of φ inside

Hompπg,n, Gq that satisfies φtpciq P Ci up to first order. Observe that the condition φtpciq P Ci is

equivalent to the existence of a smooth 1-parameter family giptq P G, with gip0q � 1, and

φtpciq � giptqφpciqgiptq
�1. (4.2.1)

1An example of conjugacy classes that are a semialgebraic subvarieties, but not algebraic subvarieties, are parabolic
conjugacy classes inside SLp2,Rq.
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Lemma 4.2.3. A vector v P Z1pπg,n, gφq tangent to φt at t � 0 satisfies (4.2.1) up to first order if

and only if

vpciq � 9gi �Adpφpciqq 9gi,

where 9gi P g is the tangent vector to giptq at t � 0.

Proof. We use d
dt

��
t�0

φtpciqφpciq
�1 � vpciq and derive the relation (4.2.1).

Corollary 4.2.4 ([GHJW97]). The Zariski tangent space to HomCpΓ, Gq at φ is

Tφ HomCpΓ, Gq �
 
v P Z1pπg,n, gφq : @i � 1, . . . , n, Dξi P g, vpciq � ξi �Adpφpciqqξi

(
.

The cocycles v P Z1pπg,n, gφq that satisfy the property stated in the conclusion of Corollary 4.2.4

are called parabolic 1-cocycles, see Appendix B.8. The subspace of parabolic cocycles is denoted

Z1
parpπg,n, gφq � Z1pπg,n, gφq.

The tangent space to the G-orbit Oφ of φ P HomCpΓ, Gq still identifies with B1pπg,n, gφq. The

quotient of parabolic 1-cocycles by 1-coboundaries is the first parabolic group cohomology group

of πg,n with coefficients in the πg,n-module gφ:

H1
parpπg,n, gφq � Z1

parpπg,n, gφq{B
1pπg,n, gφq.

Proposition 4.2.5. Let G be a quadrable Lie group. The dimension of the Zariski tangent space

to HomCpπg,n, Gq at φ is

p2g � 1q dimG�
ņ

i�1

dimCi � dimZpφq.

In particular, the smooth points of HomCpπg,n, Gq are the representations φ such that

dimZpGq � dimZpφq.

Proof. We proceed as in the alternative proof of Proposition 1.5.3. Let Ai � φpaiq, Bi � φpbiq

and Ri � φpciq, where ai, bi, ci refer to the presentation (1.1.3). Consider the map µ : g2g�n Ñ g

obtained by differentiating the unique surface group relation:

µpα1, . . . , αg, β1, . . . , βg, γ1, . . . , γnq �
ģ

i�1

�¹
j i

Ad
�
rAj , Bjs

��
pαi �AdpAiBiA

�1
i qαiq

�
ģ

i�1

�¹
j¤i

Ad
�
rAj , Bjs

��
pβi �AdpBiAiB

�1
i qβiq

�
g¹
k�1

Ad
�
rAk, Bks

� ņ

i�1

�
i�1¹
j�1

Ad
�
Rj

��
pγi �AdpRiqγiq.

Let V be the orthogonal complement of the image of µ with respect to the pairing B. Similarly

as in the alternative proof of Proposition 1.5.3, we conclude that V � Zpφq. The Rank-Nullity
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Theorem gives

dimTφ HomCpΓ, Gq � dim Kerpµq � p2g � 1qdimG�
ņ

i�1

dimCi � dimZpφq.

Remark 4.2.6. We make a little digression on the dimension of conjugacy orbits inside Lie groups.

Recall that any conjugacy class C P G{G is a smooth submanifold of G diffeomorphic to the quotient

G{Zpgq. If G is quadrable, the pairing B on g can be used to identify coadjoint orbits in g� to

adjoint orbits in g. Coadjoint orbits are naturally symplectic, see e.g. [CdS01, Homework 17]. The

exponential map maps the adjoint orbit of ξ P g to the conjugacy orbit of exppξq in G. Recall

however that the Lie theoretic exponential map needs not be a local diffeomorphism at ξ. If it

were, it would imply that the conjugacy orbit of exppξq in G has even dimension. M. Riestenberg

pointed out to the author a class of examples of Lie groups that contain conjugacy classes of odd

dimension. They consist of the group of all isometries of an odd-dimensional symmetric space X.

In that case, the conjugacy class of the orientation-reversing isometry sp that reflects through a

point p is the set of all the orientation-reversing isometries sq for q P X and is therefore isomorphic

to X.

Question 4.2.7. When does a conjugacy orbit in a quadrable Lie group G have even dimension?

Is it necessarily the case if it lies in the image of the exponential map?

We close the digression and go back to relative representation varieties. We would like to obtain

an analogue of the Goldman symplectic form for general surface groups. We denote by Biπg,n

the subgroup of πg,n generated by ci. We write Bπg,n for the collection of subgroups tBiπg,nu.

Observe that the cup product in group cohomology restricts to the product (B.15) in parabolic

group cohomology. It gives an anti-symmetric bilinear form

ω : Z1
parpπg,n, gφq � Z1

parpπg,n, gφq
!

ÝÑ Z2pπg,n, Bπg,n, gφ b gφq
B�

ÝÑ Z2pπg,n, Bπg,n,Rq.

Let rπg,ns be a generator of H2pπg,n, Bπg,n,Zq � Z, that corresponds to a choice of orienta-

tion for the surface Σg,n. Integrating against the fundamental class rπg,ns gives an isomorphism

H2pπg,n, Bπg,n,Rq
�
ÝÑ R. Let ϕ : Z2pπg,n, Bπg,n,Rq Ñ R be the composition of the quotient

map Z2pπg,n, Bπg,n,Rq Ñ H2pπg,n, Bπg,n,Rq with the integration against rπg,ns. Similarly as in

the closed case, it was proven in [GHJW97, §3] that the 2-form ϕ � ω is degenerate precisely on

B1pπg,n, gφq and is furthermore closed [GHJW97, Thm. 7.1] (see also [Law09]). We obtain

Theorem 4.2.8 ([GHJW97]). Let Γ � πg,n be a surface group. The composition of

ω : Z1
parpπg,n, gφq � Z1

parpπg,n, gφq Ñ Z2pπg,n, Bπg,n,Rq

with ϕ : Z2pπg,n, Bπg,n,Rq Ñ R gives a nondegenerate closed 2-form

pωGqφ : H1
parpπg,n, gφq �H1

parpπg,n, gφq Ñ R
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Definition 4.2.9 (Relative character varieties). The Hausdorffization of the topological quotient

HomCpπg,n, Gq{ InnpGq

is called the relative character variety associated to pπg,n, G, Cq. The nondegenerate closed 2-form

ωG is the the Goldman symplectic form on HomCpπg,n, Gq{ InnpGq.

Depending on the properties of the group G, the definition of relative character variety can be

refined in order to get a better control of its structure similarly as in Section 3.

Remark 4.2.10 (Poisson structure). The representation variety Hompπg,n, Gq is the disjoint union of

all the relative representation varieties HomCpπg,n, Gq over all possible choices for C P pG{Gqn. The

quotient of each relative representation variety by the InnpGq-action has a symplectic structure in

the sense of Theorem 4.2.8. It turns out that these quotients are the symplectic leaves of a Poisson

structure on the quotient of the representation variety by the InnpGq-action. The reader is referred

to [BJ21] for a precise statement, a proof, and references to prior proofs.

Definition 4.2.11 (Goldman symplectic measure). Both in the case of character varieties for closed

surfaces and in the case of relative character varieties for punctured surfaces, the measure obtained

from the Goldman symplectic form is denoted νG and called the Goldman symplectic measure.

The Goldman symplectic measure is a strictly positive Borel measure. It means that open sets

are measurable and always have positive measure if they are nonempty.

4.2.1 Case of a punctured sphere

In the case that Γ � π0,n is the fundamental group of a punctured sphere, then one can obtain fairly

explicit formulae for the Goldman symplectic form on HomCpπ0,n, Gq. We abbreviate πn :� π0,n

in this section. We first need to compute a fundamental class rπns explicitly. All computations are

lead in the bar complex for group cohomology introduced in Appendix B.2.

Lemma 4.2.12. Let e P Zrπn � πns be given by

e :� pc1, c2q � pc1c2, c3q � . . .� pc1c2 � . . . � cn�1, cnq � p1, 1q. (4.2.2)

Then pe, c1, . . . , cnq P Z
2pπn, Bπn,Zq, i.e. the 2-chain pe, c1, . . . , cnq is closed. Moreover, rpe, c1, . . . , cnqs

is a generator of H2pπn, Bπn,Zq.

Proof. Let ıi : Biπn ãÑ πn denote the inclusion of the subgroup Biπn (generated by ci) into πn. The

long exact sequence (B.9) in group homology for the pair pπn, Bπnq contains

. . .Ñ H2pπn,Zq ÝÑ H2pπn, Bπn,Zq
δ
ÝÑ H1pBπn,Zq

`ıiÝÑ H1pπn,Zq Ñ . . . .

Since H2pπn,Zq � 0, the connecting morphism δ is an isomorphism onto its image. Hence

H2pπn, Bπn,Zq � Kerp`ıiq. Recall that H2pπn, Bπn,Zq � Z, and so Kerp`ıiq � Z. The strat-

egy to find a fundamental class is to first find an isomorphism ψ : Kerp`ıiq Ñ Z, then compute

ψ�1p1q P H1pBπn,Zq and finally compute its preimage under δ.

