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Part 1

Classical Mechanics



Lecture 1. Equations of motion

1.1. Generalized coordinates. Classical mechanics describes systems of
finitely many interacting partz'clesﬂ A system is called closed if its particles do
not interact with the outside material bodies. Position of the system in space
is specified by the positions of its particles and determines a point in some
smooth, finite-dimensional manifold M, called the configuration space of the
system. Coordinates on M are called generalized coordinates of a system, and
the dimension n = dim M is called the number of degrees of freedom.

A state of the system at any instant of time is described by a point ¢ € M and
by a tangent vector v € Ty M at this point. The basic principle of classical me-
chanics is the Newton-Laplace determinacy principle, which asserts that a state
of the system at a given instant completely determines its motion at all times
t (in the future and in the past). The motion is described by the classical tra-

jectory — a path ~(t) in the configuration space M. In generalized coordinates
i

v(t) = (¢ (1), ..., q"(t)), and corresponding derivatives ¢* = are called gen-

eralized velocities. The Newton-Laplace principle is 3 fundamental experimental
d 1
_ ar
by generalized coordinates ¢* and generalized velocities ¢*, so that classical tra-
jectories satisfy a system of second order ordinary differential equations, called
equations of motion.

A Lagrangian system on a configuration space M is defined by a smooth,
real-valued function L on T'M x R — the direct product of a tangent bundle
TM of M and the time axisﬂ — called the Lagrangian function (or simply,
Lagrangian).

fact. It implies that generalized accelerations §* = are uniquely determined

1.2. The principle of the least action. The most general principle gov-
erning the motion of Lagrangian systems is the principle of the least action in
the configuration space (or Hamilton’s principle), formulated as follows.

Let

P(M)Zéﬁé = {7 [to,t1] = M; ~v(to) = qo, ¥(t1) = @1 }

be the space of smooth parametrized paths in M connecting points go and
q1. The path space P(M) = P(M )gé:; is an infinite-dimensional real Fréchet
manifold, and the tangent space T, P(M) to P(M) at v € P(M) consists of all
smooth vector fields along the path v in M which vanish at the endpoints gy and
q1. A smooth path I" in P(M), passing through v € P(M), is called a variation
with fived ends of the path v(¢) in M. A variation T' is a family ~.(¢) = T'(¢,¢)

of paths in M given by a smooth map

I: [t(),tl} X [—E(],E()] — M

N particle is a material body whose dimensions may be neglected in describing its
motion.

2Tt follows from the Newton-Laplace principle that L could depend only on generalized
coordinates and velocities, and on time.
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such that T'(t,0) = ~(t) for t¢ < t < t; and T'(tg,e) = qo,[(t1,6) = ¢ for
—gg < € < gg. The tangent vector

or

= — T,P(M
655:06’}/( )

oy

corresponding to a variation 7. (t) is traditionally called an infinitesimal varia-
tion. Explicitly,
5v(t) = T.(£)(t,0) € Ty M, to <t <t,

g

where % is a tangent vector to the interval [—eg, €] at 0. Finally, a tangential

lift of a path v : [to,t1] — M is the path ' : [to,t1] — TM defined by +/(t) =
7*(%) € TyyM, to <t < ty, where % is a tangent vector to [tg,?1] at ¢. In
other words, 7/(¢) is the velocity vector of a path (t) at time ¢.

DEFINITION. The action functional S : P(M) — R of a Lagrangian system
(M, L) is defined by

t1
s = [ Lot
to
PRINCIPLE OF THE LEAST ACTION (Hamilton’s principle). A pathy € PM
describes the motion of a Lagrangian system (M, L) between the position ¢y €
M at time ¢y and the position ¢ € M at time ¢; if and only if it is a critical
point of the action functional S,

d

dE S(’YE):O

e=0

for all variations v (t) of v(¢) with fixed ends.

The critical points of the action functional are called extremals and the
principle of the least action states that a Lagrangian system (M, L) moves along
the extremakﬂ The extremals are characterized by equations of motion — a
system of second order differential equations in local coordinates on T'M. The
equations of motion have the most elegant form for the following choice of local
coordinates on T M.

DEFINITION. Let (U, ¢) be a coordinate chart on M with local coordinates
q=(q¢',...,q"). Coordinates

(q,v) = (ql,...,q”,vl,...,v”)

on a chart TU on TM, where v = (v!,... v") are coordinates in the fiber cor-

. .0 0 )

responding to the basis 200 D for T, M, are called standard coordinates.
q q

3 The principle of the least action does not state that an extremal connecting points qo

and ¢; is a minimum of S, nor that such an extremal is unique. It also does not state that
any two points can be connected by an extremal.



Standard coordinates are Cartesian coordinates on ¢, (TU) C TR™ >~ R"™ x
R™ and have the property that for (q,v) € TU and f € C=(U),

et (U, ) and (U’, ¢') be coordinate charts on M with the transition functions
=(FL...,F") = ¢ oot pUNU") = ¢UNU'), and let (g,v) and
v'), respectlvely, be the standard coordinates on TU and TU’. We have
q F(q) and v’ = F,(q)v, where F,(q) = {?95]
function on @(UNU’). Thus “vertical” coordinates v = (v!,...,v") in the fibers
of TM — M transform like components of a tangent vector on M under the
change of coordinates on M.
The tangential lift v/(¢) of a path v(¢) in M in standard coordinates on TU
is (q(t),q(t)) = (¢*(t),...,q"(t),¢*(t),...,4"(t)), where the dot stands for the
time derivative, so that

""‘11

n
(q)} is a matrix-valued
ij=1

L(Y'(t),t) = L(q(t),4(t),1).

Following a centuries long traditiorﬂ we will usually denote standard coordi-
nates by

(q’q) = (q17"'7qn7q.17"'7q.n)7
where the dot does not stand for the time derivative. Since we only consider
paths in T'M that are tangential lifts of paths in M, there will be no confusiorﬂ

THEOREM 1.1. The equations of motion of a Lagrangian system (M, L) in
standard coordinates on T M are given by the Euler-Lagrange equations

Sela0.40.0 - 5 (Getat.d.n) =o.

PROOF. Suppose first that an extremal () lies in a coordinate chart U of
M. Then a simple computation in standard coordinates, using integration by
parts, gives

0=

e - S(’Ys)

d / " L(a(te). (6. 0). ) di

de e=0Yto

" /9L .. OL )
= 0q" + ——8¢" ) dt
Z/t (W 77 9"

brarL d oL . " 9L "
- = D) sqldt 27454
Z/to (aqz dt&jl) g +; ]

to

4Used in all texts on classical mechanics and theoretical physics.
5We reserve the notation (q(t), v(t)) for general paths in TM.
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The second sum in the last line vanishes due to the property dq'(tg) = d¢'(t1) =
0, i=1,...,n. The first sum is zero for arbitrary smooth functions é¢’ on the
interval [to, t1] which vanish at the endpoints. This implies that for each term
in the sum the integrand is identically zero,

Sarta.a0.0 - 5 (Gr@®.d0.0) =0 i=1n

Since the restriction of an extremal of the action functional S to a coordinate
chart on M is again an extremal, each extremal in standard coordinates on T'M
satisfies Euler-Lagrange equations. O

REMARK. In calculus of variations, the directional derivative of a functional
S with respect to a tangent vector V' € T, P(M) — the Gato derivative — is

defined by
d

oyS = — S

14 de o (’Ys)a
where 7. is a path in P(M) with a tangent vector V' at 79 = 7. The result of the
above computation (when 4 lies in a coordinate chart U C M) can be written

as

NI (OL  dOL , ;
s = [ 73 (G diag ) ta-d0.0v 0

(1.1) = /t ((;5 - jtgg) (q(t),q(t),t)v(t)dt.

n

Here V (t) = E vi(t)g is a vector field along the path v in M. Formula ((1.1])
, q'
=1
is called the formula for the first variation of the action with fized ends. The
principle of the least action is a statement that éy-S(y) = 0 for all V € T, P(M).

REMARK. It is also convenient to consider a space P(M) = {v : [to, t1] —
M} of all smooth parametrized paths in M. The tangent space T, P(M) to

o

P(M) at v € P(M) is the space of all smooth vector fields along the path 7 in
M (no condition at the endpoints). The computation in the proof of Theorem
yields the following formula for the first variation of the action with free
ends:

oL d oL OL
1.2 SvS = ob @ oh s 22
(12) v /t <6q dtaq)” " 9q"

t1

to

PROBLEM 1.1. Show that the action functional is given by the evaluation of the
1-form Ldt on TM x R over the 1-chain 4 on TM x R,

s = [ L,

e

where 7 = {(v/(t),t);to <t < t1} and Ldt (w,c2) = cL(q,v), w € T(g,0)TM, c € R.



PROBLEM 1.2. Let f € C°(M). Show that Lagrangian systems (M, L) and
(M, L +df) (where df is a fibre-wise linear function on T'M') have the same equations
of motion.

PROBLEM 1.3. Give examples of Lagrangian systems such that an extremal con-
necting two given points (i) is not a local minimum; (ii) is not unique; (iii) does not
exist.

PROBLEM 1.4. For v an extremal of the action functional S, the second variation

of S is defined by
82

851852
where ¢, e, is a smooth two-parameter family of paths in M such that the paths ¢, 0
and 7o,e, in P(M) at the point 0,0 = v € P(M) have tangent vectors Vi and Va,
respectively. For a Lagrangian system (M, L) find the second variation of S and verify
that for given Vi and V5 it does not depend on the choice of ve, e, -

6%/1‘/25: 5(751,52)7

g1=e29=0
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Lecture 2. Lagrangian systems

To describe a mechanical phenomena it is necessary to choose a frame of
reference. The properties of the space-time where the motion takes place depend
on this choice.

2.1. Newtonian space-time. The space-time is characterized by the fol-
lowing postulatesﬂ

NEWTONIAN SPACE-TIME. The space is a three-dimensional affine Eucli-
dean space E3. A choice of the origin 0 € E3 — a reference point — establishes
the isomorphism E3 ~ R3, where the vector space R? carries the Euclidean inner
product and has a fixed orientation. The time is one-dimensional — a time axis
R — and the space-time is a direct product E? x R. An inertial reference frame
is a coordinate system with respect to the origin 0 € E3, initial time t,, and
an orthonormal basis in R3. In an inertial frame the space is homogeneous and
isotropic and the time is homogeneous. The laws of motion are invariant with
respect to the transformations

r—g-T+ 70, t—t+4 1o,

where 7,79 € R3 and g € O(3) is an orthogonal linear transformation in R3.
The time in classical mechanics is absolute.

The Galilean group is the group of all affine transformations of E3 x R which
preserve time intervals and which for every ¢ € R are isometries in E2. Every
Galilean transformation is a composition of rotation, space-time translation,
and a transformation

(2.1) r—r+ot, t—t,

where v € R%. Any two inertial frames are related by a Galilean transformation.

The homogeneous Galilean group consists of rotations and special Galilean
transformations . As Lie group, it is isomorphic to the Euclidean Lie group
E(3), a semi-direct product O(3) x R? with the composition law

(91,v1)(g2,v2) = (9192, v1 + g1v2), 12 € O(3), v12 €R®.

Any two inertial frames are related by a Galilean transformation.

GALILEO’S RELATIVITY PRINCIPLE. The laws of motion are invariant with
respect to the Galilean group.

These postulates impose restrictions on Lagrangians of mechanical systems.
Thus it follows from the first postulate that the Lagrangian L of a closed system
does not explicitly depend on time.

6Strictly speaking, these postulates are valid only in the non-relativistic limit of special
relativity, when the speed of light in the vacuum is assumed to be infinite.



2.2. Examples of Lagrangian systems. Physical systems are described
by special Lagrangians, in agreement with the experimental facts about the
motion of material bodies.

EXAMPLE 2.1 (Free particle). The configuration space for a free particle
is M = R3, and it can be deduced from Galileo’s relativity principle that the
Lagrangian for a free particle is

-2

L = smr-.

1
2

Here m > (I']is the mass of a particle and 7> = |#*|? is the length square of the
velocity vector © € T,,R? ~ R3. Euler-Lagrange equations give Newton’s law of
mertia,
7 =0.
ExXAMPLE 2.2 (Interacting particles). A closed system of N interacting par-
ticles in R? with masses mq,..., my is described by a configuration space

M=R»N=R3x...xR?
N————
N

with a position vector » = (r1,...,7x), where 7, € R? is the position vector of
the a-th particle, a = 1,..., N. It is found that the Lagrangian is given by

a=1

mar2 —V(r)=T -V,

N

where
N
_ 1 .92
T = E 5MaTy
a=1

is called kinetic energy of a system and V(r) is potential energy. The Euler-
Lagrange equations give Newton’s equations

ma’i;a = Fa7
where p
|%
F, =—
or,
is the force on the a-th particle, a = 1,..., N. Forces of this form are called

conservative. Thus the interaction of particles is given by the action of potential
forces which is an instantaneous action at a distancdl

7Otherwise the action functional is not bounded from below.

8This means a phenomenon in which a change in intrinsic properties of one system induces
an instantaneous change in the intrinsic properties of a distant system without a process that
carries this influence contiguously in space and time.
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It follows from homogeneity of space that potential energy V(r) of a closed
system of N interacting particles with conservative forces depends only on rel-
ative positions of the particles, which leads to the equation

N
Z F, =0.
a=1

In particular, for a closed system of two particles F; + F» = 0, which is the
equality of action and reaction forces, also called Newton’s third law.

The potential energy of a closed system with only pair-wise interaction be-
tween the particles has the form

V(T‘) = Z Vab(ra — T‘b).

1<a<b<N

It follows from the isotropy of space that V' (r) depends only on relative distances
between the particles, so that the Lagrangian of a closed system of N particles
with pair-wise interaction has the form

L=> imat2 = > Val(lra — 7).

a=1 1<a<b<N

EXAMPLE 2.3 (Universal gravitation). According to Newton’s law of gravi-
tation, the potential energy of the gravitational force between two particles with
masses m, and my, is
Vre —m) = g el
|7 — 7]
where G is the gravitational constant. The configuration space of N particles
with gravitational interaction is

M={(ry,...,r5) ER¥N .9, £r,fora#b,ab=1,...,N}.