39



Recall that the bar chain complex that computes the homology of the group πn with coefficients

in the trivial πn-module Z is defined by Ckpπn,Zq � ZbZZrπkns � Zrπkns, where πkn � πn� . . .�πn.

The differentials in degrees 1 and 2 are

C2pπnZq C1pπn,Zq C0pπn,Zq

g 0

pg, hq g � h� gh.

B B

In particular, the first homology group is

H1pπn,Zq � Zrπns{pg � h� ghq, (4.2.3)

Since cn �
±n�1
i�1 c

�1
i by construction, it holds that cn �

°n�1
i�1 �ci and cki � k � ci inside Zrπns{pg�

h�ghq. This gives an isomorphism Zrπns{pg�h�ghq � Z �c1` . . .`Z �cn�1. For the same reason,

H1pBiπn,Zq � ZrBiπns{pg � h� ghq � Z � ci.

We are interested in the morphism ϕ : Zn Ñ Zn�1 induced by `ıi in the following diagram

H1pBπn,Zq Z � c1 ` . . .` Z � cn Zn

H1pπn,Zq Z � c1 ` . . .` Z � cn�1 Zn�1

`ıi

� �

ϕ

� �

The previous identifications implies that ϕ is the morphism

ϕpm1, . . . ,mnq � pm1 �mn, . . . ,mn�1 �mnq.

Therefore, the kernel of ϕ consists of vectors having identical entries and thus Kerp`ıiq is generated

by rpc1, . . . , cnqs P H1pBπn,Zq.
It remains to compute δ�1prpc1, . . . , cnqsq. Since δ is induced from the projection Zrπ2

ns `

ZrBπns Ñ ZrBπns, it is enough to find a chain e P Zrπ2
ns such that pe, c1, . . . , cnq is closed. This is

the case for e given by (4.2.2) because B2e � �c1 � . . .� cn and hence B2pe, c1, . . . , cnq � 0.

The fundamental class rπns was already computed in [GHJW97, Section 2] using different meth-

ods. We now give explicit formulae for the Goldman symplectic form.

Let u, v P Z1
parpπn, gφq. By definition of parabolic cocycles, there exist ξi, ζi P g such that

upciq � ξi �Adpφpciqqξi, vpciq � ζi �Adpφpciqqζi, i � 1, . . . , n.

The first step consists in computing a preimage of u inside Z1pπn, Bπn, gφq. Note that

Bξipciq � Adpφpciqqξi � ξi � �upciq.

Hence, the 1-cochain pu,�ξ1, . . . ,�ξnq is closed and is a preimage of u.

To compute ωGpu, vq, we proceed as follows:
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1. Apply the cup product to pu,�ξ1, . . . ,�ξnq and v.

2. Apply the pairing B-

3. Take the cap product with the fundamental form rπns computed in Lemma 4.2.12 (here we

use Lemma B.15).

This gives

ωGpu, vq � B�pu! vqpeq �
ņ

i�1

B�pξi ! vqpciq. (4.2.4)

We develop each cup product according to (B.11) and plug in the value of e computed in Lemma

4.2.12. The right-hand side of (4.2.4) becomes

ņ

i�2

Bpupc1 � . . . � ci�1q �Adpφpc1 � . . . � ci�1qqvpciqq �
ņ

i�1

Bpξi � vpciqq. (4.2.5)

We can further simplify (4.2.5) using to the Ad-invariance ofB and the formula upx�1q � �Adpφpx�1qqupxq.

It is useful to introduce the notation bi�2 :� c�1
i�1 � � � c

�1
1 . In particular, b0 � c�1

1 and bn�1 � 1. We

obtain

ωGpu, vq � �
ņ

i�2

Bpupbi�2q � vpciqq �
ņ

i�1

Bpξi � vpciqq. (4.2.6)

Using that ωG and the cup product are anti-symmetric, we get the following equivalent form of

(4.2.6)

ωGpu, vq � �
ņ

i�2

Bpupbi�2q � vpciqq �
ņ

i�1

Bpζi � upciqq. (4.2.7)

Formulae (4.2.4), (4.2.7), and (4.2.6), were already obtained in the proof of [GHJW97, Key

Lemma 8.4]. We go one step further.

Lemma 4.2.13. It holds that

ωGpu, vq �
n�2̧

i�1

Bppζi�1 � ζi�2q � upbiqq. (4.2.8)

Proof. Using vpciq � ζi �Adpφpciqqζi and the Ad-invariance of B, we get

Bpupbi�2q � vpciqq � Bpζi � upbi�2qq �BpAdpφpc�1
i qqupbi�2q � ζiq

By construction, bi�1 � c�1
i bi�2 and thus upbi�1q � upc�1

i q �Adpφpc�1
i qqupbi�2q. So,

Bpupbi�2q � vpciqq � Bpζi � upbi�2qq �Bpζi � upbi�1qq �Bpζi � upc
�1
i qq.
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Therefore, (4.2.7) becomes

ωGpu, vq �
ņ

i�2

Bpζi � upbi�1qq �Bpζi � upbi�2qq

�Bpζ1 � upc1qq �
ņ

i�2

Bpζi � pupc
�1
i q � upciqq

�Bpζ2 � upb1qq �
ņ

i�3

Bpζi � upbi�1qq �Bpζi � upbi�2qq

�
ņ

i�1

B
�
ζi � pupc

�1
i q � upciqq

�
�
n�2̧

i�1

B
�
pζi�1 � ζi�2q � upbiq

�
�

ņ

i�1

B
�
ζi � pupc

�1
i q � upciqq

�
loooooooooooooooomoooooooooooooooon

�:Ω

,

where in the second equality we used b0 � c�1
1 and in the third equality that upbn�1q � up1q � 0.

It remains to prove that Ω � 0. Using upx�1q � �Adpφpx�1qqupxq, we get

Bpζi � upc
�1
i qq � �BpAdpφpciqqζi � upciqq.

Therefore, using vpciq � ζi �Adpφpciqqζi, we conclude

Ω �
ņ

i�1

Bpupciq � vpciqq.

By construction, Bpup�q � vp�qq defines a 1-cocycle in Z1pπn,Rq. Closeness can also be computed

directly using (B.2), similarly as in the proof of Lemma B.11. Therefore, Ω is equal to the evaluation

of the 1-cocycle Bpup�q � vp�qq on the 1-cycle c1 � . . .� cn. The identification (4.2.3) shows that the

1-cycle
°n
i�1 ci vanishes in homology (this is a consequence of the fact that

±n
i�1 ci � 1). Hence,

Ω � Bpup1q � vp1qq � 0 as desired.
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Chapter 5

Volume of a representation

The topology of a representation variety is notably known to be complicated. The enumeration of

its connected components is a non-trivial task. The volume of a representation is an invariant that

lets us approach this problem. We recall its definition below and recommend [BIW10] for more

details.

5.1 Definition

The volume is defined in [BIW10] for representations of surface groups Γ � πg,n into Hermitian Lie

groups G. Recall that a Hermitian Lie group G is a semisimple Lie group, with finite center and no

compact factors, such that its associated symmetric space X is a Hermitian manifold. The Kähler

form obtained from the unique G-invariant Hermitian metric of constant sectional curvature �1 on

X is denoted ωX . The classical examples of Hermitian Lie groups include SUpp, qq and Spp2n,Rq.

Example 5.1.1. The guiding example in this section is the group G � SLp2,Rq � SUp1, 1q.

It is a simple Lie group, without compact factor and with center ZpSLp2,Rqq � t�Iu. It is of

Hermitian type. It is sometimes more convenient to consider the center-free quotient PSLp2,Rq :�

SLp2,Rq{t�Iu instead, which is also of Hermitian type. The associated symmetric space is the

upper half-plane X � H on which SLp2,Rq acts by Möbius transformations, see Appendix A for

more considerations on the groups SLp2,Rq and PSLp2,Rq. The group of orientation-preserving

isometries of H is PSLp2,Rq. The associated Kähler form is ωH � pdx^ dyq{y2.

Let G be a Hermitian Lie group with symmetric space X. Given three points z1, z2, z3 in X, we

denote by ∆pz1, z2, z3q the oriented geodesic triangle in X with vertices z1, z2, z3. Its signed area,

computed with the area form associated to ωX , is denoted by

r∆pz1, z2, z3qs :�

»
∆pz1,z2,z3q

ωX .
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Fix a basepoint z P X and consider the function

c : G�GÑ R (5.1.1)

pg1, g2q Ñ
�
∆
�
z, g1z, g1g2z

��
.

Lemma 5.1.2. The function c satisfies the cocycle condition

cpg2, g3q � cpg1g2, g3q � cpg1, g2g3q � cpg1, g2q � 0 (5.1.2)

for every g1, g2, g3 P G, compare (B.2).

Proof. We need the following identity: if z1, z2, z3 are any three points in X, then, for any fourth

point w P X,

r∆pz1, z2, z3qs � r∆pz1, z2, wqs � r∆pz2, z3, wqs � r∆pz3, z1, wqs. (5.1.3)

The following picture should convince the reader of (5.1.3).

z2

z1

z3

w

z2

z1

z3

w

In terms of triangle areas, the cocycle condition (5.1.2) is equivalent to

r∆pz, g2z, g2g3zqs � r∆pz, g1z, g1g2g3zqs

being equal to

r∆pz, g1g2z, g1g2g3zqs � r∆pz, g1z, g1g2zqs.