EXAMPLE 2.4 (Small oscillations). Consider a particle of mass m with n
degrees of freedom moving in a potential field V' (q), and suppose that potential
energy U has a minimum at ¢ = 0. Expanding V(q) in Taylor series around
0 and keeping only quadratic terms, one obtains a Lagrangian system which
describes small oscillations from equilibrium. Explicitly,

L= ymg’ —Vo(q),
where Vj is a positive-definite quadratic form on R™ given by
—~ PV
Volg) = 3 Z (0)g'¢’.

i,j=1 8qlaqj

Since every quadratic form can be diagonalized by an orthogonal transformation,
we can assume from the very beginning that coordinates q = (¢',...,q") are
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chosen so that Vy(q) is diagonal and

n

(2.2) L=1im(¢" - wi(d)?),

i=1
where wq,...,w, > 0. Such coordinates q are called normal coordinates. In
normal coordinates Euler-Lagrange equations take the form

G +wid =0, i=1,...,n,
and describe n decoupled (i.e., non-interacting) harmonic oscillators with fre-
qUENCIES W1, ..., Wn-

EXAMPLE 2.5 (Free particle on a Riemannian manifold). Let (M,ds?) be
a Riemannian manifold with the Riemannian metric ds?. In local coordinates
z,...,z" on M,
ds® = g, (z)dz"dz",
where following tradition we assume the summation over repeated indices. The
Lagrangian of a free particle on M is

L(v) = 3{(v,v) = 3|Jvl*, v € TM,

where (, ) stands for the inner product in fibers of TM given by the Riemannian
metric. The corresponding functional

ty t1
se =4 [ I OPd=1 [ guloir

t() t(J

is called the action functional in Riemannian geometry. The Euler-Lagrange
equations are

. 09 ., . 10gux ., .
Gt + —8;;:6“:3’\ = 576;’ Ha?,

and after multiplying by the inverse metric tensor g?¥ and summation over v
they take the form

o o ey _
7 +1y,8"2" =0, o=1,...,n,

where

= + —
29 oz Oz Oz
are Christoffel’s symbols. The Euler-Lagrange equations of a free particle moving
on a Riemannian manifold are geodesic equations.
Let V be the Levi-Civita connection — the metric connection in the tangent

bundle T'M — and let V¢ be a covariant derivative with respect to the vector
field ¢ € Vect(M). Explicitly,

1—\0' _ 1 o\ (agﬂ)\ aglj)\ 89#1/)
7

on* 0
(Ven) = (82” +1—‘5>\7]’\) &, where ¢= 5”(33)%’ n=n"()5—.



LECTURE 2. LAGRANGIAN SYSTEMS 11

For a path v(t) = (2#(t)) denote by V5 a covariant derivative along ~,

smre) = O rn )it (n) @), where 5= (1)

dt Ok

is a vector field along +. Formula (1.1)) can now be written in an invariant form

ty
55 = - [ (vsh o,

to

which is known as the formula for the first variation of the action in Riemannian
geometry.

PROBLEM 2.5. Prove that the second variation of the action functional in Rie-
mannian geometry is given by

t1
5252/ (T (817), 62)dL.
to

Here 617,02y € Ty PM, J = —V?-Y — R(*, - )% is the Jacobi operator, and R is a
curvature operator — a fibre-wise linear mapping R : TM ® TM — End(TM) of
vector bundles, defined by R(§,n) = V,Ve = VeVy + Vie : TM — TM, where
&, m € Vect(M).
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Lecture 3. Integrals of motion and Noether’s theorem

To describe the motion of a mechanical system one needs to solve the corre-
sponding Euler-Lagrange equations — a system of second order ordinary differ-
ential equations for the generalized coordinates. This could be a very difficult
problem. Therefore of particular interest are those functions of generalized co-
ordinates and velocities which remain constant during the motion.

DEFINITION. A smooth function I : TM — R is called the integral of motion
(first integral, or conservation law) for a Lagrangian system (M, L) if

d
SI6(0) =0

for all extremals « of the action functional.
3.1. Conservation of energy.

DEFINITION. The energy of a Lagrangian system (M, L) is a function E on
TM x R defined in standard coordinates on T'M by

E(q.q.t) Zq 8 ~(q,4,t) — L(q, . 1).

LEMMA 3.1. The energy E = q %{; — L is a well-defined function on T M xR.

PRrROOF. Let (U, p) and (U’,¢’) be coordinate charts on M with the tran-
sition functions F = (F1,...,F") = ¢’ oo™l : oUNU') — ¢ (UNU").
Corresponding standard coordinates (q, ) and (q’, ¢’) are related by q¢' = F(q)
and ¢’ = F.(q)q (see Lecture We have dq’ = F.(q)dq and dq¢’' = G(q, q)dq +
F.(q)dq, where

so that

oL oL oL
ar = L aq + O aq 4+ L
27" Toag™ T

oL 8L 8L
oL oL 8L
a—d +8—d + 5t

oL
F.(q)dq + 5 dt

Thus under a change of coordinates

so that F is a well-defined function on T'M. O
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COROLLARY 3.2. Under a change of local coordinates on M, components of
oL (@,d.4) = oL oL
aq" q, q7 - aq-l yrtt 8q-n
PROPOSITION 3.1 (Conservation of energy). The energy of a closed system
s an integral of motion.

> transform like components of a 1-form on M.

PROOF. For an extremal v set E(t) = E(y(t)). We have, according to the
Euler-Lagrange equations,

dE _d (OL\ . oL, OL. OL. 0L
at  dt\ag) 1T 9¢? 9q1 9¢1 w

_ (4 (oLy_oL\. oL 0L
“\a\aq) 8q)1 T

oL
Since for a closed system — = 0, the energy is conserved. O

ot

Conservation of energy for a closed mechanical system is a fundamental law
of physics which follows from the homogeneity of time. For a general closed
system of N interacting particles considered in Example [2.2]

N N
E=Y me2—L=>Y img}+V(r)
a=1 a

=1

In other words, the total energy £ =T + V is a sum of the kinetic energy and
the potential energy.

3.2. Noether theorem.

DEFINITION. A Lagrangian L : TM — R is invariant with respect to the
diffeomorphism g : M — M if L(g.(v)) = L(v) for all v € TM. The diffeo-
morphism ¢ is called the symmetry of a closed Lagrangian system (M, L). A
Lie group G is the symmetry group of (M,L) (group of continuous symme-
tries) if there is a left G-action on M such that for every g € G the mapping
M >x+— g -z € M is a symmetry.

Continuous symmetries give rise to conservation laws.

THEOREM 3.3 (Noether). Suppose that a Lagrangian L : TM — R is in-
variant under a one-parameter group {gs}ser of diffeomorphisms of M. Then
the Lagrangian system (M, L) admits an integral of motion I, given in standard
coordinates on T M by

) oL
= 7.0_,
s=0 8q ’

L N~OL o (dgi(q)
I == ey =
(a.9) ;:1 o (a.9) < Is
L o . . .
where X = E az(q)y is the vector field on M associated with the flow gs.
ql

i=1
The integral of motion I is called the Noether integral.
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PROOF. It follows from Corollary [3.2] that I is a well-defined function on
TM. Now differentiating L((gs)«(7'(t))) = L(7/(t)) with respect to s at s = 0
and using the Euler-Lagrange equations we get

0—% _A'_aiL'—i aiL +87Ld7a—i aiL
T g T 9% wt\oq) Y agat ~ at \aq®)’

where a(t) = (a*(y(t)),...,a"(v(1))). O

REMARK. A vector field X on M is called an infinitesimal symmetry if the
corresponding local flow g of X (defined for each s € R on some Ug; C M) is
a symmetry: Lo (gs). = L on Us. Every vector field X on M lifts to a vector
field X’ on T M, defined by a local flow on T M induced from the corresponding
local flow on M. In standard coordinates on T'M,

N iy N iy D N e O
(3.1) X*ZG(Q)aqi and X *ZG(Q)aququ 30 Va5

=1 i=1 2,j=1

It is easy to verify that X is an infinitesimal symmetry if and only if dL(X') = 0
on T'M, which in standard coordinates has the form

n n L
(3.2) ; Z:: aq] =0

The following generalization of Noether’s theorem will be used for Hamil-
tonian systems with symmetries.

PROPOSITION 3.2. Suppose that for the Lagrangian L : TM — R there exist
a vector field X on M and a function K on TM such that for every path v in
M

’

d

AL(X) (1) = 5

—K(y'(t)).
Then

"~ , . OL
=Y a'(q) a5 (@9~ K(@.d)
i=1
is an integral of motion for the Lagrangian system (M, L).

PRrOOF. Using Euler-Lagrange equations, we have along the extremal -,

d (0L \ 0L ot oL. dK -
— [ ==a —a=—".
aq 8q aq dt
ExaMPLE 3.1 (Conservation of momentum). Let M = V be a vector space,
and suppose that a Lagrangian L is invariant with respect to a one-parameter
group gs(q) = g+ sv, v € V. According to Noether’s theorem,

"\, 0L
el

I= ,
g’

i=1
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is an integral of motion. Now let (M, L) be a closed Lagrangian system of N
interacting particles considered in Example We have M =V = R3Y  and the
Lagrangian L is invariant under simultaneous translation of coordinates r, =
(rl, 72, r3) of all particles by the same vector ¢ € R®. Thus v = (¢, ...,c) € R3V
and for every ¢ = (c!,c?,¢®) € R?,

N
oL oL oL
— 1 2 3 _ 1 2 3
I—}Zl (c 87’%4—6 8752_'—6 37'“2>_CP1+C Py+4c’Ps

is an integral of motion. The integrals of motion P;, P5, P3 define the vector

N oL
P:Z:laf«

(or rather a vector in the dual space to R?), called the momentum of the system.
Explicitly,

e R?

a

N
P = § ma'f‘av
a=1

so that the total momentum of a closed system is the sum of momenta of in-
dividual particles. Conservation of momentum is a fundamental physical law
which reflects the homogeneity of space.

oL
Traditionally, p; = —— are called generalized momenta corresponding to gen-

04t
eralized coordinates ¢°, and F; = E are called generalized forces. In these no-
q

tations, the Euler-Lagrange equations have the same form
p=F

as Newton’s equations in Cartesian coordinates. Conservation of momentum
implies Newton’s third law.

ExaMPLE 3.2 (Conservation of angular momentum). Let M = V be a vector
space with Euclidean inner product. Let G = SO(V') be the connected Lie group
of automorphisms of V' preserving the inner product, and let g = so(V) be the
Lie algebra of GG. Suppose that a Lagrangian L is invariant with respect to the
action of a one-parameter subgroup gs(q) = e** - ¢ of G on V', where x € g and
e” is the exponential map. According to Noether’s theorem,

" 0L
i=1 94

is an integral of motion. Now let (M, L) be a closed Lagrangian system of N
interacting particles considered in Example We have M =V = R3*V and
the Lagrangian L is invariant under a simultaneous rotation of coordinates r, of
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all particles by the same orthogonal transformation in R®. Thus z = (u,...,u) €
50(3) @ -+ - ® s0(3), and for every u € s0(3),

N

N
oL oL oL
I = Z ((u c1rg)? ol + (u-7)? 72 +(u-r)? 87‘3>
a—1 a a a

00 0
is an integral of motion. Let v = u' X; +u? Xy +u3 X3, where X; = (8 @l)—é) , Xo =

001 0-10
(_9 0 8) , X3 = ((1) 0 8) is the basis in s0(3) ~ R3 corresponding to the rota-
tions about the vectors e, e, e3 of the standard orthonormal basis in R3. Since

U-Tq =u X rq, where u = (u!,u? u?), we have

I =u* My 4+ > My + u®Ms,

where M = (My, Ma, M3) € R? (or rather a vector in the dual space to s0(3))
is given by

N

oL

M = Zru X i
a=1

The vector M is called the angular momentum of the system. Explicitly,

N
M = Zra X MaTa,

a=1

so that the total angular momentum of a closed system is the sum of angu-
lar momenta of individual particles. Conservation of angular momentum is a
fundamental physical law which reflects the isotropy of space.
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Lecture 4. Integration of equations of motion-I

A complete general solution can be obtained for two very important exam-
ples: for a motion on the real line and for a system of two interacting particles.

4.1. One-dimensional motion. The motion of systems with one degree
of freedom is called one-dimensional. In terms of a Cartesian coordinate z on
M = R the Lagrangian takes the form

L=1imi® - V().

The conservation of energy

1
E= imﬁc2 + V(z)
allows us to solve the equation of motion in a closed form by separation of

variables. We have

dx 2
it = E(E - V(2)),

so that
P [0 / dx
V2 /) JE-V@)
The inverse function z(t) is a general solution of Newton’s equation

. av
mE=——,
with two arbitrary constants, the energy E and the constant of integration.

Since kinetic energy is non-negative, for a given value of E the actual motion
takes place in the region of R where V(z) < E. The points where V(z) = E are
called turning points. The motion which is confined between two turning points
is called finite. The finite motion is periodic — the particle oscillates between
the turning points x7 and x5 with the period

(F/W

If the region V(x) < E is unbounded, then the motion is called infinite and the
particle eventually goes to infinity. The regions where V(z) > FE are forbidden.
On the phase plane with coordinates (z,y) Newton’s equation reduces to the

first order system

. . av
mi =y, §=——

Trajectories correspond to the phase curves (z(t),y(t)), which lie on the level

sets
y2

~— 4V =F
5 TV (@)
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of the energy function. The points (zg,0), where xq is a critical point of the po-
tential energy V(x), correspond to the equilibrium solutions. The local minima
correspond to the stable solutions and local maxima correspond to the unstable
solutions. For the values of E which do not correspond to the equilibrium solu-
tions the level sets are smooth curves. These curves are closed if the motion is
finite.

The simplest non-trivial one-dimensional system, besides the free particle, is
the harmonic oscillator with V(z) = $kz* (k > 0), considered in Example
The general solution of the equation of motion is

z(t) = Acos(wt + ),

[k
where A is the amplitude, w = \/ — is the frequency, and « is the phase of a
m

2

simple harmonic motion with the period T = T The energy is F = %mwQAQ‘
w

and the motion is finite with the same period T" for E > 0.

4.2. Two-body problem. The motion of a system of two interacting par-
ticles — the two-body problem — can also be solved completely. Namely, in this
case (see Example M = R% and

ml'r‘% mgr%
2 2

L =

= V(lr1 —r2).

Introducing on R® new coordinates

mir moT
r=r —7ry and R = TATLTM2T2
mi + me
we get
L=1ImR*+ L —V(|r)),

mims

where m = my + mo is the total mass and p = is the reduced mass

mi + me
of a two-body system. The Lagrangian L depends only on the velocity R of
the center of mass and not on its position R. A generalized coordinate with
this property is called cyclic. It follows from the Euler-Lagrange equations that
generalized momentum corresponding to the cyclic coordinate is conserved. In
our case it is a total momentum of the system,

P = a—L = mR,
OR
so that the center of mass R moves uniformly. Thus in the frame of reference
where R = 0, the two-body problem reduces to the problem of a single particle
of mass p in the external central field V(|r|).
It follows from the conservation of the angular momentum M = ur X 7 that
during motion the position vector r lies in the plane P orthogonal to M in R3.
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Choosing the z-axis along M the plane P becomes the zy-plane and in polar
coordinates
T =7rcosp, y=rsiney

the Lagrangian takes the form

L= iu(i?+1r2¢%) = V(r).

The coordinate ¢ is cyclic and its generalized momentum ur?¢ coincides with
|M]| if ¢ > 0 and with —| M| if ¢ < 0. Denoting this quantity by M, we get the
equation

(4.1) wrip = M,

which is equivalent to Kepler’s second lauﬂ Using (4.1) we get for the total
energy

2

(4.2) E = $u(P® +7°¢%) + V(r) = §® + V(r) + R

Thus the radial motion reduces to a one-dimensional motion on the half-line
r > 0 with the effective potential energy

M2
V;fff(T) = V(T) + 2/‘LT2)

where the second term is called the centrifugal energy. As in the previous section,
the solution is given by

(4.3)

t\/g/J#ww

It follows from (4.1) that the angle ¢ is a monotonic function of ¢, given by
another quadrature

(4.4)

M / dr
= :
V21 ) 13/ E = Veyp(r)

yielding an equation of the trajectory in polar coordinates.

The set Veys(r) < E is a union of annuli 0 < 7y <7 < rppge < 00, and the
motion is finite if 0 < 7,5 < 7 < Tpae < 00. Though for a finite motion r(t)
oscillates between r,,,;, and 7,,4., corresponding trajectories are not necessarily
closed. The necessary and sufficient condition for a finite motion to have a closed
trajectory is that the angle

M Tmax d,r

V20 e, B = Vg (r)

91t is the statement that sectorial velocity of a particle in a central field is constant.

Ay
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is commensurable with 27, i.e., Ap = 270 for some m,n € Z. If the angle Ay

n
is not commensurable with 27, the orbit is everywhere dense in the annulus
Tmin <r< Tmaz- If

lim Vegp(r) = lim V(r) =V < oo,

r—o00 r—o0
the motion is infinite for £ > V — the particle goes to oo with finite velocity
A /%(E -V).

PROBLEM 4.6. Prove all the statements made in this section.

PROBLEM 4.7. Show that if
l% ‘/eff(r) = —00,

then there are orbits with 7y, = 0 — “fall” of the particle to the center.

PROBLEM 4.8. Prove that all finite trajectories in the central field are closed only

when o
V(r)=kr®, k>0, and V(r)=-—, a>0.
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Lecture 5. Integration of equations of motion-II

5.1. Kepler problem. A very important special case is when

It describes Newton’s gravitational attraction (o > 0) and Coulomb electrostatic
interaction (either attractive or repulsive). First consider the case when « > 0
— Kepler’s problem. The effective potential energy is

o} M?
Vepp(r) = —=
ff (r) r + 212
and has the global minimum
Vp = on
Y VE

M2
at 1o = —. The motion is infinite for £ > 0 and is finite for V; < E < 0. The
«

explicit form of trajectories can be determined by an elementary integration in

(4.4), which gives
M M

LT +C
2u(E — Vo)

Choosing a constant of integration C' = 0 and introducing notation

/ E
= d =4/1— —
p=rg and e Vo’

we get the equation of the orbit (trajectory)

© = cos

(5.1) b 1+ ecoso.
r

This is the equation of a conic section with one focus at the origin. Quantity
2p is called the latus rectum of the orbit, and e is called the eccentricity. The
choice C' = 0 is such that the point with ¢ = 0 is the point nearest to the origin
(called the perihelion). When Vy < E < 0, the eccentricity e < 1 so that the
orbit is the ellipsdﬂ with the major and minor semi-axes

p a p | M]

=" —=_——\ b= .
1—e2  2|E| Vi—e2  \/2u|E]

(5.2) a

b

Correspondingly, rpin = e

s Tmaz = 1L7 and the period T of elliptic orbit
—e

[ i
T = .
T 3B

10The statement that planets have elliptic orbits with a focus at the Sun is Kepler’s first
law.

is given by
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The last formula is Kepler’s third law. When E > 0, the eccentricity e > 1 and
the motion is infinite — the orbit is a hyperbola with the origin as internal
focus. When F = 0, the eccentricity e = 1 — the particle starts from rest at oo
and the orbit is a parabola.

For the repulsive case a < 0 the effective potential energy Vess(r) is always
positive and decreases monotonically from co to 0. The motion is always infinite
and the trajectories are hyperbolas (parabola if E = 0)

B:—l—i—ecosgo
r
with
M? 2EM?
p=— and e=4/l14+—F5—.
ap Qo

Kepler’s problem is very special: for every o € R the Lagrangian system on
R3 with
_ 1,2 @
(5.3) L = spur + -
has three extra integrals of motion W7, Wy, W3 in addition to the components

of the angular momentum M. The corresponding vector W = (Wy, Wo, W3),
called the Laplace-Runge-Lenz vector, is given by

. ar
(5.4) W=rxM-—.
T
. . . . ar .
Indeed, using equations of motion u# = ——5 and conservation of the angular
r

momentum M = pr X 7, we get

W:m"'x(rxf)—g-l-ia(r.gr)r
r r
:(uﬁf’)rf(uf~r)f’fﬁ+7a(r'r)r
r

=0.

r3

Using p(r x M) -r = M? and the identity (a X b)? = a?b? — (a - b)?, we get

2M?E
(5.5) W?=a?+
I
where
_p _a
C2u 7

is the energy corresponding to the Lagrangian (5.3)). The fact that all orbits are
conic sections follows from this extra symmetry of the Kepler problem.
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5.2. The motion of a rigid body. The configuration space of a rigid
body in R? with a fixed point is a Lie group G' = SO(3) of orientation preserving
orthogonal linear transformations in R3. Every left-invariant Riemannian metric
(, ) on G defines a Lagrangian L : TG — R by

L(v) = 3(v,v), veTG.

According to Example equations of motion of a rigid body are geodesic
equations on G with respect to the Riemannian metric ( , ). Let g = s0(3) be
the Lie algebra of G. A velocity vector § € T,G defines the angular velocity of
the body by Q = (Lg-1).g € g, where L, : G — G are left translations on G. In
terms of angular velocity, the Lagrangian takes the form

L=1(Q,9),

where ( , )¢ is an inner product on g = T.G given by the Riemannian metric
().
Let
B(z,y) = —3 Tray

be the Killing form on the Lie algebra g = so(3) — the Lie algebra of 3 x 3
skew-symmetric matrices. It determines ad g-invariant inner product on g,

B(L%Z],y) + B("Ev [y,z]) =0

for all z,y,z € g. Thus we have (Q,Q). = B(A - Q,Q) for some symmetric
linear operator A : g — g which is positive-definite with respect to the Killing
form. Such a linear operator A is called the inertia tensor of the body. The
principal axes of inertia of the body are orthonormal eigenvectors ey, e, ez of A;
corresponding eigenvalues [1, I5, I3 are called the principal moments of inertia.
Setting Q = Q1e1 + Qges + NQze3 we get

(5.6) L =3(LO7 + LO3 + 1393).

Choosing the principal axes of inertia as a basis in R? we get the Lie algebra
isomorphism g ~ R3,

0 —Q3 Qo

g20=| Q5 0 - | > (Q,2,0) €R?,
0 0

where the Lie bracket in R? is given by the cross-product. Indeed, for the ma-
trices

0 —as as 0 —b3 ba
a = as 0 —ai and b= b3 0 —b1
—asg aq 0 —b2 bl 0

corresponding to the vectors a = (a1, aq, az) and b = (b, by, b3) we have

[a,b] = ¢,
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where ¢ corresponds to the vector ¢ = a x b. Moreover,
B(a,b) =a-b.

Now let A € End g be symmetric with respect to the inner product given
by the Killing form. It is easy to see that there is a symmetric 3 x 3 matrix A
such that
A-Q=A0+ QA.

Indeed, the matrix AQ 4+ QA is skew-symmetric and the transformation Q —
AQ + QA defines a linear mapping 2 — A - Q on g. By the cyclic property of

the trace,
B(A-Q,Q)=-TrAQ? = B(Q,A-Q),
so that A is symmetric. The assignment A — A is a linear map between six-

dimensional vector spaces and to prove that it is surjective it is sufficient to
show that it is injective. Suppose that symmetric A is such that

AQ+QA=0

for all skew-symmetric €. Let  be an eigenvector of A with the eigenvalue .
Since Q- x = Q X x, we have

A xz) + ANQ x x) =0,

so in the orthogonal complement to & the matrix A is —\ times the identity
operator. The same argument applied to any vector in this teo-dimensional
subspace then shows that x is an eigenvector with the eigenvalue —\, so that
A = 0. Finally, if A = diag(l;,I2, I3), then elementaryt calculation shows that
A = diag(ly,12,13), where

L+ I3-1 L+ I3 1 L+ L1

l l ls
1 2 5 b2 2 s 43 2

Now we are ready to derive the equations of motion for Lagrangian (5.6). As
in Lecture [1} for the family g(¢,) of paths in G with fixed end points we put

_ g(t,e)

dg(t) 9%
e=0

€ T,,yG and wu(t) =g '(t)ég(t) € g.

Correspondingly, the infinitesimal variation d§2(¢) is defined by

00t e)
B e e=0 ’

5Q(t)

where Q(t,e) = g7 1(t,e)g(t,€) € g. We have
60 =—g 099 g +97"0g
d
= —g 09+ (97 "d9) + g g9 "0y

dt
=0+ [Q,u].
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Though this formula is valid for the motion on any Lie group G, in case of the
matrix Lie group G = SO(3) we will use the formula using multiplication of
matrices 6Q = —uQ + g~ 14g.

For the action functional

S(g.9) = / " LQ)dt

t1
where L = —% Tr AQ? we have using integration by parts

=205 = Tr(AdQQ + AQ6Q)dt

- /t2 Tr {(AQ + QA)(—uQ + g~ '69) } dt

t1

tz . .
- / Tr { (—(QAQ +Q2A) — (AQ+ QA) + (AQ + QA)Q) u} dt
t1

t2 . .
- / Tr { (A(22 —024) — (A + QA)) u(t)} dt.
(31
Since w(t) is arbitrary smooth skew-symmetric matrix with u(t;) = u(t2) = 0
and the bilinear form Tr AB is non-degenerate we obtain the following equations
of motion

AQ + QA = AQ? — Q%A
Specializing A = diag(ly, I, l3) we readily celebrated Euler’s equations
L = (I — I3)Q2Qs,
L = (Is — I1)2:Qs,
Qs = (I} — I,),Qs.

They describe the rotation of a free rigid body around a fixed point. In the
system of coordinates with axes which are the principal axes of inertia, principal
moments of inertia of the body are I, I, I5.

It is easy to see by direct computation that Euler’s equations have two
integrals of motion, the total kinetic energy 1103 + I,Q3 + 1303 and the total
angular momentum I2Q3 + 12032 + 12Q3. Leaving aside the trivial case I; =
I, = I3 we conclude that the motion in R® is constrained to the intersection of
two quadrics which is a real form of elliptic curve.

PROBLEM 5.9. Find parametric equations for orbits in Kepler’s problem.

PROBLEM 5.10. Prove that the Laplace-Runge-Lenz vector W points in the di-
rection of the major axis of the orbit and that |W| = «e, where e is the eccentricity
of the orbit.

PROBLEM 5.11. Using the conservation of the Laplace-Runge-Lenz vector, prove
that trajectories in Kepler’s problem with E < 0 are ellipses. (Hint: Evaluate W - r
and use the result of the previous problem.)

PROBLEM 5.12. Solve Euler’s equations.
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Lecture 6. Legendre transform and Hamilton’s equations

6.1. Legendre transform. The equations of motion of a Lagrangian sys-
tem (M, L) in standard coordinates associated with a coordinate chart U C M
are the Euler-Lagrange equations. In expanded form, they are given by the
following system of second order ordinary differential equations:

o (0.4) = <§L (a q))

- = (9(]18(]3 q? 8(]18(]3 q7q q 9 I I

In order for this system to be solvable for the highest derivatives for all initial
conditions in TU, the symmetric n X n matrix

. 9*L "
HL(q>q) = {aqiaq] (q q)}lj_l

should be invertible on TU.

DEFINITION. A Lagrangian system (M, L) is called non-degenerate if for
every coordinate chart U on M the matrix Hy,(q, q) is invertible on TU.

REMARK. Note that the n X n matrix Hy, is a Hessian of the Lagrangian
function L for vertical directions on T'M. Under the change of standard coor-
dinates ¢’ = F(q) and ¢’ = F.(q)q (see Lecture [1]) it has the transformation
law

Hi(q,4) = Fu.(¢9)"Hi(qd',¢')Fu(q),

where F,(q)7 is the transposed matrix, so that the condition det Hy, # 0 does
not depend on the choice of standard coordinates.

For an invariant formulation, consider the 1-form 6, defined in standard
coordinates associated with a coordinate chart U C M by

g = L

QL—

It follows from Corollary [3.2] that 07, is a well-defined 1-form on TM.

LEMMA 6.2. A Lagrangian system (M, L) is non-degenerate if and only if
the 2-form dfr, on TM is non-degenerate.

PROOF. In standard coordinates,

. o’L .. .. 0°L
o = <aqiaqjdqj/\dq * 353 quM\dq)

ij=1

and it is easy to see, by considering the 2n-form df} = df; A --- A dfy, that the
—_——

n
2-form dfy, is non-degenerate if and only if the matrix Hj, is non-degenerate. [J
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REMARK. Using the 1-form 6, the Noether integral I in Theorem can
be written as

(6.1) I=ix/(01),

where X' is a lift to TM of a vector field X on M given by (3.1)).

DEFINITION. Let (U, ¢) be a coordinate chart on M. Coordinates

(p,q) = (pla"'apnvqla"'aqn)

on the chart T*U ~ R™ x U on the cotangent bundle T*M are called standard
coordinatesﬂ if for (p,q) € T*U and f € C>(U)

of

i=1,...,n.