Since g1 P G acts by isometry on X and preserves the orientation, the latter is equivalent to

r∆pg1z, g1g2z, g1g2g3zqs � r∆pz, g1z, g1g2g3zqs

being equal to

r∆pz, g1g2z, g1g2g3zqs � r∆pz, g1z, g1g2zqs.

This is precisely formula (5.1.3) applied to z1 � z, z2 � g1z, z3 � g1g2z and w � g1g2g3z.

Lemma 5.1.2 implies that c defines a cohomology class κ :� rcs inside H2pG,Rq. The function c

is bounded because the area of a geodesic triangle in X is bounded. This means that the cohomology

class κ gives a class κ P H2
b pG,Rq in the second bounded cohomology group of G. We recommend

[Löh10] for an introduction to bounded group cohomology.

Lemma 5.1.3. The cohomology class κ is independent of the choice of the basepoint z involved in

the definition of c (whereas c does depend on the point z).
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Proof. For the purpose of this proof, we will write cz instead of c for the cocycle (5.1.1) to emphasize

the dependence on the basepoint z. Given another basepoint x P X, we prove that cz � cx is a

coboundary.

First, we develop czpg1, g2q � r∆pz, g1z, g1g2zqs using (5.1.3) with w � g1x. We obtain

czpg1, g2q � r∆pz, g1z, g1xqs � r∆pg1z, g1g2z, g1xqs � r∆pg1g2z, z, g1xqs

� �r∆px, z, g�1
1 zqs � r∆px, z, g2zqs � r∆pg1g2z, z, g1xqs.

Now, we develop r∆pg1g2z, z, g1xqs using (5.1.3) with w � x. This gives

r∆pg1g2z, z, g1xqs � r∆pg1g2z, z, xqs � r∆pz, g1x, xqs � r∆pg1x, g1g2z, xqs

� �r∆px, z, g1g2zqs � r∆pz, x, g1xqs � r∆pg1x, g1g2z, xqs.

Finally, we develop r∆pg1x, g1g2z, xqs using (5.1.3) with w � g1g2x. We have

r∆pg1x, g1g2z, xqs � r∆pg1x, g1g2z, g1g2xqs � r∆pg1g2z, x, g1g2xqs � r∆px, g1x, g1g2xqs

� r∆pz, x, g�1
2 xqs � r∆pz, x, g�1

2 g�1
1 xqs � cxpg1, g2q.

Consider the 1-cochain vx,zpgq :� r∆px, z, gzqs. It holds that

Bvx,zpg1, g2q � r∆px, z, g1zqs � r∆px, z, g2zqs � r∆px, z, g1g2zqs.

In particular, Bvx,zpg, g
�1q � r∆px, z, gzqs � r∆px, z, g�1zqs. The previous computations show that

czpg1, g2q � cxpg1, g2q � Bvx,zpg1, g2q � Bvx,zpg1, g
�1
1 q � Bvz,xpg

�1
2 , g�1

1 q � Bvz,xpg1, g
�1
1 q.

We conclude as predicted that cz � cx is a coboundary.

Given a representation φ : πg,n Ñ G, we can pull back κ to the class φ�κ inside H2
b pπg,n,Rq.

An important property of the bounded cohomology of the group πg,n is that the map

j : H2
b pπg,n, Bπg,n,Rq Ñ H2

b pπg,n,Rq (5.1.4)

from the long exact sequence in cohomology for the pair
�
πg,n, Bπg,n

�
is an isomorphism, see [Löh10,

Thm. 2.6.14]. Recall finally that integrating along a fundamental class rπg,ns gives an isomorphism

H2pπg,n, Bπg,n,Rq � R.

Definition 5.1.4 (Volume of a representation, [BIW10]). Let G be a Hermitian Lie group. The

volume of a representation1 φ : πg,n Ñ G is the real number defined by

volpφq :� j�1pφ�κq" rπg,ns.

The volume is a generalization of the Euler number of a representation of a closed surface group

1Up to a constant, the volume of a representation φ is sometimes called the Toledo number of the representation
and is, in that case, denoted Tolpφq. The two notions are related by the identity volpφq � 2πTolpφq.
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into PSLp2,Rq. The latter is equal to the Euler number of the flat RP1-bundle prΣg,0�RP1q{πg,0 Ñ

Σg,0 associated to a representation πg,0 Ñ PSLp2,Rq.

5.2 Properties

Lemma 5.2.1. The volume is invariant under the conjugation action of G on Hompπg,n, Gq and

thus descends to a function

vol : Hompπg,n, Gq{ InnpGq Ñ R.

Proof. Consider the cocycle c defined in (5.1.1). The diagonal conjugation action of an element

g P G on G � G amounts to a change of basepoint in the definition of c. Indeed, if cz denotes

the cocycle (5.1.1) defined using the basepoint z P X, then it holds that czpgg1g
�1, gg2g

�1q �

cg�1zpg1, g2q. Since, by Lemma 5.1.3, the cohomology class κ is independent of the choice of the

basepoint defining c, we conclude that the volume is an invariant of conjugation.

The main properties of the volume are the following. We denote by χpΣg,nq the Euler charac-

teristic of Σg,n.

Theorem 5.2.2 ([BIW10]). The volume, seen as a function vol : Hompπg,n, Gq Ñ R, has the

following properties:

1. vol is a continuous function.

2. vol is locally constant on each relative representation variety.

3. (Milnor–Wood inequality) vol is bounded:

| vol | ¤ 2π � |χpΣg,nq| � rankpGq,

moreover, if n ¡ 0, then vol is a surjective function onto the interval

r�2π � |χpΣg,nq| � rankpGq, 2π � |χpΣg,nq| � rankpGqs .

4. vol is additive: if Σg,n is separated by a simple closed curve into two surfaces S1 and S2, then,

for every φ P Hompπg,n, Gq,

volpφq � volpφæπ1pS1qq � volpφæπ1pS2qq.

The first and second statement in Theorem 5.2.2 imply that the set of representations of a given

volume forms a collection of connected components of each relative character variety. Recall that

in the case of a closed surface group and G � PSLp2,Rq, the Euler number completely distinguishes

the connected components of the character variety [Gol88].

The volume has an interesting symmetry that comes from reversing the orientation of X. By

definition, for each z P X, there exists an orientation-reversing isometry sz of X that fixes z. This

gives an involutive automorphism σ : G Ñ G defined by σpgq :� sz � g � sz. Indeed, if g P G is an

orientation-preserving isometry of X, then sz � g � sz is again an orientation-preserving isometry of
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X, and hence belongs to G. Using the functoriality of representation varieties (see Lemma 1.2.7),

the involution σ descends to an analytic involution

σ : Hompπg,n, Gq Ñ Hompπg,n, Gq.

Lemma 5.2.3. The involution σ satisfies the following properties:

1. σ preserves conjugacy classes of representations, and therefore descends to an involution

σ : Hompπg,n, Gq{ InnpGq Ñ Hompπg,n, Gq{ InnpGq.

2. σ depends on the choice of z P X only up to conjugation, in particular, σ is independent of

the choice of z P X.

3. For any representation φ P Hompπg,n, Gq it holds that

volpσpφqq � � volpφq.

Proof. The first assertion follows from σpgφg�1q � psz �g�szqσpφqpsz �g
�1�szq and the observation

that sz � g � sz is orientation-preserving. If z1 P X is a second point, then it holds that sz1 �

g � sz1 � psz1 � szqpsz � g � szqpsz � sz1q, which proves the second assertion because sz1 � sz is

orientation-preserving. Finally, note that pσpφqq�κ � φ�pσ�κq and σ�κ � �κ because sz reverses

the orientation of X.

Example 5.2.4. Consider the case G � SLp2,Rq. An example of orientation-reversing isometry

of the upper half-plane is given by z ÞÑ �z. It fixes the imaginary axis. The associated involutive

automorphism σ of SLp2,Rq is given by conjugation by the matrix

�
1 0

0 �1

�
of determinant �1.

The involution σ : Hompπg,n, Gq Ñ Hompπg,n, Gq maps the relative representation variety

HomCpπg,n, Gq to the relative representation variety HomσpCqpπg,n, Gq. Since G is of Hermitian

type, it is by definition semisimple and hence quadrable. The Goldman symplectic form built from

the Killing form on g is invariant under σ. This is a consequence of the fact that the Killing

form is invariant under automorphisms of g. In this case, the involution σ : G Ñ G induces an

automorphism Dσ : gÑ g.

5.3 Alternative definition

A downside of Definition 5.1.4 is the lack of computability. Given a representation φ : πg,n Ñ G,

computing j�1pφ�κq means finding a primitive in H1pBiπg,n,Rq for each restriction φ�κæBiπg,n . This

is a non-trivial task in general. There is an alternative definition of the volume of a representation

that makes it easier to compute. It is based on a notion of rotation number that generalizes the

classical notion of rotation number for homeomorphisms of the circle, see [Ghy01] for an exposition

of the classical theory of rotation numbers. The rotation number in our context is a function

ρ : GÑ R{2πZ that lifts to a quasimorphism rρ : rGÑ R of the universal cover of G. We explain the
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construction in the case G � PSLp2,Rq and refer the reader to [BIW10, §7] for the general case.

The main result is

Theorem 5.3.1 ([BIW10]). Let rφ : πg,n Ñ rG be a group homomorphism that covers φ. Then

volpφq � �
ņ

i�1

rρ�rφpciq	 ,
where ci are the generators of πg,n of presentation (1.1.3).