Equivalently, standard coordinates on 7*U are uniquely characterized by
the condition that p = (p1,...,pn) are coordinates in the fiber corresponding

to the basis dg', ..., dq" for T; M, dual to the basis %, e % for Ty M.
q q

DEFINITION. The 1-form 6 on T*M, defined in standard coordinates by
0= pidg' = pdq,
i=1
is called Liouville’s canonical 1-form.

Corollary [3:2] shows that 6 is a well-defined 1-form on T*M. Clearly, the
1-form 6 also admits an invariant definition

O(u) = p(m.(u)), where wue Ty \T"M,

and 7 : T*M — M is the canonical projection.

DEFINITION. A fibre-wise mapping 77, : TM — T*M is called a Legendre
transform associated with the Lagrangian L if

In standard coordinates the Legendre transform is given by

. oL, .
7..(q,q9) = (p,q), where p= %(q,q)

The mapping 77, is a local diffeomorphism if and only if the Lagrangian L is
non-degenerate.

uFollowing tradition, the first n coordinates parametrize the fiber of T*U and the last
n coordinates parametrize the base.



28

6.2. Hamiltonian function.

DEFINITION. Suppose that the Legendre transform 7 : TM — T*M is a
diffeomorphism. The Hamiltonian function H : T*M — R, associated with the
Lagrangian L : TM — R, is defined by

L
HOTL:EL:qi_—L.
dq

In standard coordinates,

H(p,q) = (pq — L(q; d))lp:% ;

OL
where ¢q is a function of p and g defined by the equation p = ?(q, q) through

the implicit function theorem. The cotangent bundle T*M is called the phase
space of the Lagrangian system (M, L). It turns out that on the phase space the
equations of motion take a very simple and symmetric form.

THEOREM 6.4. Suppose that the Legendre transform 7, : TM — T*M is a
diffeomorphism. Then the FEuler-Lagrange equations in standard coordinates on
TM,

d 0L 0L

dtd¢*  dq'

are equivalent to the following system of first order differential equations in
standard coordinates on T*M :

t=1,...,n,

S
pbi = aq“ q_apla A R
ProoF. We have
OH OH
dH = —d —d
op D+ q q
. oL oL .
= (pdq—i—qdp— aid — dQ)
q 9q ") |p,_oL
oq

. oL
=

Thus under the Legendre transform,

_oL’
P—aq

oH . _dOL_oL__oH .
- P=4tog ~aq =~ oq

Corresponding first order differential equations on T*M are called Hamil-
ton’s equations (canonical equations).

COROLLARY 6.5. The Hamiltonian H is constant on the solutions of Hamil-
ton’s equations.
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PRroOF. For H(t) = H(p(t),q(t)) we have

dH  OH . g+ 87H OHOH OHOH
dt 3q 8p aq ap ap 8q
For the Lagrangian

2

L= m; —V(r)=T-V, recRs,
of a particle of mass m in a potential field V (r) we have
= 8—L =mr
P=or ="

Thus the Legendre transform 7, : TR? — T*R3 is a global diffeomorphism,
linear on the fibers, and

p2

H(p,r)= (pr—L)l,_p = 5~ +V(r)=T+V.
Hamilton’s equations
po 01 _p
Op m’
,_ _OH _ oV
p= or  Or

Vv
are equivalent to Newton’s equations with the force F' = ——

r
For the Lagrangian system describing small oscillators, considered in Exam-
ple we have p = mq, and using normal coordinates we get

2

H(p.q) = (pd - L(g,d))|;_» = T+ Vola) = %(1@2 +m? Y wi(d)?)

Similarly, for the system of N interacting particles, considered in Example
we have p = (p1,...,pn), where

oL
or,

Pa = =Myrq, a=1,...,N.

The Legendre transform 77, : TR3N — T*R3¥ is a global diffeomorphism, linear
on the fibers, and

N
p
H(p, 7 — L =T+V.
(p,r) = (pr ;:1 2ma

In particular, for a closed system with pair-wise interaction,

Zp“ + D Va(ra — 7).

Ma 1<a<b<N
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In general, consider the Lagrangian
n
L= lay(a)i'd - V(g), q R,
i5=1

where A(q) = {ai;(q)}};—; is a symmetric n x n matrix. We have

OL G

and the Legendre transform is a global diffeomorphism, linear on the fibers, if
and only if the matrix A(q) is non-degenerate for all ¢ € R™. In this case,

n

H(p.q) = (P4~ L(g:9))],_or = > La"(q)pip; + V(q),
q i,j=1

where {a*(q)}}";—; = A~'(q) is the inverse matrix.

PROBLEM 6.13 (Second tangent bundle). Let m : TM — M be the canonical
projection and let T3 (T'M) be the vertical tangent bundle of TM along the fibers of
m — the kernel of the bundle mapping m. : T(T'M) — TM. Prove that there is a
natural bundle isomorphism ¢ : #*(T'M) ~ Ty (T M), where 7*(T'M) is the pullback of
the tangent bundle TM of M under the map 7.

PROBLEM 6.14 (Invariant definition of the 1-form ). Show that 8. (v) =
dL((i o ms)v), where v € T(TM).

PROBLEM 6.15. Prove that if a vector field X on M is an infinitesimal symmetry
of the Lagrangian system (M, L), then Lx/(6r) = 0, where Lx- stands for the Lie
derivative.

PROBLEM 6.16. Prove that the path «(t) in M is a trajectory for the Lagrangian
system (M, L) if and only if

i4r 1y (dOL) + dEL(Y () = 0,
where 4/(t) is the velocity vector of the path +/(¢) in TM.

PROBLEM 6.17. Suppose that for a Lagrangian system (R",L) the Legendre

transform 77, is a diffeomorphism and let H be the corresponding Hamiltonian. Prove
that for fixed g and ¢ the function pg — H(p, q) has a single critical point at p = g—
q
PROBLEM 6.18. Give an example of a non-degenerate Lagrangian system (M, L)
such that the Legendre transform 7, : TM — T* M is one-to-one but not onto.
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Lecture 7. Hamiltonian formalism

7.1. Hamilton’s equations on 7*M. With every function H : T*M —
R on the phase space T*M there are associated Hamilton’s equations — a
first-order system of ordinary differential equations, which in the standard co-
ordinates on T*U has the form

oH . OH

(7.1) P:—Tq» q‘aT;'

The corresponding vector field Xy on T*U,

" (0H 0 OH 0 OH 0 0H 0
XH:Z(aw‘wa.) = %p9a  Dq op’
im1 pi 09 q" Op; p 0q q Op
gives rise to a well-defined vector field Xy on T*M, called the Hamiltonian
vector field. Suppose now that the vector field Xy on T*M is complete, i.e.,
its integral curves exist for all times. The corresponding one-parameter group
{9+ }ter of diffeomorphisms of T*M generated by Xy is called the Hamiltonian
phase flow. It is defined by g:(p,q) = (p(t),q(t)), where p(t), ¢(t) is a solution
of Hamilton’s equations satisfying p(0) = p, ¢(0) = q.

Liouville’s canonical 1-form 6 on T* M defines a 2-form w = df. In standard
coordinates on T*M it is given by

w=Y dp; Ndq' = dp Adq,

=1

and is a non-degenerate 2-form. The form w is called the canonical symplectic
form on T* M. The symplectic form w defines an isomorphism J : T*(T* M) —
T(T*M) between tangent and cotangent bundles to T*M. For every (p,q) €
T*M the linear mapping J ! : TppT*M — T(’;’q)T*M is given by

wlug,ug) = J M(ug)(ur), i, up € Tip,gT" M.

The mapping J induces the isomorphism between the infinite-dimensional vector
spaces AY(T*M) and Vect(T* M), which is linear over C°°(T*M). If ¥ is a 1-
form on T*M, then the corresponding vector field J(¢) on T*M satisfies

w(X,J(9) = 0(X), X € Vect(T*M),

and J~1(X) = —ixw. In particular, in standard coordinates,
0 0
dp) = — d J(dq)=———,
J(dp) = 5 . ™ (dq) ap

so that Xy = J(dH).

THEOREM 7.6. The Hamiltonian phase flow on T* M preserves the canonical
symplectic form.



32

PrOOF. We need to prove that (¢:)*w = w. Since g; is a one-parameter
group of diffeomorphisms, it is sufficient to show that

d
% —EXHQJ = 0,

t=0

(9t)*w

where Ly, is the Lie derivative along the vector field X . Since for every vector
field X,

Lx (df) = d(X(f)),

we compute

OH i o0H
Lx, (dp;) = —d (W) and Lx,(d¢")=d <3pi> ,

so that

n

Lx,w= Z (EXH (dpi) A dq' + dp; A\ Lx,, (dqi))
i=1

- OH ; oH
72 <d <aqi> A dg +dpi/\d<8pi>) = —d(dH)=0. O

=1

COROLLARY 7.7. Lx,,(0) = d(—H+0(Xg)), where 0 is Liouville’s canonical
1-form.
" 1
The canonical symplectic form w on T* M defines the volume form w—| =S WA Aw
n!  nl ——~
on T*M, called Liouville’s volume form.
COROLLARY 7.8 (Liouville’s theorem). The Hamiltonian phase flow on T* M

preserves Liouville’s volume form.

The restriction of the symplectic form w on T*M to the configuration space
M is 0. Generalizing this property, we get the following notion.

DEFINITION. A submanifold .Z of the phase space T*M is called a La-
grangian submanifold if dim .# = dim M and w|, = 0.

It follows from Theorem that the image of a Lagrangian submanifold
under the Hamiltonian phase flow is a Lagrangian submanifold.

7.2. The action functional in the phase space. With every function
H on the phase space T* M there is an associated 1-form

0 — Hdt = pdq — Hdt

on the extended phase space T*M x R, called the Poincaré-Cartan form. Let
v : [to, t1] = T*M be a smooth parametrized path in T* M such that w(v(¢)) =
qo and 7(y(t1)) = q1, where 7 : T*M — M is the canonical projection. By
definition, the lift of a path v to the extended phase space T*M x R is a path
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o : [to,t1] = T*M x R given by o(t) = (v(¢),t), and a path o in T*M x R
is called an admissible path if it is a lift of a path v in T*M. The space of
admissible paths in 7*M x R is denoted by P(T*M)g;ié A variation of an
admissible path o is a smooth family of admissible paths o., where € € [—¢q, £¢]
and o¢ = o, and the corresponding infinitesimal variation is

do.
oo = 9%

€ T,P(T" M)}
e=0

(cf. Section . The principle of the least action in the phase space is the
following statement.

THEOREM 7.9 (Poincaré). The admissible path o in T*M xR is an extremal
for the action functional

swaz/hmq—ﬂﬁrzllwq—HMt

if and only if it is a lift of a path v(t) = (p(t),q(t)) in T*M, where p(t) and
q(t) satisfy canonical Hamilton’s equations

,__oH . oH
b= aq’ q_ap'

PROOF. As in the proof of Theorem for an admissible family o.(t) =
(p(t,e),q(t,e),t) we compute using integration by parts,

[ . O0H_, OH
S(oe) = / (425131' —pidq" — 04" — 51%) dt
e=0 (72) ; to oq' op;
£ o]
i=1

Since dq(to) = dq(t1) = 0, the path o is critical if and only if p(¢) and q(t)
satisfy canonical Hamilton’s equations (|7.1)). O

d

de

REMARK. For a Lagrangian system (M, L), every path ~v(t) = (g(¢)) in the
configuration space M connecting points gy and ¢; defines an admissible path

oL
A(t) = (p(t), q(t),t) in the phase space T*M by setting p = 20 If the Legendre
q

transform 77, : TM — T*M is a diffeomorphism, then

awz/Rm—sz/"uﬂmww

to to

Thus the principle of the least action in a configuration space — Hamilton’s
principle — follows from the principle of the least action in a phase space. In
fact, in this case the two principles are equivalent (see Problem [6.17]).

From Corollary we immediately get the following result.
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COROLLARY 7.10. Solutions of canonical Hamilton’s equations lying on the
hypersurface H(p,q) = E are extremals of the functional fo pdq in the class of
admissible paths o lying on this hypersurface.

COROLLARY 7.11 (Maupertuis’ principle). The trajectory v = (q(7)) of a
closed Lagrangian system (M, L) connecting points go and ¢1 and having energy
E is the extremal of the functional

/ pdq / g—gmm,qm)q(f)w

on the space of all paths in the configuration space M connecting points gy and
q1 and parametrized such that H(%(T), q(t))=FE.

The functional

So(v) = / pdq
Y
is called the abbreviated action 3

PRrOOF. Every path v = g(7), parametrized such that H(‘g—s, q) = E, lifts

to an admissible path o = (‘3—5(7‘), q(7),7), a <7 < b, lying on the hypersurface

H(p.q)=E. O
7.3. The action as a function of coordinates. Consider a non-degene-

rate Lagrangian system (M, L) and denote by ~(t; go, vg) the solution of Euler-

Lagrange equations
doL 0L 0

dt0q 0Oq

with the initial conditions v(to) = go € M and (to) = vo € Ty, M. Suppose
that there exist a neighborhood Vy C T, M of vy and ¢; > ¢ such that for all
v € Vp the extremals 7(t; g, v), which start at time ¢y at gg, do not intersect in
the extended configuration space M x R for times ty < t < t;. Such extremals
are said to form a central field which includes the extremal vo(t) = v(¢; g0, vo).
The existence of the central field of extremals is equivalent to the condition that
for every tg < t < t; there is a neighborhood Uy C M of 7 (t) € M such that
the mapping

(7.2) Vo 2 v q(t) = y(t;qo,v) € Uy

is a diffeomorphism. Basic theorems in the theory of ordinary differential equa-
tions guarantee that for ¢; sufficiently close to to every extremal ~(t) for tg < t <
t; can be included into the central field. In standard coordinates the mapping
is given by ¢ — q(t) = v(t; o, §).-

For the central field of extremals v(t; qo, 4), to < t < t1, we define the action
as a function of coordinates and time (or, classical action) by

S(a,t: o, to) = / L(y/(r))dr,

to

12The accurate formulation of Maupertuis’ principle is due to Euler and Lagrange.
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where v(7) is the extremal from the central field that connects gy and gq. For
given go and tg, the classical action is defined for t € (tg,¢1) and q € Ut0<t<t1 U;.
For a fixed energy F,

(7.3) 5(q,t;q0,t0) = So(g.t; go, to) — E(t — to),
where Sy is the abbreviated action from the previous section.

THEOREM 7.12. The differential of the classical action S(q,t) with fized
iatial point is given by
dS = pdq — Hdt,

OL
where p = a—q(q, q) and H = pq — L(q,q) are determined by the velocity q of

the extremal (1) at time t.