Example 5.3.2. Let’s study the case G � PSLp2,Rq. We fix a topological group structure on�PSLp2,Rq by fixing a unit e in the fibre over the identity. The action of PSLp2,Rq on the circle

R{2πZ (see Lemma A.4) gives a group homomorphism f : PSLp2,Rq Ñ Homeo�pR{2πZq. This

action lifts to a faithful action of �PSLp2,Rq on the universal cover R{2πZ. The classical rotation

number is a function rot : Homeo�pR{2πZq Ñ R, see [Ghy01]. The quasimorphism rρ : �PSLp2,Rq Ñ
R is the unique lift of ρ :� rot �f satisfying rρpeq � 0.

We can describe ρ more explicitly by considering conjugacy classes in PSLp2,Rq. Recall that, if E
denotes the set of elliptic conjugacy classes in PSLp2,Rq, then there is a well-defined angle function

ϑ : E Ñ p0, 2πq, see Lemma A.7. It extends to an upper semi-continuous function ϑ : PSLp2,Rq Ñ
r0, 2πs by

ϑpAq :�

$'&'%
ϑpAq, if A is elliptic,

0, if A is hyperbolic or positively parabolic,

2π, if A is the identity or negatively parabolic.

(5.3.1)

The notions of positively and negatively parabolic refer to the two conjugacy classes of parabolic

elements in PSLp2,Rq represented by (A.6). The definition of the function ϑ is ad hoc, however it

satisfies ϑ � ρ modulo 2π. In particular, the correction term

kpφq :�
1

2π

�
ņ

i�1

ϑpφpciqq �
ņ

i�1

rρ�rφpciq	
�

(5.3.2)

is an integer called the relative Euler class of φ. The definition of the relative Euler class very much

depends on the choice of the extension ϑ of ϑ. Theorem 5.3.1 implies

kpφq �
1

2π

�
volpφq �

ņ

i�1

ϑpφpciqq

�
.

The range of the relative Euler class over Hompπg,n, Gq was studied in [DT19]. The authors proved

that

Proposition 5.3.3 ([DT19]). Let φ : πg,n Ñ PSLp2,Rq be a representation. Then

kpφq ¤ max

#
|χpΣg,nq|,

1

2π

ņ

i�1

ϑpφpciqq

+
.

Remark 5.3.4. Observe that, as soon as g ¥ 1, then |χpΣg,nq| ¥ n ¥ 1
2π

°n
i�1 ϑpφpciqq and

thus the inequality kpφq ¤ |χpΣg,nq| prevails. In the case g � 0, it is however possible that
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1
2π

°n
i�1 ϑpφpciqq ¡ |χpΣ0,nq|.
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Chapter 6

Mapping class group dynamics

We expand on some results and remarks from Section 1.3. Let G be a Lie group and Γ be a finitely

generated group. Recall that the AutpΓq-action on the representation variety HompΓ, Gq descends

to an action of the outer automorphisms group OutpΓq on the quotient HompΓ, Gq{ InnpGq. This

action preserves the analytic/algebraic structure of HompΓ, Gq by Lemma 1.3.1. When Γ � πg,n is

a surface group, then Outpπg,nq contains the mapping class group of the surface Σg,n as a subgroup,

compare Example 1.3.2. The induced action is the so-called mapping class group action on character

varieties.

We start with some general considerations on the AutpΓq-action on HompΓ, Gq and then spe-

cialize to the case of a surface group.

6.1 Remarks on the AutpΓq-action

Lemma 6.1.1. The AutpΓq-action on HompΓ, Gq preserves the subspaces of (very) regular, reduc-

tive, irreducible, good and (almost) Zariski dense representations.

Proof. All these particular notions of representations are defined in terms of the image of the

representation. However, for any τ P AutpΓq and φ P HompΓ, Gq, it holds that φpΓq � pφ�τqpΓq.

A consequence of Lemma 6.1.1 is that the OutpΓq-action on HompΓ, Gq{ InnpGq restricts to an

action of OutpΓq on the GIT character variety RepGITpΓ, Gq (by Theorem 3.5.3, assuming G is a

reductive complex algebraic group) and on the analytic character variety Rep8pπg,0, Gq.

Lemma 6.1.2. The AutpΓq-action on HompΓ, Gq preserves closed orbits.

Proof. This is an immediate consequence of Lemma 1.3.1.

In particular, Lemma 6.1.2 implies that the AutpΓq-action on HompΓ, Gq induces an OutpΓq-

action on the T1 character variety RepT1pπg,0, Gq. It is not clear to the author whether there is an

induced action of OutpΓq on the Hausdorff character variety in general.
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6.2 Generalities about mapping class groups

The mapping class group of a closed and oriented surface Σg,0 is the group of isotopy classes of

orientation-preserving homeomorphisms of Σg,0. In the case of a punctured oriented surface Σg,n,

the mapping class group is defined to be the group of isotopy classes of orientation-preserving

homeomorphisms of Σg,n that fix each puncture individually1. The mapping class group is denoted

by ModpΣg,nq and the isotopy class of an orientation-preserving homeomorphism f : Σg,n Ñ Σg,n

is denoted rf s P ModpΣg,nq. The group law is given by composition and the identity element

correspond to the identity homeomorphism.

Theorem 6.2.1. The mapping class group is finitely presented. Generators can be chosen to be

Dehn twists along simple closed curves on Σg,n.

More details about Theorem 6.2.1, including proof and explicit generating family, can be found

in [FM12, §4]. In [GW17], the question of the minimal number of generators of ModpΣ0,nq is

treated, see also Remark ??.

A homeomorphism f of Σg,n induces a group isomorphism π1pΣg,n, xq Ñ π1pΣg,n, fpxqq. After

choosing a continuous path from x to fpxq, we get an induced automorphism of the fundamental

group of Σg,n (that depends up to conjugation on the choice of the path). This gives a group

homomorphism

ModpΣg,nq Ñ Outpπg,nq.

The Dehn–Nielsen Theorem says that it is injective and provides a description of its image.

Theorem 6.2.2 (Dehn–Nielsen Theorem). The mapping class group ModpΣg,0q is an index two

subgroup of Outpπg,0q for g ¥ 1 (and is trivial for g � 0). Moreover, if Σg,n has negative Euler

characteristic, then the mapping class group ModpΣg,nq is an index two subgroup of Out�pπg,nq,
where Out�pπg,nq is the subgroup of Outpπg,nq that consists of the outer automorphisms that act by

conjugation on the generators ci of πg,n (in the presentation (1.1.3)).

We refer the reader to [FM12, §8] for more considerations on the Dehn–Nielsen Theorem. The-

orem 6.2.2 implies that the Autpπg,0q-action on the representation variety Hompπg,0, Gq induces an

action

ModpΣg,0q ýHompπg,0, Gq{ InnpGq.

The action is analytic/algebraic on the regular part of the quotient by Lemma 1.3.1. In the case of

a punctured surface, the action of Autpπg,nq on Hompπg,n, Gq restricts to an action of Aut�pπg,nq
on any relative representation variety HomCpπg,n, Gq. This gives, by Theorem 6.2.2, an action

ModpΣg,nq ýHomCpπg,n, Gq{ InnpGq,

for any choice of conjugacy classes C P pG{Gqn. These two actions are what we call the mapping

class group action on character varieties.

1In the terminology of [FM12], if punctures are fixed individually, then the group is called the pure mapping class
group. It contrasts with the mapping class group where punctures can be permuted.
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6.3 Properties of the mapping class group action

The first property is that the mapping class group action preserves the Goldman symplectic form.

We start with the case of a closed surface. Let rf s P ModpΣg,0q and take any τ P Autpπg,0q

that lies over the image of rf s inside Outpπg,0q. We choose the generator rπg,0s of H2pπg,0,Zq
that corresponds to the orientation of the surface Σg,0. Since f is orientation-preserving, it

holds that τ�rπg,0s � rπg,0s. For any φ P Hompπg,0, Gq, the automorphism τ induces a map

pdτqφ : Z1pπg,0, gφq Ñ Z1pπg,0, gφ�τ q, v ÞÑ v � τ , on the Zariski tangent spaces to the representation

variety.

Lemma 6.3.1. If ωG denotes the Goldman symplectic form from Definition 4.0.2, then, for any

φ P Hompπg,0, Gq, the following diagram commutes

Z1pπg,0, gφq � Z1pπg,0, gφq R

Z1pπg,0, gφ�τ q � Z1pπg,0, gφ�τ q

pdτqφ�pdτqφ

pωGqφ

pωGqφ�τ

In other words, it holds that

τ�ωG � ωG .

Proof. Let B : g � g Ñ R be the pairing used in the definition of ωG . For any v, w P Z1pπg,0, gφq,

we have

pωGqφ�τ pv � τ, w � τq � Bpv � τ, w � τq" rπg,0s

� Bpv, wq" τ�rπg,0s.

Since τ�rπg,0s � rπg,0s, we conclude pωGqφ�τ pv � τ, w � τq � pωGqφpv, wq.

As a consequence of Lemma 6.3.1, we obtain that the ModpΣg,0q-action on the quotient Hompπg,0, Gq{ InnpGq

preserves the Goldman symplectic measure νG from Definition 4.2.11.