PROOF. Let g. be a path in M passing through q at ¢ = 0 with the tangent
vector v € TgM ~ R", and for ¢ small enough let ~.(7) be the family of
extremals from the central field satisfying ~.(tp) = qo and ~.(t) = g.. For the
infinitesimal variation §y we have 6v(tg) = 0 and d(t) = v, and for fixed t we
get from the formula for variation with the free ends that

)

dS(v) = a—qv.

a8
This shows that 90 p. Setting g(t) = v(t), we obtain

d as . 0S8
%S(Q(t)’t) = 87qq + i L,

sothat%:L—pq:—H. O

COROLLARY 7.13. The classical action satisfies the following nonlinear par-
tial differential equation

oS aS

This equation is called the Hamilton-Jacobi equation. Hamilton’s equations
(7.1) can be used for solving the Cauchy problem

(7.5) 5(q t)l;—o = s(q), s€C™(M),

for Hamilton-Jacobi equation ([7.4)) by the method of characteristics.
We can also consider the action S(q,t; qo,to) as a function of both variables
q and qg. The analog of Theorem is the following statement.

ProPOSITION 7.3. The differential of the classical action as a function of
initial and final points is given by

dS = pdq — podqo — H(p, q)dt + H(po, qo)dlo.
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PROBLEM 7.19. Verify that Xy is a well-defined vector field on T* M.

PROBLEM 7.20. Show that if all level sets of the Hamiltonian H are compact
submanifolds of T* M, then the Hamiltonian vector field X is complete.

PROBLEM 7.21. Let w: T*M — M be the canonical projection, and let £ be a
Lagrangian submanifold. Show that if the mapping 7|, : £ — M is a diffeomorphism,
then .Z is a graph of a smooth function on M. Give examples when for some ¢t > 0
the corresponding projection of g¢(-%’) onto M is no longer a diffeomorphism.



LECTURE 8. POISSON BRACKET AND SYMPLECTIC FORM 37

Lecture 8. Poisson bracket and symplectic form

8.1. Classical observables and Poisson bracket. Smooth real-valued
functions on the phase space T* M are called classical observables. The vector
space C°(T*M) is an R-algebra — an associative algebra over R with a unit
given by the constant function 1, and with a multiplication given by the point-
wise product of functions. The commutative algebra C*°(T*M) is called the
algebra of classical observables. Assuming that the Hamiltonian phase flow g,
exists for all times, the time evolution of every observable f € C*°(T*M) is
given by

fe(p, @) = f(ge(p,q)) = f(p(t),q(t)), (p,q) € TM.

Equivalently, using the Hamiltonian vector field
_9HO 0HO
"~ opoq 0qop

the time evolution is described by the differential equation

dfe  dfs _ d(fiogs) _
dt — ds |,  ds |, Xu(f)
L (OH 0N OHOLY _OH 05 0 0f
- = \Opi0¢' O’ dp;)  Op Oq  Oq Ip’
called Hamilton’s equation for classical observables. Setting
af 0g Of dg
1 =X === <(T*M

we can rewrite Hamilton’s equation in the concise form

(82) Ty,

where it is understood that (8.2)) is a differential equation for a family of func-
tions f; on T M with the initial condition f;(p,q)|,_q = f(p,q). The properties
of the bilinear mapping

{, }:C®(T*"M) x C*(T*M) = C(T*M)
are summarized below.

THEOREM 8.14. The mapping { , } satisfies the following properties.

(i) (Relation with the symplectic form)
{f.9} = w(J(df), J(dg)) = w(Xy, Xy).
(i) (Skew-symmetry)
{f,9} =g/}
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(iii) (Leibniz rule)
{fg,h} = flg,h} +9{f, h}.
(iv) (Jacobi identity)

{£.Ag.htt +{g.{h, f}} +{hA{f.g}} =0
forall f,g,h € C=(T*M).

PROOF. Property (i) immediately follows from the definitions of w and
J in Section Properties (ii)-(iii) are obvious. The Jacobi identity could
be verified by a direct computation using , or by the following elegant
argument. Observe that {f, g} is a bilinear form in the first partial derivatives
of f and g, and every term in the left-hand side of the Jacobi identity is a
linear homogenous function of second partial derivatives of f, g, and h. Now the
only terms in the Jacobi identity which could actually contain second partial
derivatives of a function h are the following:

{fa {gvh}} + {g? {hvf}’} = (XfXg - Xng)<h)

However, this expression does not contain second partial derivatives of h since
it is a commutator of two differential operators of the first order which is again
a differential operator of the first order! O

The observable {f, g} is called the canonical Poisson bracket of the observ-
ables f and g. The Poisson bracket map { , } : C*(T*M) x C*(T*M) —
C(T*M) turns the algebra of classical observables C*°(T*M) into a Lie al-
gebra with a Lie bracket given by the Poisson bracket. It has an important
property that the Lie bracket is a bi-derivation with respect to the multiplica-
tion in C*°(T*M). The algebra of classical observables C*°(T™* M) is an example
of the Poisson algebra — a commutative algebra over R carrying a structure of
a Lie algebra with the property that the Lie bracket is a derivation with respect
to the algebra product.

In Lagrangian mechanics, a function I on T'M is an integral of motion for the
Lagrangian system (M, L) if it is constant along the trajectories. In Hamiltonian
mechanics, an observable I — a function on the phase space T* M — is called an
integral of motion (first integral) for Hamilton’s equations if it is constant
along the Hamiltonian phase flow. According to , this is equivalent to the
condition

{H,I} =0.
It is said that the observables H and I are in involution (Poisson commute).
8.2. Canonical transformations and generating functions.

DEFINITION. A diffeomorphism g of the phase space T* M is called a canon-
ical transformation, if it preserves the canonical symplectic form w on T* M, i.e.,
9*(w) = w. By Theorem the Hamiltonian phase flow g; is a one-parameter
group of canonical transformations.
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PROPOSITION 8.4. Canonical transformations preserve Hamilton’s equations.

PRrROOF. From ¢g*(w) = w it follows that the mapping J : T*(T*M) —
T(T*M) satisfies

(8.3) g.oJogt =
Indeed, for all X,Y € Vect(M) we havd"|
w(X,Y) =g ()(X,Y) = w(g«(X), 9:(Y)) 0 g,
so that for every 1-form 9 on M,
w(X, J(g"(9))) = " (9)(X) = ¥(g:(X)) 0 g = w(g«(X), J (V) o g,
which gives g.(J(g*(0))) = J(9). Using (8.3), we get
9+(Xm) = g:(J(dH)) = J((¢") " (dH)) = Xk,

where K = H o g~'. Thus the canonical transformation g maps trajectories of
the Hamiltonian vector field X g into the trajectories of the Hamiltonian vector
field Xg. O

REMARK. In classical terms, Proposition means that canonical Hamil-
ton’s equations

=g, a="pag
b= dq D, q), q_ap b,q
in new coordinates (P, Q) = ¢g(p, q) continue to have the canonical form

0K K

. .0
P:_%(PvQ)a Q: 87P(P7Q)

with the old Hamiltonian function K (P, Q) = H(p, q).

Consider now the classical case M = R™. For a canonical transformation

(P,Q) = g(p,q) set P = P(p,q) and Q = Q(p, q). Since dP A\ dQ = dp /\ dq
on T*M ~ R?", the 1-form pdq — PdQ — the difference between the canoni-
cal Liouville 1-form and its pullback by the mapping g — is closed. From the
Poincaré lemma it follows that there exists a function F(p, q) on R?" such that

(8.4) pdg — PdQ = dF (p,q).

, . 0P orP\" .
Now assume that at some point (pg, qo) the n x n matrix — = is
op Opj } ;2
non-degenerate. By the inverse function theorem, there exists a neighborhood
U of (po, qo) in R?™ for which the functions P, q are coordinate functions. The

function
S(P,q) = F(p,q) + PQ

13Since g is a diffeomorphism, g+ X is a well-defined vector field on M.
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is called a gemerating function of the canonical transformation g in U. It follows

from (8.4) that
dS = pdq + QdP,

whence in new coordinates P, q on U,

08 oS

p=afq(P,q) and Q:a?(PaQ)'

The converse statement below easily follows from the implicit function theorem.

PROPOSITION 8.5. Let S(P,q) be a function in some neighborhood U of a
point (Py, qo) € R?™ such that the n x n matriz

928 928 "
M(PO,QO) = {W(Poﬂo)}m_l

is non-degenerate. Then S is a generating function of a local (i.e., defined in
some neighborhood of (Py, qo) in R?™) canonical transformation.

Suppose there is a canonical transformation (P,Q) = g¢(p,q) such that
H(p,q) = K(P) for some function K. Then in the new coordinates Hamilton’s
equations take the form

. . 0K
and are trivially integrated:
0K
P(t) = P(0), Q(t)=Q(0)+ ta?(P(O))-

oP
Assuming that the matrix o is non-degenerate, the generating function S(P, q)

satisfies the differential equation

(86) 1(5.(P.a).a) = K(P)

where after the differentiation one should substitute ¢ = q(P, Q), defined by
the canonical transformation g~—'. The differential equation for fixed P,

as it follows from (7.3]), coincides with the Hamilton-Jacobi equation for the
abbreviated action Sy = S — Et where E = K(P),

H(%(P,q),q) - E.

THEOREM 8.15 (Jacobi). Suppose that there is a function S(P,q) which de-
pends on n parameters P = (Py, ..., Py), satisfies the Hamilton-Jacobi equation
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2

0POq

for some function K(P), and has the property that the n xn matriz

18 non-degenerate. Then Hamilton’s equations

0H . 0H

p:_aiq’ ‘I—a*p

can be solved explicitly, and the functions P(p,q) = (Pi(p,q),...,P.(p,q)),

defined by the equations p = a—(P,q), are integrals of motion in involution.
q
oS a5 . .
PROOF. Setp = 6—q(P7 g)and Q = 8—P(P, q). By the inverse function the-

orem, g(p,q) = (P, Q) is a local canonical transformation with the generating
function S. It follows from that H(p(P,Q),q(P,Q)) = K(P), so that
Hamilton’s equations take the form (8.5). Since w = dP A dQ, integrals of
motion Pi(p,q),..., P.(p,q) are in involution. O

The solution of the Hamilton-Jacobi equation satisfying conditions in Theo-
rem [8.15]is called the complete integral. At first glance it seems that solving the
Hamilton-Jacobi equation, which is a nonlinear partial differential equation, is
a more difficult problem then solving Hamilton’s equations, which is a system
of ordinary differential equations. It is quite remarkable that for many problems
of classical mechanics one can find the complete integral of the Hamilton-Jacobi
equation by the method of separation of variables. By Theorem [8.15] this solves
the corresponding Hamilton’s equations.

PROBLEM 8.22. Find the generating function for the identity transformation
P=pQ=gq
PROBLEM 8.23. Prove Proposition

PROBLEM 8.24. Suppose that the canonical transformation g(p,q) = (P, Q) is
such that locally (Q, g) can be considered as new coordinates (canonical transforma-
tions with this property are called free). Prove that S1(Q, q) = F(p, q), also called a
generating function, satisfies

851 8Sl
= d P=——-.
p 94 an 90

PROBLEM 8.25. Find the complete integral for the case of a particle in R® moving

in a central field.
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Lecture 9. Symplectic and Poisson manifolds

The notion of a symplectic manifold is a generalization of the example of a
cotangent bundle T* M

DEFINITION. A non-degenerate, closed 2-form w on a manifold .# is called
a symplectic form, and the pair (#,w) is called a symplectic manifold.

Since a symplectic form w is non-degenerate, a symplectic manifold .Z is

necessarily even-dimensional, dim .# = 2n. The nowhere vanishing 2n-form w”
n

w

defines a canonical orientation on ., and as in the case .# = T*M, — is
n!

called Liouville’s volume form. We also have the general notion of a Lagrangian

submanifold.

DEFINITION. A submanifold .Z of a symplectic manifold (., w) is called a
Lagrangian submanifold, if dim ¥ = %dim/{ and the restriction of the sym-
plectic form w to .Z is 0.

Symplectic manifolds form a category. A morphism between (.#1,w;) and
(Mo, ws), also called a symplectomorphism, is a mapping f : M1 — Mo such
that w1 = f*(w2). When 4, = #> and w; = wo, the notion of a symplectomor-
phism generalizes the notion of a canonical transformation. The direct product
of symplectic manifolds (#,w1) and (.#2,ws) is a symplectic manifold

(M % Mo, 7T (w1) + 75 (w2)),

where 7; and 7o are, respectively, projections of .#| x .#5 onto the first and
second factors in the Cartesian product.

Besides cotangent bundles, another important class of symplectic manifolds
is given by Kéhler manifoldﬂ Recall that a complex manifold .# is a Kahler
manifold if it carries the Hermitian metric whose imaginary part is a closed
(1,1)-form. In local complex coordinates z = (z1,...,2") on .# the Hermitian
metric is written as

h = Z ho5(z, z)dz* ® dz’.
a,B=1
Correspondingly,

1
g=Reh= D hap(z2)(d2" @ d2° + dz° © dz®)

is the Riemannian metric on .# and

w:fIrnh— Zh (z,2)dz" A dzP
aﬂl

is the symplectic form on .# (considered as a 2n-dimensional real manifold).

14Needless to say, not every symplectic manifold admits a complex structure, not to
mention a K&hler structure.
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The simplest compact Kihler manifold is CP! ~ S? with the symplectic
form given by the area 2-form of the Hermitian metric of Gaussian curvature 1
— the round metric on the 2-sphere. In terms of the local coordinate z associated
with the stereographic projection CP! ~ C U {cc},

Similarly, the natural symplectic form on the complex projective space CP" is
the symplectic form of the Fubini-Study metric. By pull-back, it defines sym-
plectic forms on complex projective varieties.

The simplest non-compact Kéahler manifold is the n-dimensional complex
vector space C" with the standard Hermitian metric. In complex coordinates

z=(z',...,2") on C" it is given by

hzdz@didez“@déa.

a=1

In terms of real coordinates (z,y) = (x!,..., 2" y',...,y") on R?" ~ C", where
z = x + 1y, the corresponding symplectic form w = —Imh has the canonical
form
7: n
w=dzndz = > da® Ady® = dx A dy.

a=1
This example naturally leads to the following definition.

DEFINITION. A symplectic vector space is a pair (V,w), where V' is a vector
space over R and w is a non-degenerate, skew-symmetric bilinear form on V.

It follows from basic linear algebra that every symplectic vector space V has
a symplectic basis — a basis e',...,e", fi,..., fn of V, where 2n = dim V, such
that

w(el,el) = w(fi, fj) =0 and w(ei,fj) = 5;, ,j=1,...,n.

In coordinates (p,q) = (p1,---,Pn,q",...,q") corresponding to this basis, V =~
R?” and

w=dpAdq = dei/\dqi.
i=1

Thus every symplectic vector space is isomorphic to a direct product of the
phase planes R? with the canonical symplectic form dpAdq. Introducing complex
coordinates z = p+iq, we get the isomorphism V' ~ C", so that every symplectic
vector space admits a Kahler structure.

It is a basic fact of symplectic geometry that every symplectic manifold is
locally isomorphic to a symplectic vector space.
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THEOREM 9.16 (Darboux’ theorem). Let (.#,w) be a 2n-dimensional sym-
plectic manifold. For every point x € .# there is a neighborhood U of x with
local coordinates (p,q) = (p1,--.,0n,q,...,q") such that on U

w=dpANdq= dei/\dqi.
i=1

Coordinates p, g are called canonical coordinates (Darboux coordinates). The
proof proceeds by induction on n with the two main steps stated as Problems

[0.28 and 029

A non-degenerate 2-form w for every x € .# defines an isomorphism J :
Tr M — Ty M by

w(ug,uz) = J_l(ug)(ul), uy,Ug € Ty M .
Explicitly, for every X € Vect(.#) and 9 € Al (.#) we have
w(X,J() =9(X) and J HX)=—ix(w)
(cf. Section . In local coordinates & = (z!,...,22") for the coordinate chart
(U, ) on A, the 2-form w is given by

2n
w=1 Z wij(x) dx’ A da?,
ij=1
where {w;; () ?3-:1 -
on ¢(U). Denoting the inverse matrix by {w" (x)

is a non-degenerate, skew-symmetric matrix-valued function

2n

ij=1, we have
:

2n
J(da') = waij(m)%, i=1,...,2n.
j=1

DEFINITION. A Hamiltonian system is a pair consisting of a symplectic man-
ifold (A ,w), called a phase space, and a smooth real-valued function H on .#,
called a Hamiltonian. The motion of points on the phase space is described by
the vector field

Xpg = J(dH),

called a Hamiltonian vector field.

The trajectories of a Hamiltonian system ((.#,w), H) are the integral curves
of a Hamiltonian vector field Xg on .. In canonical coordinates (p, q) they
are described by the canonical Hamilton’s equations (7.1)),

,__oH . _oH
b= aq’ q_ap'

Suppose now that the Hamiltonian vector field Xy on .# is complete. The
Hamiltonian phase flow on 4 associated with a Hamiltonian H is a one-
parameter group {g:}+cr of diffeomorphisms of .# generated by Xp. The fol-
lowing statement generalizes Theorem [7.6]



LECTURE 9. SYMPLECTIC AND POISSON MANIFOLDS 45

THEOREM 9.17. The Hamiltonian phase flow preserves the symplectic form.
Proor. It is sufficient to show that Lx,w = 0. Using Cartan’s formula
Lx =ixod+doix
and dw = 0, we get for every X € Vect(.#),
Lxw=(doix)(w).
Since ix (w)(Y) = w(X,Y), we have for X = X and every Y € Vect(.#) that
i (@)(Y) = w(J(dH),Y) = —dH(Y).
Thus ix,, (w) = —dH, and the statement follows from d* = 0. O

COROLLARY 9.18. A wector field X on 4 is a Hamiltonian vector field if
and only if the 1-form ix(w) is exact.

DEFINITION. A vector field X on a symplectic manifold (.#,w) is called

a symplectic vector field if the 1-form ix(w) is closed, which is equivalent to
ﬁxw =0.

The commutative algebra C*°(.#), with a multiplication given by the point-
wise product of functions, is called the algebra of classical observables. Assuming
that the Hamiltonian phase flow g; exists for all times, the time evolution of
every observable f € C°°(.#) is given by

fi(x) = flge(2)), =€ A,
and is described by the differential equation

dfy
o= Xu(ft)

— Hamilton’s equation for classical observables. Hamilton’s equations for ob-
servables on .Z have the same form as Hamilton’s equations on .# = T*M,
considered in Section 2.3. Since

Xu(f) = df(Xu) = w(Xu, J(df) = w(Xu, Xy),

we have the following.

DEFINITION. A Poisson bracket on the algebra C°°(.#) of classical observ-
ables on a symplectic manifold (.#,w) is a bilinear mapping { , } : C°° () x
C®(M) — C®(M), defined by

{fvg}:w(Xf7Xg)’ fvgecoo('//)'
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Now Hamilton’s equation takes the concise form

daf
9.1 - ={H
(9.1 @ = qm gy,
understood as a differential equation for a family of functions f; on .# with the
initial condition f;|,_, = f. In local coordinates & = (z',...,2*") on .#,
2n
i 0f (®) Og(x)
= — v .
(hate) == 3 @) 52T

THEOREM 9.19. The Poisson bracket { , } on a symplectic manifold (A ,w)
1s skew-symmetric and satisfies Leibniz rule and the Jacobi identity.

PROOF. The first two properties are obvious. It follows from the definition
of a Poisson bracket and the formula

that the Jacobi identity is equivalent to the property
(9.2) (X, Xg] = X501
Let X and Y be symplectic vector fields. Using Cartan’s formulas we get

i[)@y](&)) = £X(iy(w)) - iy(ﬁx(w))
= d(ix o iy (w)) +ixd(iy (w))
= d(w(Y, X)) = iz(w),

where Z is a Hamiltonian vector field corresponding to w(X,Y) € C®(.#).
Since the 2-form w is non-degenerate, this 1mphes [X,Y] = Z, so that setting
X =X;,Y =X, and using {f, g} = w(Xs, X,), we get . O

From (9.2) we immediately get the following result.

COROLLARY 9.20. The subspace Ham(.#) of Hamiltonian vector fields on
A is a Lie subalgebra of Vect(#). The mapping C°(A) — Ham (.4 ), given
by f — Xy, is a Lie algebra homomorphism with the kernel consisting of locally
constant functions on A .

As in the case .# = T*M (see Section [8.I]), an observable I — a function
on the phase space .# — is called an integral of motion (first integral) for the
Hamiltonian system ((.#,w), H) if it is constant along the Hamiltonian phase
flow. According to , this is equivalent to the condition

(9.3) {H,I} =0.

It is said that the observables H and I are in involution (Poisson commute).
From the Jacobi identity for the Poisson bracket we get the following result.
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COROLLARY 9.21 (Poisson’s theorem). The Poisson bracket of two integrals
of motion is an integral of motion.

Proor. If {H,I1} = {H,I,} =0, then
{H L, Io}} = {{H, 1}, I} — {{H, >}, I} = 0. O

It follows from Poisson’s theorem that integrals of motion form a Lie algebra
and, by , corresponding Hamiltonian vector fields form a Lie subalgebra in
Vect(#). Since {I,H} = dH(X;) = 0, the vector fields X are tangent to
submanifolds .#g = {x € # : H(x) = E} — the level sets of the Hamiltonian
H. This defines a Lie algebra of integrals of motion for the Hamiltonian system
((A ,w), H) at the level set .

9.1. Poisson manifolds. he notion of a Poisson manifold generalizes the
notion of a symplectic manifold.

DEFINITION. A Poisson manifold is a manifold .# equipped with a Poisson
structure — a skew-symmetric bilinear mapping
{,}:0°(l)x C®(M) — C*(M)
which satisfies the Leibniz rule and Jacobi identity.

Equivalently, .# is a Poisson manifold if the algebra A = C°(.#) of classical
observables is a Poisson algebra — a Lie algebra such that the Lie bracket is
a bi-derivation with respect to the multiplication in A (a point-wise product
of functions). It follows from the derivation property that in local coordinates

x = (2',...,2") on .#, the Poisson bracket has the form
N
i O0f (x) 9g(x)
— ij (o) ZIA\L) GINL)
IEEWIES - T8

The 2-tensor 1% (x), called a Poisson tensor, defines a global section 7 of the
vector bundle T.# N T.# over M .

The evolution of classical observables on a Poisson manifold is given by
Hamilton’s equations, which have the same form as 7

a _

dt
The phase flow g; for a complete Hamiltonian vector field Xy = {H, -} defines
the evolution operator U, : A — A by

Ue(f)(x) = fa:(2)), [ € A

THEOREM 9.22. Suppose that every Hamiltonian vector field on a Poisson
manifold (A ,{ , }) is complete. Then for every H € A, the corresponding
evolution operator Uy is an automorphism of the Poisson algebra A, i.e.,

(9.4) Ue{f.9}) ={U:(f), Us(g)}  forall f,g€ A

Xu(f) ={H, [}.
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Conversely, if a skew-symmetric bilinear mapping { , } : C®° (M) x C°(H)
— C®(M) is such that Xg = {H, -} are complete vector fields for all H € A,
and corresponding evolution operators Uy satisfy , then (A,{ , }) is a
Poisson manifold.

ProoF. Let fi = Ui(f), g = U(g), ancﬁ hy = U ({f,9}). By definition,

dhy

S0 (H b,
dt {H, b}

d
%{fhgt}: {{Haft}agt}+{fta{H7gt}} and
If (#,{, })is a Poisson manifold, then it follows from the Jacobi identity that

{{Hv ft}?gt} + {ftv {Hv gt}} = {H, {fhgt}}»

so that h; and {f, g:} satisfy the same differential equation . Since these
functions coincide at t = 0, follows from the uniqueness theorem for the
ordinary differential equations.

Conversely, we get the Jacobi identity for the functions f, g, and H by dif-
ferentiating with respect to ¢ at t = 0. O

COROLLARY 9.23. A global section n of T.# NT. M is a Poisson tensor if
and only if
Lx,n=0 forall fecA.

DEFINITION. The center of a Poisson algebra A is
Z(A)={fecA:{f,g) =0 foral gecA}.

A Poisson manifold (.#,{, }) is called non-degenerate if the center of a Poisson
algebra of classical observables A = C*(.#) consists only of locally constant
functions (Z(A) = R for connected .#).

Equivalently, a Poisson manifold (.#,{ , }) is non-degenerate if the Poisson
tensor 7 is non-degenerate everywhere on .#, so that .# is necessarily an even-
dimensional manifold. A non-degenerate Poisson tensor for every x € .# defines
an isomorphism J : T} .# — T,.# by

n(ur,ug) = ua(J(u1)), ur,ug € Ty M.

In local coordinates & = (1, ..., 2") for the coordinate chart (U, ) on ., we
have
_ N P
J(dz") = K — ,=1,...,N.
( x ) Jz:; ’r} (m) axj ) 7 ) K

Poisson manifolds form a category. A morphism between (.#1,{ , }1) and
(M2,{ , }2) is a mapping ¢ : #1 — #> of smooth manifolds such that

{fow,govh ={f,gtaop forall fgeC™(4>).

15Here gt is not the phase flow!
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A direct product of Poisson manifolds (.#1,{, }1) and (.#2,{, }2) is a Poisson
manifold (A4 x #2,{ , }) defined by the property that natural projection
maps w1 : M1 X Moy — M1 and wy : M1 X Mo — Mo are Poisson mappings. For
f € C®(y x M) and (x1,22) € M1 X M denote, respectively, by fg) and
fé?) restrictions of f to .# x {xs} and {x1} X 5. Then for f, g € C° (M X M),

{f, 9} (@1, 2) = {£D, g0 (@) + {£2, 92 }a(@2).

Non-degenerate Poisson manifolds form a subcategory of the category of Poisson
manifolds.

THEOREM 9.24. The category of symplectic manifolds is (anti-) isomorphic
to the category of non-degenerate Poisson manifolds.

PRrOOF. According to Theorem every symplectic manifold carries a
Poisson structure. Its non-degeneracy follows from the non-degeneracy of a sym-
plectic form. Conversely, let (.#,{ , }) be a non-degenerate Poisson manifold.
Define the 2-form w on .# by

wX,Y)=JHY)(X), X,Y € Vect(#),

where the isomorphism J : T*.# — T.# is defined by the Poisson tensor 7. In

local coordinates = (z*,...,2") on .,
w=— Z nij(x) dz’ A da?
1<i<j<N

where {n;;()}}¥;_, is the inverse matrix to {n" (x)}\;_,. The 2-form w is skew-

symmetric and non-degenerate. For every f € Alet Xy = {f, -} be the corre-
sponding vector field on .#. The Jacobi identity for the Poisson bracket { , }
is equivalent to Lx,n = 0 for every f € A, so that

LXfw =0.
Since Xy = Jdf, we have w(X, Jdf) = df (X) for every X € Vect(.#), so that
w(Xf’Xg) = {f7 g}
By Cartan’s formula,

dw(X,Y,Z) = 3 (Lxw(Y,Z) — Lyw(X,Z) + Lzw(X,Y)

~w([X,Y],Z) +w([X, Z],Y) —w(]Y, Z], X)),
where XY, Z € Vect(#). Now setting X = X, Y = X,,Z = X}, we get
dW(Xf’Xg’Xh) = % (w(Xn, [vaXg]) + W(va [Xg?Xh]) + w(Xga [X}MXf]))
= 5 (WX, Xip0)) + (X5, Xggny) +0(Xgs Xin51))
1

=0.
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The exact 1-forms df, f € A, generate the vector space of 1-forms A!(.#)
as a module over 4, so that Hamiltonian vector fields X; = Jdf generate the
vector space Vect(.#) as a module over A. Thus dw = 0 and (AZ,w) is a
symplectic manifold associated with the Poisson manifold (.#,{ , }). It follows
from the definitions that Poisson mappings of non-degenerate Poisson manifolds
correspond to symplectomorphisms of associated symplectic manifolds. O

REMARK. One can also prove this theorem by a straightforward computation

in local coordinates x = (z',...,2") on .#. Just observe that the condition

Mij(x) +5'77jl(€8) Onui(x)

- — =0, 4,750l=1,...,N
axl 82’:1 8{EJ ) Z’.]? ) Y )

which is a coordinate form of dw = 0, follows from the condition

N k(g ) ik (g ) li(g
Z <?7ij (@) 8n5x(j ) T nl] (x) 877333(j ) + nk] () ar(gm(j )> =0

j=1

which is a coordinate form of the Jacobi identity, by multiplying it three times
by the inverse matrix 7;;(x) using

N D (g
> (1) 25D 2D (2)) =

REMARK. Let .# = T*R™ with the Poisson bracket { , } given by the
canonical symplectic form w = dp A dq, where (p,q) = (p1,---,Pn,q",---,q")
are coordinate functions on T*R"™. The non-degeneracy of the Poisson manifold
(T*R™,{, }) can be formulated as the property that the only observable f €
C>(T*R™) satisfying

{fimy=-={fipm}=0, {fi¢'}=--={fq"}=0

is f(p, q) = const.