The situation is similar for punctured surfaces. Let rf s P ModpΣg,nq and take any τ P Aut�pπg,nq
that lies over the image of rf s inside Out�pπg,nq. The generator rπg,ns of H2pπg,n, Bπg,n,Zq is again

chosen to correspond to the orientation of the surface Σg,n. Similarly as before, τ�rπg,ns � rπg,ns.

Moreover, the map pdτqφ restricts to to a map pdτqφ : Z1
parpπg,n, gφq Ñ Z1

parpπg,n, gφ�τ q. Indeed,

note that if vpciq � ξi �Adpφpciqqξi and τpciq � gicig
�1
i , then

pv � τqpciq �
�
vpgiq �Adpφpgiqqξi

�
�Ad

�
pφ � τqpciq

��
vpgiq �Adpφpgiqqξi

�
.

Lemma 6.3.2. If ωG denotes the Goldman symplectic form from Definition 4.2.9, then, for any
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φ P HomCpπg,n, Gq, the following diagram commutes

Z1
parpπg,n, gφq � Z1

parpπg,n, gφq R

Z1
parpπg,n, gφ�τ q � Z1

parpπg,n, gφ�τ q

pdτqφ�pdτqφ

pωGqφ

pωGqφ�τ

In other words, it holds that

τ�ωG � ωG .

The proof is analogous to the proof of Lemma 6.3.1.

The second property is that the mapping class group action also preserves the volume of a

representation. As before, let rf s P ModpΣg,nq and take any τ P Aut�pπg,nq that lies over the image

of rf s inside Out�pπg,nq. Again, τ�rπg,ns � rπg,ns.

Lemma 6.3.3. Let G be a Hermitian Lie group. For any φ P HomCpπg,n, Gq, it holds that

volpφ � τq � volpφq.

Proof. We compute directly from Definition 5.1.4 that

volpφ � τq � j�1
�
pφ � τq�κq" rπg,ns

� j�1
�
τ�φ�κq" rπg,ns

� j�1
�
φ�κq" τ�rπg,ns.

We conclude by using τ�rπg,ns � rπg,ns.
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A The groups SLp2,Cq and SLp2,Rq

This appendix is a reminder of the basic properties of the Lie groups SLp2,Cq and SLp2,Rq and of

some relevant results.

A.1 The group SLp2,Cq

The group SLp2,Cq is the group of complex 2 � 2 matrices with determinant 1. It is a complex

algebraic group of complex dimension 3. It is also a non-compact simple Lie group. Its center is

ZpSLp2,Cqq � t�Iu. The only proper parabolic subgroup of SLp2,Cq, up to conjugation, is the

subgroup of upper triangular matrices. We are interested in the algebraic subgroups of SLp2,Cq
and its irreducible subgroups in the sense of Definition 2.2.7.

Theorem A.1 ([Sit75]). Let G be an infinite algebraic subgroup of SLp2,Cq. Then one of the

following holds:

1. dimG � 3 and G � SLp2,Cq,

2. dimG � 2 and G is conjugate to the parabolic subgroup of upper triangular matrices,

3. dimG � 1, in which case there are three possibilities

(a) G is conjugate to #�
a b

0 a�1

�
: an � 1, a, b P C

+
,

and G� is unipotent,

(b) G is conjugate to #�
a λc

c a

�
: a2 � λc2 � 1, a, c P C

+
,

for some λ P C�, and G is connected and diagonalizable,

(c) G is conjugate to

SOλ :�

#�
a λc

c a

�
: a2 � λc2 � 1, a, c P C

+
Y

#�
a �λc

c �a

�
: �a2 � λc2 � 1, a, c P C

+
,

for some λ P C�, and G� is diagonalizable.

Recall that the algebraic subgroup of SLp2,Cq of dimension 0 are necessarily finite (because

algebraic varieties have finitely many connected components in the usual topology, as pointed out

earlier). They are well-understood, see e.g. [Sit75, Prop. 1.2]. Also observe that SOp2,Cq � SO�1

in the notation above. The irreducible subgroups of SLp2,Cq fall into three categories.

Theorem A.2 ([YCo]). Let G be an irreducible subgroup of SLp2,Cq. Then one of the following

holds:

1. G is Zariski dense in SLp2,Cq,
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2. G is finite and non-abelian,

3. the Zariski closure of G is conjugate to

∆ :�

#�
a 0

0 a�1

�
: a P C�

+
Y

#�
0 a

�a�1 0

�
: a P C�

+
.

Observe that the matrix 1?
2

�
1 1

�1 1

�
conjugates ∆ to SO1 in the notation of Theorem A.1. In

particular, ∆ is Zariski closed. It is also disconnected and ∆� is the subgroup of diagonal matrices.

The anti-diagonal matrices in ∆ have order 4.

Remark A.3. It was established in Lemma 2.2.22 that Zariski dense representations into any alge-

braic group are irreducible. The converse statement for SLp2,Cq can sometimes be found in the

literature, see e.g. [Mon16, Rem. 2.13]. It is not true. For instance, given a finite non-abelian

subgroup G of SLp2,Cq of order g, then there is a surjective group homomorphism Fg Ñ G, where

Fg � xγ1, . . . , γgy is the free group on g generators. The fundamental group of a closed surface of

genus g maps surjectively to Fg by ai, bi ÞÑ γi, where ai, bi refer to the presentation (1.1.3). This

gives two irreducible representations πg,0 Ñ SLp2,Cq and Fg Ñ SLp2,Cq that are irreducible but

not Zariski dense. It is also possible to build an irreducible representation of a closed surface group

with image inside ∆.

A.2 The groups SLp2,Rq and PSLp2,Rq

The group SLp2,Rq is the subgroup of SLp2,Cq consisting of real matrices. It is a real algebraic

group of real dimension 3 that has the topology of an open solid torus. It is a non-compact simple

Lie group with center ZpSLp2,Rqq � t�Iu. The center-free quotient SLp2,Rq{t�Iu is denoted

PSLp2,Rq. The group SLp2,Rq is Zariski dense inside SLp2,Cq (actually, even the group SLp2,Zq
is Zariski dense in SLp2,Cq). The maximal compact subgroup of SLp2,Rq is SOp2,Rq. Note that

SOp2,Rq is Zariski closed inside SLp2,Rq, but the Zariski closure of SOp2,Rq inside SLp2,Cq is

SOp2,Cq. The group SLp2,Rq is isomorphic to SUp1, 1q. The group PSLp2,Rq is isomorphic to

the matrix group SOp2, 1q� of special linear transformations of R3 preserving the Hermitian form

y2 � xz via the map

�

�
a b

c d

�
ÞÑ

���a
2 2ab b2

ac ad� bc bd

c2 2cd d2

��.
The group PSLp2,Rq can be identified with the group of orientation-preserving isometries of the

upper half-plane H � tz P C : Impzq ¡ 0u. It acts on H by Möbius transformations

�

�
a b

c d

�
� z :�

az � b

cz � d
.

The action extends to the boundary BH of the upper half-plane.

Lemma A.4. The action of PSLp2,Rq on BH is isomorphic to the action of PSLp2,Rq on RP1 �

R2{R�.
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Proof. Identifying BH � R Y t8u, one can define a homeomorphism f : BH Ñ RP1 by x ÞÑ r1 : xs

and 8 ÞÑ r0 : 1s. We claim that f conjugates the two actions of PSLp2,Rq. Indeed, it is sufficient

to compare stabilizers and it is easy to see that the stabilizer of r1 : 0s P RP1 and that of 0 P BH
coincide with the subgroup of upper triangular matrices in PSLp2,Rq.

The open subspace of PSLp2,Rq consisting of elements whose trace in absolute value is smaller

than 2 is called the subspace of elliptic elements of PSLp2,Rq. It is denoted E � PSLp2,Rq.
Equivalently, an element of PSLp2,Rq is elliptic if and only if it has a unique fixed point in H.

Lemma A.5. If A � �

�
a b

c d

�
is elliptic, then b � 0 and c � 0.

Proof. If b � 0 or c � 0, then detpAq � ad � 1. So, TrpAq2 � pa � dq2 ¥ 4ad � 4 and A is not

elliptic.

Let A � �

�
a b

c d

�
be an elliptic element of PSLp2,Rq. We denote the unique fixed point of A

in H by fixpAq. It defines a map fix: E Ñ H.

Lemma A.6. The unique fixed point of A is

fixpAq �
a� d

2c
� i �

a
4� pa� dq2

2|c|
, (A.1)

and the map fix: E Ñ H is analytic.

Proof. The first assertion is a straightforward computation. Since c � 0 by Lemma A.5, the map

fix: E Ñ H is analytic.

The elliptic elements of PSLp2,Rq that fix the complex unit i P H are of the form

rotϑ :� �

�
cospϑ{2q sinpϑ{2q

� sinpϑ{2q cospϑ{2q

�
(A.2)

for ϑ P p0, 2πq. Every A P E is conjugate to a unique rotϑpAq. This defines a function ϑ : E Ñ p0, 2πq.

The number ϑpAq P p0, 2πq is called the angle of rotation of A.

Lemma A.7. The angle of rotation of A is

ϑpAq � arctan

�
�c

|c|
�

a� d

pa� dq2 � 2

a
4� pa� dq2



� εpAq, (A.3)

where

εpAq :�

$'&'%
0, if pa� dq2 ¡ 2 and pa� dq�c|c| ¡ 0,

π, if pa� dq2   2,

2π, if pa� dq2 ¡ 2 and pa� dq�c|c|   0.

Moreover, the function ϑ : E Ñ p0, 2πq is analytic.
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Proof. The number ϑpAq can be computed as the complex argument of the complex number

dA

dz

∣∣∣∣
z�fixA

�

�
pa� dq2

2
� 1



� i � pa� dq

c

|c|

a
4� pa� dq2

2
. (A.4)

Observe that the imaginary part of (A.4) vanishes if and only if a�d � 0, in which case its real part

is equal to �1. This means that the complex number defined by (A.4) takes values inside CrR¥0.

If we think of the complex argument of a number inside CrR¥0 as a function CrR¥0 Ñ p0, 2πq,

then it is analytic. This shows that ϑ : E Ñ p0, 2πq is an analytic function.

Lemma A.8. The map

pfix, ϑq : E Ñ H� p0, 2πq

is an analytic diffeomorphism that identifies the subset of elliptic elements in PSLp2,Rq with an

open ball.

Proof. We explained above that the map pfix, ϑq is analytic. The inverse map sends a point z �

x� i � y P H and an angle ϑ P p0, 2πq to the elliptic element

rotϑpzq � �

�
cospϑ{2q � xy�1 sinpϑ{2q px2y�1 � yq sinpϑ{2q

�y�1 sinpϑ{2q cospϑ{2q � xy�1 sinpϑ{2q

�
. (A.5)

Indeed, an immediate computation gives

fixprotϑpzqq �
�2xy�1 sinpϑ{2q

�2y�1 sinpϑ{2q
� i �

2 sinpϑ{2q

2y�1 sinpϑ{2q

� x� iy,

and

ϑprotϑpzqq � arg

��
4 cospϑ{2q2

2
� 1



� i � p2 cospϑ{2qq � p�1q �

2 sinpϑ{2q

2



� argpcospϑq � i sinpϑqq

� ϑ.

The elements of PSLp2,Rq whose trace in absolute value is equal to 2 are called parabolic.

Parabolic elements are those that have a unique fixed point of the boundary of H. There are two

conjugacy classes of parabolic elements represented by

par� :� �

�
1 1

0 1

�
and par� :� �

�
1 0

1 1

�
. (A.6)

The elements conjugate to par� are called positively parabolic and those conjugate to par� negatively

parabolic. Each conjugacy class of parabolic elements is an open annulus whose closures intersect

at the identity.

The elements of PSLp2,Rq with a trace larger than 2 in absolute value are called hyperbolic.

Hyperbolic elements have precisely two fixed points on the boundary of H. Any hyperbolic element
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of PSLp2,Rq is conjugate to

hypλ :� �

�
λ 0

0 λ�1

�
,

for a unique λ ¡ 0. Hyperbolic conjugacy classes are open annuli.

Elliptic, parabolic and hyperbolic conjugacy classes foliate PSLp2,Rq in a way that is illustrated

on Figure 6.1.

I


Figure 6.1: The elliptic conjugacy classes are drawn in green. They foliate an open ball into disks.
The open ball is bounded by the two parabolic conjugacy classes which have the shape of two red
cones joined at the identity. The hyperbolic conjugacy classes foliate an open solid torus, bounded
by the red cones, into blue annuli.

The next lemma describes the centralizers of elements of PSLp2,Rq according to their conjugacy

class.

Lemma A.9. The centralizers of rotϑ, hypλ and par� are given by

1. Zprotϑq � trotθ : θ P r0, 2πqu � PSOp2,Rq,

2. Zphypλq � thypt : t ¡ 0u � R¡0,

3. Zppar�q �

#�
1 x

0 1

�
: x P R

+
� R.

It is worth noticing that the centralizer of an element of PSLp2,Rq always consists of the identity

element and of elements of the same nature (i.e. elliptic, parabolic and hyperbolic). In particular,

two elements of PSLp2,Rq different from the identity commute if and only if they have the same

set of fixed points in HY BH.
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B Group (co)homology

This appendix is a short introduction to the topics of group (co)homology and relative group

(co)homology. These notions are important because group cohomology is the natural language to

describe the Zariski tangent spaces to representation varieties. This note is a short summary of

classical literature such as [Nos17, §7], [Löh10] and [BE78].

B.1 Definiton

We begin by recalling the definitions of group (co)homology. Group (co)homology is a functor from

the category of discrete groups G with a left G–module M to the category of graded abelian groups:

H�, H� :

�
pairs of a discrete group

and a left module

�
ÝÑ

�
graded abelian

groups

�
.

By requiring G to be discrete, we obtain a topological interpretation of group (co)homology.

Recall that the natural topology on the fundamental group of a space that admits a universal cover

is the discrete topology, because it is the coarser topology that makes the universal cover a principal

bundle for the deck transformation action. Discrete groups have the following property.

Theorem B.1 (Classifying Space Theorem). If G is a discrete group, then there is a unique

connected space BG, up to canonical homotopy, called the classifying space2 of G, such that

π1pBGq � G, πipBGq � 0, @i ¥ 2.

A possible definition of the (co)homology of the pair pG,Mq, where G is a discrete group and

M is a left G–module, would be to say that it is the singular (co)homology of BG with coefficients

in M . We favour however a more intrinsic approach.

Let ZrGs be the integral group ring of G, i.e. the free Z–module generated by the elements of

G. Note that a G–module structure is by definition the same as a ZrGs–module structure. Let

ε : ZrGs Ñ Z be the augmentation map defined by g ÞÑ 1, g P G, and extended Z–linearly to ZrGs.
We denote by ∆ the kernel of the augmentation map.

Definition B.2 (Group (co)homology). The group (co)homology of the discrete group G with

coefficients in the left G–module M is

H�pG,Mq :� Tor
ZrGs
� pZ,Mq, HkpG,Mq :� Ext�ZrGspZ,Mq.

Definition B.2 uses the derived functors Tor and Ext. What this really means is that group

(co)homology can be computed with projective resolutions of ZrGs–modules. Recall that a module

P is projective if it satisfies the following lifting property

A

P B,

@D

@
2The names Eilenberg-MacLane space or KpG, 1q–space are also common.
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by which we mean that every morphism P Ñ B factors through every surjective morphism

AÑ B. Equivalently, P is projective if every short exact sequence of modules

0 ÝÑ A1 ÝÑ B1 f
ÝÑ P ÝÑ 0

splits, i.e. there exists a morphism of modules h : P Ñ B1, called section map, such that f � h is

the identity on P , see [Bou89, Chap. 2, §2, Prop. 4]. A projective resolution P of a module C (not

necessarily projective) is an exact sequence of projective modules ending in C Ñ 0:

. . .
B3ÝÑ P2

B2ÝÑ P1
B1ÝÑ C ÝÑ 0 (exact).

A projective resolution is denoted P � C. The fundamental property of projective resolutions is

Lemma B.3. Any two projective resolutions of the same module are chain homotopic.

The derived functors in Definition B.2 mean that if P � ∆ � Kerpεq is the projective resolution

of ZrGs–modules

. . .
B3ÝÑ P2

B2ÝÑ P1
B1ÝÑ ZrGs ε

ÝÑ Z ÝÑ 0,

then

H�pG;Mq � H�pP bGMq, H�pG;Mq � H��HomGpP;Mq
�
.

In particular, H0pG;Mq � ∆bGM and the negative-degree cohomology modules vanish. Similarly,

H0pG;Mq � HomGp∆;Mq. Since any two projective resolutions of ∆ are chain homotopic, group

(co)homology is independent of the choice of the projective resolution P � ∆.

Example B.4. We compute the homology of free groups with coefficients in a trivial module M .

Let Fn � xa1, . . . , any be the free group on n elements. We claim that ∆ is the free ZrFns–module

given by ∆ � xa1 � 1, . . . , an � 1yZrFns. The show the inclusion ∆ � xa1 � 1, . . . , an � 1yZrFns,
argument as follows. If x P ∆, then x �

°
nihi where hi P Fn and the ni are integers whose sum

is zero. An induction on the length of hi shows that phi � 1q P xa1 � 1, . . . , an � 1yZrFns. Now,

since x �
°
nihi �

°
niphi � 1q, we conclude that x P xa1 � 1, . . . , an � 1yZrFns. Since ∆ is a free

ZrFns–module, then

0 ÝÑ ∆ ÝÑ ZrFns
ε
ÝÑ Z ÝÑ 0

is a free, hence projective, resolution of ∆. In particular

HkpFn,Mq �

$'&'%
M, k � 0

Mn, k � 1

0, k ¥ 2

.

Note that this corresponds to the homology of a sphere with n� 1 punctures.

B.2 The bar resolution for (co)homology

Our favourite choice of projective resolution of ∆ is the so-called bar resolution. It is defined by

Pk :� ZrGk�1s for k ¥ 1. Using the canonical isomorphism M bG ZrGk�1s � M bZ ZrGks, we
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obtain that the group homology of G with coefficients in M can be computed as the homology of

the chain complex

CkpG,Mq :�M bZ ZrGks, k ¥ 0.

It is called the bar chain complex of G and M . The differential Bk : CkpG,Mq Ñ Ck�1pG,Mq is

defined by

Bkpab pg1, . . . , gkqq :�g1 � ab pg2, . . . , gkq

�
k�1̧

i�1

p�1qiab pg1, . . . , gi�1, gigi�1, gi�2, . . . , gkq

� p�1qkab pg1, . . . , gk�1q, (B.1)

where a PM and pg1, . . . , gkq P G
k.