PROBLEM 9.26. Show that a symplectic manifold (.#,w) admits an almost com-
plex structure: a bundle map ¢ : T.# — T.# such that /2 = —id.

PROBLEM 9.27. Give an example of a symplectic manifold which admits a com-
plex structure but not a Kéhler structure.

PROBLEM 9.28. Let (#,w) be a symplectic manifold. For z € .# choose a
function ¢' on .# such that ¢'(z) = 0 and dg" does not vanish at z, and set X = —X_1.
Show that there is a neighborhood U of € .# and a function p; on U such that
X(ql) =1 on U, and there exist coordinates p1,q*, 2%, ..., 222 on U such that

9 and Y =X, =

_ 9
T op1 oqt”

PROBLEM 9.29. Continuing Problem [9.28] show that the 2-form w — dp; Adg* on
U depends only on coordinates z*, ..., 2°" "2 and is non-degenerate.
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PrOBLEM 9.30 (Dual space to a Lie algebra). Let g be a finite-dimensional Lie
algebra with a Lie bracket [, ], and let g* be its dual space. For f,g € C*°(g"*) define

{f,9}(w) = u(ldf, dg]) ,

where u € g* and T,;g" ~ g. Prove that { , } is a Poisson bracket. (It was introduced
by Sophus Lie and is called a linear, or Lie-Poisson bracket.) Show that this bracket
is degenerate and determine the center of A = C*(g*).

PROBLEM 9.31. A Poisson bracket {, } on .# restricts to a Poisson bracket {, }o
on a submanifold .4 if the inclusion ¢ : A4~ — . is a Poisson mapping. Show that the
Lie-Poisson bracket on g* restricts to a non-degenerate Poisson bracket on a coadjoint
orbit, associated with the Kirillov-Kostant symplectic form.
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Lecture 10. Noether theorem with symmetries

Let G be a finite-dimensional Lie group that acts on a connected symplectic
manifold (.#,w) by symplectomorphisms. The Lie algebra g of G acts on .#
by vector fields

d

ds s=0

Xe(f) () flet ),
and the linear mapping g 3 £ — X¢ € Vect(.#) is a homomorphism of Lie
algebras,

[(Xe, Xn] = Xie), EmE

The G-action is called a Hamiltonian action if X¢ are Hamiltonian vector fields,
ie., for every ¢ € g there is ¢ € C*°(.#), defined up to an additive constant,
such that X¢ = Xg, = J(d®¢). It is called a Poisson action if there is a choice of
functions ®, such that the linear mapping ® : g — C°°(.#) is a homomorphism
of Lie algebras,

(101) {(I)Ev q)'r?} = (I)[ﬁ,n]a ga neg.

DEFINITION. A Lie group G is a symmetry group of the Hamiltonian system
((A ,w), H) if there is a Hamiltonian action of G on .# such that

H(g-x)=H(x), g€G, ze€ A.

THEOREM 10.25 (Noether theorem with symmetries). If G is a symmetry
group of the Hamiltonian system ((M,w), H), then the functions ®¢, £ € g, are
the integrals of motion. If the action of G is Poisson, the integrals of motion

satisfy (0-1).

PRrROOF. By definition of the Hamiltonian action, for every £ € g,
0=Xe(H) = Xo,(H) = {P¢, H}. O

COROLLARY 10.26. Let (M, L) be a Lagrangian system such that the Le-
gendre transform 71, : TM — T*M 1is a diffeomorphism. Then if a Lie group
G is a symmetry of (M, L), then G is a symmetry group of the corresponding
Hamiltonian system ((T*M,w), H = Ey o1, "), and the corresponding G-action
onT*M is Poisson. In particular, ®¢ = —1I OTL_l, where I¢ are Noether integrals
of motion for the one-parameter subgroups of G generated by & € g.

ProOF. Let X be the vector field associated with the one-parameter sub-
group {e*¢},cr of diffeomorphisms of M, used in Theorem and let X' be
its lift to TM. We havd™

(10.2) Xe = —(10).(X"),

16The negative sign reflects the difference in definitions of X and X¢.
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and it follows from (6.1) that ®¢ = ix,(0) = 6(X¢), where 6 is the canonical
Liouville 1-form on T*M. From Cartan’s formula and formula Lx/(6r,) = 0 (see

Problem we get
dq)g = d(iX5 (9)) = —’L'X5 (de) + £X5 (9) == _iXE (w),

so that

J(dDe) = ~J(ix, () = Xe,
and the G-action is Hamiltonian. Using again the formula Lx/(6z) = 0 and
another Cartan’s formula, we obtain

ey = ix x,](0) = Lx(ix, (0) +ix, (Lx,(0))
:Xé(q>77) = {‘I)ﬁaq)n}- U

ExAMPLE 10.1. The Lagrangian
L=1imr?*—V(r)

for a particle in R? moving in a central field (see Section is invariant with
respect to the action of the group SO(3) of orthogonal transformations of the
Euclidean space R3. Let uy,us,us be a basis for the Lie algebra so(3) corre-
sponding to the rotations with the axes given by the vectors of the standard
basis e, ez, e3 for R? (see Example in Section. These generators satisfy
the commutation relations
[Ui7uj] = EijkUk,

where i,7,k = 1,2,3, and €;5; is a totally anti-symmetric tensor, 123 = 1.
Corresponding Noether integrals of motion are given by ®,,, = —M;, where

M, = (r X p)1 = r2p3 — 32,
My = (r X p)2 = r3p1 — 113,
M3z = (r x p)3 = ripz — m2p1

are components of the angular momentum vector M = r x p. (Here it is conve-
nient to lower the indices of the coordinates 7; by the Euclidean metric on R3.)

For the Hamiltonian )
D
H=1
5y, TV()

we have

{H, M} = 0.

According to Theorem [10.25| and Corollary [10.26] Poisson brackets of the com-
ponents of the angular momentum satisfy

{M;, M;} = —&;1, My,
which is also easy to verify directly using (8.1)),

_0fdg Of 9g

{f,9}(p,r) = %E - 5%
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ExAMPLE 10.2 (Kepler’s problem). For every o € R the Lagrangian system
on R? with
L=1m#?4+2
r
has three extra integrals of motion — the components Wy, Wy, W3 of the Laplace-
Runge-Lenz vector, given by

w=Lym-2
m r
(see Section [5.1). Using Poisson brackets from the previous example, together
with {r;, M;} = —e;x7 and {p;, M;} = —eixDk, we get by a straightforward
computation,

2H
{Wi, M} = —€ij Wy, and  {W;, W} = ﬁsijkMzm

2
where H = % _ 2 is the Hamiltonian of Kepler’s problem.
m T

The Hamiltonian system ((.#,w),H), dim.#Z = 2n, is called completely
integrable if it has n independent integrals of motion Fy = H, ..., F}, in involu-
tion. The former condition means that dFy(z),...,dF,(x) € T;.# are linearly
independent for almost all x € .#. Hamiltonian systems with one degree of
freedom such that dH has only finitely many zeros are completely integrable.
Complete separation of variables in the Hamilton-Jacobi equation (see Section
provides other examples of completely integrable Hamiltonian systems.

Let ((A#,w),H) be a completely integrable Hamiltonian system. Suppose
that the level set A4y = {x € A : Fi(x) = f1,...,F.(x) = fn} is compact and
tangent vectors JdFi,...,JdF, are linearly independent for all z € .#. Then
by the Liouville-Arnold theorem, in a neighborhood of .# there exist so-called
action-angle variables: coordinates I = (I1,...,1,) € R? = (Rso)™ and ¢ =
(15 y0n) € T" = (R/27Z)" such that w =dI Adyp and H = H(I1,...,I,).
According to Hamilton’s equations,

. . 0H .
I;, =0 and goi:wiza—li, i=1,...,n,
so that action variables are constants, and angle variables change uniformly,
wi(t) = vi(0) + w;t, i = 1,...,n. The classical motion is almost-periodic with
the frequencies wq, ..., wy.
PROBLEM 10.32 (Coadjont orbits). Let G be a finite-dimensional Lie group, let

g be its Lie algebra, and let g* be the dual vector space to g. For u € g* let # = O,
be the orbit of u under the coadjoint action of G on g*. Show that the formula

"J(ulv u2) = u([xlv 1‘2]),

where u1 = ad*z1(u), u2 = ad*z2(u) € Ty, and ad™ stands for the coadjoint action
of a Lie algebra g on g*, gives rise to a well-defined 2-form on ., which is closed and
non-degenerate. (The 2-form w is called the Kirillov-Kostant symplectic form.)
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PrROBLEM 10.33. Do the computation in Example and show that the Lie
algebra of the integrals M1, Ma, M3, W1, W2, W3 in Kepler’s problem at H(p,r) = E
is isomorphic to the Lie algebra so(4), if £ < 0, to the Euclidean Lie algebra e(3), if
E =0, and to the Lie algebra so(1,3), if E > 0.

PROBLEM 10.34. Find the action-angle variables for a particle with one degree of
freedom, when the potential V' (z) is a convex function on R satisfying lim|,| e V(2)
= oo. (Hint: Define I = § pdx, where integration goes over the closed orbit with
H(p,x) =E.)

PROBLEM 10.35. Show that a Hamiltonian system describing a particle in R3
moving in a central field is completely integrable, and find the action-angle variables.

PROBLEM 10.36 (Symplectic quotients). For a Poisson action of a Lie group G
on a symplectic manifold (.#,w), define the moment map P : .# — g by

P(x)(§) = Pe(z), E€g, v €A,

where g is the Lie algebra of G. For every p € g* such that a stabilizer G}, of p acts
freely and properly on ., = Pil(p) (such p is called the regular value of the moment
map), the quotient M, = G,\ .4, is called a reduced phase space. Show that M, is a
symplectic manifold with the symplectic form uniquely characterized by the condition
that its pull-back to .#}, coincides with the restriction to .#}, of the symplectic form
w.






Part 2

Classical electrodynamics



Lecture 11. Maxwell equations

11.1. Physics formulation. The electromagnetic force is a fundamental
force responsible for the interaction of electrically charged particles. Particles
with positions 7, € R?, @ = 1,..., N, may carry electric charges e, with the
density function

N
p(r) = Zeaé(r —Tq).

In general one considers the charge density — a signed o-additive measure,
which is absolutely continuous with respect to the standard Lebesgue measure
on R? | i.e., a signed measure p(r)d>r. Moving charges produce electric current.
A single charge eg at a moving point r((¢) produces a current

§(r.1) = equ(®(r —o(t)), where v(t) = X

In general, the current density is

j(T’ t) = p(T‘, t)v(r, t)7

where v(7,t) is a charge velocity at point » € R? at time t.

An electric field E is generated by electric charge and time-varying mag-
netic field B, which produced by moving electric charges. They satisfy Maxwell
equations, which summarize the basic laws of electromagnetism. In a free space
they have the following form

1
(11.1) V-E= E—Op (Gauss law)

— the electric flux leaving a volume is proportional to the charge inside;
(11.2) V-B=0 (Gauss law for magnetism)

— there are no magnetic charges, the total magnetic flux through a closed
surface is zero;

0B
(11.3) VxE= ~ o (Faraday’s induction law)

— the voltage induced in a closed circuit is proportional to the rate of change
of the magnetic flux it encloses;

OFE
(11.4) V x B = poj + Hog0 - (Ampere’s circular law)

— the magnetic field induced around a closed loop is proportional to the electric
current plus displacement current (rate of change of electric field) it encloses.
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Here the constant g¢ is called a permitivity of the free space and the constant
o is called permeability of the free space or magnetic constant. They satisfy

1
Ho€o = —5»
c

where c is the speed of light in the free spaceﬂ Maxwell equations imply all
laws of electromagnetism: Coulomb law, Bio-Laplace-Savart law, etc.
Put
B = Bydy Ndz + Bydz AN dx + B.dx A dy.

Equation ([11.2]) can be written as dB = 0. Thus there is a 1-form A,dz+A,dy+
A.dz such that the 2-form B is its differential. Denoting A = (A,, 4,,A.), we
obtain

(11.5) B=VxA.
Plugging (11.5)) into (11.3]) we get

0A
VX <E+at)_07

so that there is a function ¢ such that

0A

11.2. Using differential forms. One can rewrite (11.5)-(16.5) as single
equation by introducing the following four-dimensional notations (no reference
to the special relativity yet!). Put 2° = ct, 2! = 2,22 = y, 2% = 2 and consider
4-vectors & € R* with components z#, u = 0,1,2,3. Let

A=A,dz",
where Ag = %cp,Al =—A;, Ay = —Ay, A3 = —A., and define the 2-form F' by
04, 04,

oxr  Oxv

1
F=dA= §Fw/dxﬂ Adx”, where F, =

Here we always use summation over repeated indices.
It follows from ((11.5)—(16.1) that skew-symmetric 2-tensor F),, is represented
by the following 4 x 4 matrix

o p, lp, lE,
(11.7) F=1| ¢ -B. B,

"In the SI system of units eg = 8.85 x 10712C2N~"1m~—2, where C = Coulomb and

N = Newton, and pg = 47 x 107"NA~2, A = Ampere. In the Gaussian system of units

(a part of CGS system of units based on centimetre-gram-second) 9 = ﬁ, wo = 47” and

_ —1
Ecgs = ¢ Es1.
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or
1 0 1, 1 0 2 1 0 3
F=-FE,dx" Ndx™ + —Eydx” Ndz* + —E.dx” Ndx
c c c
—Byda? A da® — Byd:c3 Adz' — B.dx' A da?

The 2-tensor F),, is called the electromagnetic field tensor, or the field strength
tensor or Faraday tensor.

Equation F = dA gives expressions (11.5)-(16.5) for electric and magnetic
fields in terms of the four-vector potential A,. The Maxwell equations (11.2])-
follow from this and can be written succinctly written as

dF =0

or, equivalently,

aF)\H 8F,u1/ aFL/)\
oz” ox* Oxh

(11.8) =0, A\uv=0,1,23.