The bar cochain complex is given by

CkpG,Mq :� MappGk,Mq,

where MappGk;Mq is the G–module of set-theoretic functions from Gk to M . The differential

Bk : Ck�1pG;Mq Ñ CkpG;Mq is defined by

pBkuqpg1, . . . , gkq :�g1 � upg2, . . . , gkq

�
k�1̧

i�1

p�1qiupg1, . . . , gi�1, gigi�1, gi�2, . . . , gkq

� p�1qkupg1, . . . , gk�1q, (B.2)

where u P MappGk�1;Mq. One can easily check that the squares of the differentials Bk and Bk

vanish.

There is an obvious relation between the differentials (B.1) and (B.2) given by

pBkuqpg1, . . . , gkq � ũ
�
Bkp1b pg1, . . . , gkqq

�
, (B.3)

where ũ : M bZ ZrGk�1s Ñ M is the unique lift of the Z–linear map M � ZrGk�1s Ñ M ,

pa, pg1, . . . , gkqq ÞÑ a � upg1, . . . , gkq.

The sets of k-cocycles and k-coboundaries of the bar complex are denoted ZkpG,Mq and

BkpG,Mq, respectively. In particular, the 1-cocycles are

Z1pG,Mq :� tu : GÑM : upg1g2q � upg1q � g1 � upg2q, @g1, g2 P Gu

and the 1-coboundaries are

B1pG,Mq :� tu : GÑM : Da PM, upgq � g � a� a, @g P Gu.
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B.3 Relative group (co)homology

Let K � tKi : i P Iu be a family of subgroups of G stable under conjugation. We define the group

(co)homology of G relative to K with coefficients in M . Let ZrG{Ks :�
À

iPI ZrG{Kis be the direct

sum of the free groups generated by the left cosets of Ki in G. We denote by ∆ the kernel of the

augmentation map ε : ZrG{Ks Ñ Z.

Definition B.5 (Relative group (co)homology). The relative (co)homology groups of G relative to

K with coefficients in the G–module M are defined by

H�pG,K,Mq :� Tor
ZrGs
��1 pZ,∆bGMq,

H�pG,K,Mq :� Ext��1
ZrGspZ,HomGp∆;Mqq.

Observe that

H�pG,K,Mq � H��1pG,∆bGMq, (B.4)

H�pG,K,Mq � H��1pG,HomGp∆;Mqq. (B.5)

In particular, H0pG,K,Mq � H0pG,K,Mq � 0, H1pG,K,Mq � ∆ bG M and H1pG,K,Mq �

HomGp∆;Mq.

Remark B.6. Definition B.5 makes perfect sense even if K is not assumed to be closed under con-

jugation. This gives a notion of group (co)homology relative to any family of subgroups. However,

this notion is equivalent to the former in the following sense. If K denote the conjugation closure

of K:

K :� tgKg�1 : g P G,K P Ku,

then there are canonical isomorphisms

H�pG,K,Mq � H�pG,K,Mq, H�pG,K,Mq � H�pG,K,Mq. (B.6)

Indeed, choose a set of coset representatives X for G{K. This gives an identification ZrG{Ks �
ZrG{Ks which induces the desired isomorphisms. The resulting isomorphisms (B.6) are independent

of the choice of X , see [BE78, Proposition 7.5].

B.4 Bar resolution for relative (co)homology

The bar resolution for relative group (co)homology is obtained from the bar resolution for group

(co)homology using the cone construction. Recall that if A and B are chain complexes and f : B Ñ

A is a morphism of chain complexes, then the cone of f is the chain complex Cpfq with differential

d given by

Cpfqk :� Ak `Bk�1, dpα, βq :� p�dα� fpβq, dβq.

This construction produces an exact triangle of complexes B Ñ AÑ Cpfq Ñ Br�1s where Br�1s

is the shifted complex obtained from B, also called the suspension of B. The exact triangle induces

a long exact sequence in (co)homology.
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We adopt the shorthand notation

CkpK,Mq :�
à
iPI

CkpKi,Mq, CkpK,Mq :�
¹
iPI

CkpKi,Mq.

The relative bar chain complex is given by the cone of the inclusion Ki � G, i.e.

CkpG,K,Mq : � CkpG,Mq ` Ck�1pK,Mq,

�M bG
�
ZrGks ` ZrKk�1s

�
.

with differential Bk : CkpG,K,Mq Ñ Ck�1pG,K,Mq defined by

Bkpg, hq :�
�
� Bkg �

¸
iPI
ıihi, Bk�1h

�
, (B.7)

where g P CkpG;Mq and h � phiqiPI P Ck�1pK;Mq. Recall that at most finitely many hi are

nonzero so that the sum in (B.7) makes sense. The relative bar cochain complex is defined by

CkpG,K,Mq : � CkpG,Mq ` Ck�1pK,Mq,

� Map
�
ZrGks ` ZrKk�1s,M

�
.

The differential Bk : CkpG,K,Mq Ñ Ck�1pG,K,Mq is given by

Bkpu, fq : �
�
Bku, u ıi � Bk�1fiq

�
�
u Bk�1, u ıi � fiBk

�
, (B.8)

where u P CkpG,Mq and f � pfiqiPI P Ck�1pK,Mq. The second equality in (B.8) follows from the

relation (B.3) which implies uBk�1 � Bku and fBk � Bk�1f .

There are long exact sequences in group homology and cohomology that read

. . . ÝÑ HkpK,Mq
`pıiq�
ÝÑ HkpG,Mq

j
ÝÑ HkpG,K,Mq

r
ÝÑ Hk�1pK,Mq ÝÑ . . . (B.9)

. . . ÝÑ Hk�1pK,Mq
r
ÝÑ HkpG,K,Mq

j
ÝÑ HkpG,Mq

�pıiq�
ÝÑ HkpK,Mq ÝÑ . . . (B.10)

We used the shorthand notationsHkpK,Mq :�
À

iPI HkpKi,Mq andHkpK,Mq :�
±
iPI H

kpKi,Mq.

The morphisms j and r are induced from the inclusion and restriction on the (co)chain complex

level. The long exact sequences are obtained by applying the derived functors Ext�ZrGsp�,Mq and

Tor
ZrGs
� p�,Mq to the short exact sequence

0 ÝÑ ∆ ÝÑ ZrG{Ks ÝÑ Z ÝÑ 0.

B.5 Relation to singular (co)homology

The purpose of this section is to explain how the singular (co)homology of a space relates to the

group (co)homology of its fundamental group.

Definition B.7 (Eilenberg-MacLane pair). A pair of topological spaces pX,Y q, Y � X, is an
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Eilenberg-MacLane pair of type KpG,K, 1q, if X is a KpG, 1q–CW-complex and if Y � \Yi where

each Yi is a KpKi, 1q–subcomplex of X.

Equivalently, pX,Y q is an Eilenberg-MacLane pair if each inclusion Yi ãÑ X induces an injective

homomorphism π1pYi, yiq ãÑ π1pX, yiq and if there exists an isomorphism ϕ : π1pX, yiq Ñ G induced

by a suitable choice of path connecting base points such that ϕpπ1pYi, yiqq � Ki

π1pYi, yiq π1pX, yiq

Ki G.

ϕ ϕ

ıi

The standard examples of Eilenberg-MacLane pairs are pairs pX,Y q where X is a KpG, 1q-space

and Y is the boundary of X.

Theorem B.8 ([BE78]). Let pX,Y q be an Eilenberg-MacLane pair of type KpG,K, 1q. Then there

exist isomorphisms in (co)homology in every degree that relates the long exact sequences of the pairs

pX,Y q and pG,Kq such that the following diagram commutes (up to a minus sign for the middle

square)

Hk�1pK,Mq HkpG,K,Mq HkpG,Mq HkpK,Mq

Hk�1pY,Mq HkpX,Y,Mq HkpX,Mq HkpY,Mq.

� � � �

Remark B.9. Observe that if pX,Y q is an Eilenberg-MacLane pair of type KpG,K, 1q, then it is

also an Eilenberg-MacLane pair of type KpG,K1, 1q where K1 is obtained from K by individually

conjugating its elements. So, as a byproduct of Theorem B.8, we get a natural isomorphism between

the (co)homology of the pairs pG,Kq and pG,K1q. This isomorphism corresponds to the one induced

by (B.6). In addition there are natural isomorphisms

H�pX,Y,Mq � H�pG,K,Mq, H�pX,Y,Mq � H�pG,K,Mq,

where K denotes the conjugation closure of K introduced in Remark B.6.

We refer the reader to [BE78, Thm. 1.3] for a proof of Theorem B.8.

B.6 Cup product

We introduce the cup product in group cohomology using the bar cochain complex as in [Nos17,

§7]. Let G be a group and M,M 1 be two G–modules. Let u P CkpG,Mq and v P ClpG,M 1q. The

cup product of u and v is defined as the cochain u! v P Ck�lpG,M bGM
1q defined by

u! vpg1, . . . , gk�lq :� upg1, . . . , gkq b g1 . . . gk � vpgk�1, . . . , glq. (B.11)

Lemma B.10. The cup product satisfies the Leibniz rule:

Bk�l�1pu! vq � Bk�1u! v � p�1qku! Bl�1v.
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The Leibniz rule implies that the cup product descends to a well-defined G-invariant product

on cohomology:

! : HkpG,Mq bG H
lpG,M 1q Ñ Hk�lpG,M bGM

1q.

Lemma B.11. Up to the natural identification M bGM
1 �M 1 bGM , it holds that

ru! vs � p�1qklrv ! us, @u P ZkpG,Mq, @v P ZlpG,M 1q.

Proof. We treat the case k � l � 1. The other cases are similar. We start by computing the

differential of ub v using (B.2)

�B2pub vqpx, yq � �upxq b vpxq � upxyq b vpxyq � x � pupyq b vpyqq

� upxq b x � upyq � x � upyq b vpxq

� u! vpx, yq � v ! upx, yq,

where in the second equality we used the cocycle property upxyq � upxq�x �upyq. This shows that

u! v � v ! u is a coboundary.

The cup product can be defined on relative cohomology as follows. Let u P CkpG,Mq and

f P Ck�1pK,Mq, and v P ClpG,M 1q. Define the cup product of pu, fq with v to be the cochain

pu! v, f ! vq P Ck�lpG,K,M bGM
1q.

It induces a cup product in relative cohomology

! : HkpG,K,Mq bG H
lpG,M 1q Ñ Hk�lpG,K,M bGM

1q. (B.12)

B.7 Cap product and Poincaré duality

The purpose of [BE78] was to describe a notion of Poincaré duality for group pairs. This can be

done as follows.

Let P � Z be a projective resolution of G–modules. Then P bG P is a projective resolution of

Z for the diagonal G–action on PbGP. Let g � pbqba P pPbGPqbGM and u P HomGpP,M 1q.
The cap product of g and u is defined to be

g " u :� q b pab uppqq P P bG pM bGM
1q.

Lemma B.12. The cap product is a well-defined operation on complexes and satisfies the Leibniz

rule

Bkpg " uq � p�1qlBk�l g " u� g " Blu.

The induced cap product on (co)homology is

" : Hk�lpG,Mq bG H
kpG,M 1q Ñ HlpG,M bGM

1q
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The definition of the cap product in relative (co)homology uses the pairing

B : p∆bGMq bG HomGp∆,M
1q ÑM bGM

1

pg b aq b u ÞÑ ab upgq. (B.13)

The cap product on relative group (co)homology is the dashed arrow that makes the following

diagram commute

Hk�lpG,K,Mq bG H
lpG,K,M 1q HlpG,M bGM

1q

Hk�l�1pG,∆bGMq bG H
k�1pG,HomGp∆,M

1qq

"

B�"

The equality in the first column is an application of (B.4) and (B.5).

Using a modified version of the pairing (B.13), one can define a second variant of the cap product

" : Hk�lpG,K,Mq bG H
kpG,M 1q Ñ HlpG,K,M bGM

1q.

The two versions of the cup product are natural operations in group (co)homology, see [BE78] for

more details.

The cap product maps the long exact sequence in cohomology for the pair pG,Kq to its long

exact sequence in homology. This commutes with the corresponding map in singular homology

under the isomorphism of Theorem B.8. Indeed, let pX,Y q denote an Eilenberg-MacLane pair of

type KpG,K, 1q. For any e P HnpG,K,Mq, let e P HnpX,Y ;Mq be the image of e under the

isomorphism of Theorem B.8. The following diagram commutes for k � 0, . . . , n (up to some minus

signs depending on the degree of the two lower squares, see [BE78] for complete details)

Hn�kpG,K,M bGM
1q Hn�k�1pK,M bGM

1q Hn�k�1pG,M bGM
1q

HkpG,M 1q HkpK,M 1q Hk�1pG,K,M 1q

HkpX,M 1q HkpY,M 1q Hk�1pX,Y,M 1q

Hn�kpX,Y,M bGM
1q Hn�k�1pY,M bGM

1q Hn�k�1pX,M bGM
1q.

�

e" rpeq"

� �

e"

e" rpeq" e"

Here, r denotes the connecting morphism of the long exact sequence (B.9). In particular, the

following square commutes

HkpX,Y,M 1q HkpG,K,M 1q

Hn�kpX,M bGM
1q Hn�kpG,M bGM

1q.

e"

�

e"

�

Poincaré duality for de Rham cohomology says that if X is a smooth, compact, connected

manifold of dimension n, and rXs is a generator of HnpX;Zq � Z, then the cap product with rXs

is an isomorphism

rXs" : Hk
dRpX,Rq

�
ÝÑ Hn�kpX,Rq, k � 0, . . . , n.
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In the context of group (co)homology, one introduces the notion of Poincaré duality pairs.

Definition B.13 ((Poincaré) duality pairs). The pair pG,Kq is called a duality pair of dimension

n, in short a Dn-pair, if there exists a G–module N and an element e P HnpG,K, Nq such that both

� e" : HkpG,Mq Ñ Hn�kpG,K, N bGMq,

� e" : HkpG,K,Mq Ñ Hn�kpG,N bGMq

are isomorphisms for every k � 0, . . . , n and for every G–module M . Moreover, if N can be chosen

to be isomorphic to Z as a group, then pG,Kq is called a Poincaré duality pair of dimension n, in

short a PDn-pair.

If pG,Kq is a Dn-pair, then by letting M � ZrGs and k � n, we obtain HnpG,K,ZrGsq �
H0pG,N bG ZrGsq � N . Therefore, a duality pair determines a unique dualizing module N up to

isomorphism. For a PDn-pair we call each of the two generators of HnpG,K, Nq � Z a fundamental

class of pG,Kq.

Example B.14. Let X be a smooth, compact, connected, manifold of dimension n with non-

empty boundary BX. Let rX, BXs P HnpX, BX,Zq be a fundamental class. Assume that pX, BXq

an Eilenberg-MacLane pair of type KpG,K, 1q. Then pG,Kq is a PDn-pair with fundamental class

rG,Ks given by the image of rX, BXs under the isomorphism of Theorem B.8. In particular, the

following diagram commutes

Hn
dRpX, BX,Rq H0pX,Rq

HnpG,K,Rq H0pG,Rq.

rX,BXs"

�
rG,Ks"

�

Here, R is the trivial G–module.

Observe that if pG,Kq is a Dn-pair, then there exists an induced isomorphism

rpeq" :
¹
iPI

HkpKi;M
1q Ñ

à
iPI

Hn�k�1pKi;M bGM
1q

in every degree k and for every G–modules M,M 1. Therefore, K must be a finite collection of

subgroups.

Lemma B.15. Let pG,Kq be a PDn-pair and R be the trivial G–module. The cap product in degree

n for the bar resolution is

" : HnpG,K,Rq bG HnpG,K,Rq Ñ R

rpg, h1, . . . , hmqs b rpu, f1, . . . , fmqs ÞÑ upgq �
m̧

i�1

fiphiq, (B.14)

where u : Gn Ñ R and fi : K
n�1
i Ñ R have been extended Z-linearly to ZrGns, respectively ZrKn�1

i s.

Proof. We only check that (B.14) vanishes if pg, h1, . . . , hmq is exact. A complete proof is given in

[KM96, Proposition 5.8].
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The condition Bnpu, f1, . . . , fmq � 0 as defined in (B.8) means that Bnu � 0 and uæKi�B
n�1fi �

0 for all i. Since pg, h1, . . . , hmq is assumed to be exact, there exist pg1, h11, . . . , h
1
mq P Cn�1pG,K,Rq

such that

pg, h1, . . . , hmq � Bn�1pg
1, h11, . . . , h

1
mq

�

�
m̧

i�1

h1i � Bn�1g
1, Bnh11, . . . , Bnh

1
m

�
.

We compute

upgq �
m̧

i�1

fiphiq �
m̧

i�1

uæKiph
1
iq � upBn�1g

1q �
m̧

i�1

fipBnh
1
iq

�
m̧

i�1

uæKiph
1
iq � Bnupg1q �

m̧

i�1

Bn�1fiph
1
iq,

where in the second equality we applied the relation (B.3). The last expression vanishes because

pu, f1, . . . , fmq is closed.

B.8 Parabolic group cohomology

Parabolic group cohomology was introduced in the sixties by André Weil. We give a succinct

introduction inspired from [GHJW97].

Let G be a discrete group and K � tKi : i P Iu be a family of subgroups of G. Let M be a

G–module and k ¥ 0 an integer. Define the set of parabolic cocycles in the bar complex to be the

set k-cocycle f : Gk Ñ M such that all the restrictions fæKi are exact, i.e. belong to BkpKi,Mq.

The set of parabolic cocycles in degree k is denoted

ZkparpG,Mq � ZkpG,Mq.

Parabolic cocycles are thus cocycles that are exact on the boundary.

Definition B.16 (Parabolic group cohomology). The parabolic group cohomology of G with coef-

ficients in the G–module M is defined to be

H�
parpG,Mq :� Z�parpG,Mq{B�pG,Mq � H�pG;Mq.

It follows from Definition B.16 that parabolic group cohomology is related to relative group

cohomology as follows.

Lemma B.17. Let j : HkpG,K,Mq Ñ HkpG,Mq be the morphism of the long exact sequence

(B.10) for the pair pG,Kq. Then,

Hk
parpG,Mq � j

�
HkpG,K,Mq

�
� HkpG,K,Mq{Kerpjq.

The Leibniz rule of Lemma B.10 implies that the kernel and the image of j are orthogonal for
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the cup product (B.12). In particular, there is a non-degenerate induced product

! : Hk
parpG,Mq bG H

l
parpG,M

1q Ñ Hk�lpG,K,M bGM
1q. (B.15)
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