Indeed, we have

0B, 1
500 E(v X E)m> dz® A dz? A da®

dF:—V-delAde/\dx?’—(

0B 1 0B, 1
_ (axg -+ E(V X E)y)d;];o A dx?’ A dxl — <ax0 + E(V X E)z>d:c0 A dl’l A dLEz

To rewrite the second pair of Maxwell equations, equations (11.1]) and (11.4)),
observe that in the absence of sources they can be obtained from the first pair

(11.2)—(11.3) by the electro-magnetic duality

1Er—>fB and B +— 1E
c c

Indeed, introducing the dual filed strength 2-form *F' by
«F = —B,dx® A dz! — Bydajo Adx? — B.dz" A da?
—%Ezd:& A da?® — %Eydﬁ Adzt — %Ezdxl A dz?
we obtain and as a single equation
d+xF =0.
What is the geometric meaning of the dual 2-form *F? It is easy to check (see

below) that it is a Hodge dual to the 2-form F with respect to the Minkowski
metric ds? = 1,,dr"dzr” on R, given by the diagonal 4 x 4 matrix n =
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diag(1,—1,—1,—1)! In other words, Minkowski metric is a pseudo-Riemannian
metric on R* given explicitly by

ds* = (dz°)? — (dz')? — (d2®)? — (da®)2.
Indeed, we have
*(ay,dat A da”) = by, dat A dx”,

where

1 «
by = 550‘5#1/77 Anﬁpakp

and €445 is totally antisymmetric tensor, 9123 = 1. From here we easily get

#(d2® A dat) = —dx® A da?,
#(dz® Nda?) = dxt Ada®,
#(d2® A da®) = —dxt A da?,
#(de' Nda?) = dx® Ada®,
#(dx® Ada') = da® A da?,
#(dz? Nda®) = dx® Adat,

and formula for *I" follows from the definition of F.

REMARK. The signs in Maxwell equations, reflected in electro-magnetic du-
ality, force the use pseudo-Riemannian metric. This may be considered as alter-
native discovery of the Minkowski space-time.
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Lecture 12. Maxwell equations. Action principle

We have seen in the previous lecture that Maxwell equations in a free space
without sources can be succinctly written as

dF =0 and dxF =0,

where F' = dA, A = A,dz" and * is the Hodge star operator with respect to
the Minkowski metric on R*.

12.1. Maxwell’s equations with sources. We have explicitly

10E, 10E,
c 0z0 c 0x0
10E,
c 00

d*F:((VxB)I— )dmo/\de/\de—((VxB)y— )dmOAdxl/\dx3

1
+((V><B)z— )d;vo/\dasl/\de—V-Edwl/\d;vg/\das?’.
C

Define the four-current
J = J,da",
where Jy = —cp and J; = jg, Jo = jy, J3 = j.. Using
#(dx® A da? Ada®) = dat,
#(d2® A dat A da?) = —da?,
#(dz® Adat Ada?) = dad,
*(dx' A da® A da®)

we can succinctly rewrite equations ((11.1) and (11.4)) as

xdx F = pgJ.
Equivaletnly, since on 2-forms *2 = —1, we have
dx F = —pgx*J,

so that d x J = 0, which is a continuity equation. Using that
wdz’ = dat Adx® A daB,
sdrt = da® A da? A da®,
sdx? = —daz® A dxt A da?,
wdr = da® Adzt A da?,

we can write it as follows

oJH
i 0, where JH=n""J,.
Explicitly, the continuity equation has the form
0 .
Prv.j=o.

ot
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REMARK. If J has compact support or is of rapid decay, the continuity
equation leads to the total charge conservation. Namely, let

Q) = —1/ xJ = p(t,r)d’r
{ct} xR? RS

Cc

be the total charge at time ¢. Then it follows from Stokes’s theorem for M =
[Ctl, Ctz] X Rg that

M oM

Also for any compact 3-manifold V' C R3 we have

0
— t,r)dPr = — | - dS.
5 | eter) / i
It is also convenient to introduce the tensor
F1 =t Fag,

which has the the same form as F),,, where E is replaced by —FE. It is related
to the dual strength field tensor by

1
(*F)F“/ = §€MuaﬁFaﬁ.

Then the second pair of Maxwell equations can be written in the following form

oFm

(12.1) o

=Jr v=0,1,2,3,

which is often used by physicists.
To summarize, the Maxwell’s equations on R* have the following form

dF =0 and *xdx*xF =J,

where the 4-current J satisfies the continuity equation. By Poincaré lemma, the
first equation has a solution

F=dA where A= A,dz".

Upon the identification Ag = %(p and (Ap, As, A3) = —A we get expressions
and for magnetic and electric fields in terms of the vector and
scalar potentials A and . Maxwell’s equations are invariant under the gauge
transformations

A A+ df,

where f is a smooth real-valued function on R*.
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12.2. Lagrangian formulation. The Maxwell equations
dF =0 and x*xd*xF=1J

admits Lagrangian formulation.

Namely, let A = Q'(R*) be a vector space of smooth (C°°) real-valued 1-
forms A = A,,dz* on R?* such that corresponding 2-forms F' = dA have compact
support (or decay sufficiently fast as |€| — c0). Let J be a smooth real-valued
1-form on R* with compact support (or decaying sufficiently fast as |z| — o)
satisfying the continuity equation. Define the action functional S : A — R by

1
S(A) = —4—/(F/\*F+2A/\*J),
T
R4
where F' = dA.

PRrROPOSITION 12.6. The Mazwell equations are Fuler-Lagrange equations for
the action functional S(A).

PrOOF. For given a € A put

65(A4) = —|  S(A+e<a).
e=0

We have, using the symmetry property of the Hodge star operator
aA*p = [ Ax*xa

and the Stokes theorem,

1
5S(A) = —%/(da/\ S 4 an )
]R4

1 1
:7%/(a/\d*F+a/\*J)f%/d(a/\*F)
R4 R4

1
:—g/a/\(d*F—i—*J).
R4

Whence 65(A) = 0 for all a € A yields
d+«F=—xJ [O
REMARK. We have, in physics field notations,
1

1 c 1

— | FA«F =—— | F ,F*d'x = — —E? - B? ) dtd®r.

o / * 167 / " T <c2 "
R4 R4 R4
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12.3. Energy-momentum tensor. Suppose that F satisfies Maxwell equa-
tions without sources. Using equations ([11.8)) and (12.1]) we have

0 OF, oFH OF,
_ F F;w — 224 F/Ly — 2 [z F/Ll/
8905‘( o ) Oz~ Ty e Oz
 (0Fau  OFua e, O b
- _2( oot s )F = —do5 (FuaF™).

Putting
1
TP = F,o  F% + 15§FW1W,

we can rewrite this equation as a conservation law

oT?

(12.2) s =

0, a=0,1,2,3.

The tensor T is traceless T = 0 and symmetric, 7% = T8 where
(o3 (o3 (0% v 1 (03 v

(12.3) 7% = T8 = —n,, FOHFP + 77 PR, F.

The tensor T*? is called the energy-momentum tensor. Its components contain
the energy density

1/1
TOO — 5 (02E2 +B2)

and the momentum density
- - 1
7% = FO*pik — Z(E x B);, i=1,2,3.
c
The vector S = E x B is called the Poynting vector.
REMARK. The conservation law (12.2)

aTOO
o~ VS

can be verified directly using Maxwell’s equations and the calculus formula
V(axb)=b-(Vxa)—a-(VxDb).
It also implies that implies that the total energy of the electromagnetic field
1

=— Tdr
AT Jiety xrs

does not depend on time.
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Lecture 13. Maxwell’s equations in Euclidean space-time

Though they do not describe physical phenomena, the equations
(13.1) dF =0 and dxF =0

also make sense in case when the Hodge star operator of the Euclidean metric on
R*. Equations (13.1]) describe harmonic 2-forms on R* with the general solution
F = dA, where

(13.2) xd*xdA=0.

However, this equation is not elliptic: if A € Q!(R*) is a solution then A + df
for any smooth function f on R* is also a solution. However, one always impose
a condition

d+A=0
which converts equation ((13.2)) into the elliptic equation
A1A =0,

where A1 = — xd x d — d * d« is the Laplace operator action on 1-forms.
Indeed, if d * A # 0, consider A + df, where f satisfies

Aof = 7d>i<A,

where Ay = — % d x d is the ordinary Laplacian (with a minus sign) acting of
functions. These arguments remain valid if R* with Euclidean metric is replaced
by a compact 4-manifold M with Riemannian metric. However, there is a deeper
geometric construction.

13.1. Line bundles and Chern forms. Let L. — M be a line bundle
over a 4-manifold M associated with a principal U(1) bundle over M. A local
trivialization of L is an open cover {U,} of M together with the transition
functions g : Uy, NUg — U(1) satisfying the cocycle condition

9aB98y = Jay on U, NUgNU,.
Let V be a unitary connection in L, in local trivialization
V=d+ A,,
where A, € QY(U,) are 1-forms on U, with values in /—1R (the Lie algebra of
U(1)) satistying
Ao = Ag — g 4dgas on U NUp.
Corresponding curvature 2-form F = V2 is a global 2-form on M given by

F =dA,
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and the first Chern form of the line bundle L with connection V is
v—1
—F
21
Corresponding first Pontryagin number
1

L) =— 2 - FAF
(L) /Mc1 4W2/M

is an integer. If, in addition, M is a Riemannian manifold with the metric ds?,
then the Maxwell’s equations on M are

dF =0 and dxF =0,
where F' € Q2(M) and * is the Hodge star of the metric ds?. If

{\/le} € H*(M,7),

c1 =

2

then by de Rham-Cech isomorphism there is a line bundle L with connection
V =d + A such that F = dA.

13.2. Self-duality equations. In the Riemannian case *?> = 1 on 2-forms
and we have a decomposition
Q*(M) = Q2 (M) ® Q2 (M)

corresponding to the eigenvalues 1 and —1 of the Hodge *-operator. Thus curva-
ture forms F' of self-dual (or anti-self-dual) connections satisfy Maxwell’s equa-
tions automatically!

From the inequality

/ wAxw >0
M

for all w € Q%(M) we obtain for a curvature 2-form F of a line bundle L — M

F/\*F—47r2p1(L):/ FA+F —FAF
M M

:%/M(F—*F)/\*(F—*F)ZO

and

/F/\*F+47r2p1(L):/ FANxF+FAF
M M

1
:7/ (F 4+ «F)Ax(F +*F) > 0.
2 Jm

Thus we obtain the inequality

/ F AxF > 4n%|p1(L)],
M

where the absolute minima of the action are given by the self-dual connections
in case p1(L) > 0 and by the anti-self-dual connections in case py(L) < 0.
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PROBLEM 13.37. Prove that for every closed 2-form F on a compact manifold
M with the property
v—1

{?F} € H*(M,7Z),

where H?(M,R) stands for the Cech cohomology, there is a line bundle L — M and
a connection V = d + A such that F' = dA.
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Lecture 14. Electromagnetic waves in a free space

As in the Euclidean case, in Minkowski space-time R* it is also convenient
to use the gauge condition d * A = 0. In terms of A* = nH" A, it reads
0AH
bl
OxH
and is called the Lorenz gauge condition. The Maxwell’s equation in Lorenz

gauge takes the form
(dxd*+*xdx*d)A= pol.

Since
82
— v
dxdx+xdxd=n T
we get
(14.1) dA* =J*, ©u=0,1,2,3,

where J* = np*¥J, and

® o 2 1
0x2 Oy 022 2 0ot?

is the d’Alembert operator. We have A* = (%cp, A), so that the Lorenz gauge is

1 0y
14.2 ——+V-A=0.
(14.2) 2 Ot +
Thus we need to solve equations (14.1])-(14.2).
0
We can always choose Ay = 0 by replacing A by A + df where a—{) = —A,.

i
The gauge transformations preserving this condition are A — A + dx where x
is independent of 2°. Since p = 0 in the free space we have

0
0=V -E=-2(V-A),

so that V - A does not depend on ¢. Then determining x from the condition
V.- Vx=-V-A
we arrive at the Coulomb gauge
Ap=0 and V-A=0.
In Coulomb gauge we have

OA=0 and E:—%—‘?, B =V x A.

Since electric and magnetic fields are gauge independent, we have that in
the free space E and B always satisfy wave equations

(14.3) OE=0 and OB =0.
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14.1. Plane waves. In Coulomb gauge consider the case when potential
A depend only on the coordinate x. The wave equation reduces to

A LA

a2~ o2

and has a general solution
x T
A(t,z) = A, (t— E) + A, (t+ E) .

Considering the case of a wave moving in a positive direction on the z-axis, we
have the solution
x
A7)
c

and the Coulomb gauge condition gives
0A;
or

so that from the wave equation A, = at, where a is a constant. This gives rise to

a constant electric field in the z-direction. Since such a field has nothing to do

with the electromagnetic wave, we can set A, = 0. Thus we obtain that always

A 1 n = e, the direction of the wave.

Correspondingly,

0

E=-A" and B:—lnxA':Ean,
c c

where prime indicates t-derivative. Thus the electric and magnetic fields are
perpendicular to the direction of propagation of the wave. Thus plane electro-

magnetic waves are transverse. Moreover, the electric and magnetic fields are

E B
orthogonal and their strengths are related by £ = ¢B. The vectors n, B

form an orthonormal positively oriented basis of R3.
The components of the energy-momentum tensor of the plane wave are given
by
E? 1 E?
TOOZT and S:fQEXnXEZTTL,
c c c
so that (7%%)% = §2.
14.2. Monochromatic plane waves. Important special case of electro-
magnetic wave is a monochromatic wave which is a simply periodic function of
t. The potential of a monochromatic plane wave has the form

A =Re{Age D1

. . 2me
where Ay € C3 is a constant complex vector, w is the frequency, A = — is
w

w
the wave length, k = —mn is the wave vector, where n is a unit vector in the

direction of propagation of the wave (in our case n = e;). We have

A =Re{Ageikrent,
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where k - 7 — wt is the phase of the wave.
We have

E =Re {Eoei(k'r_“t)} and B = Re {Boei(k'r_”t)} ,
where
EO = z'wAO and BO =ik x Ao.
Consider the vector Ey € C* and put b = Eye'®, where E2 = E; - Ey =
|Eg|?e~%®. Then b* = b- b = |Ey|? and
E = Re {be!m =)},

Putting b = by + iby, where by, by € R3, we have
b® = b] — b3 + 2ib; - by € R,

so that vectors b; and by are orthogonal. Since Ag is orthogonal to the wave
vector k, they both are orthogonal to k.

Choosing the zyz coordinate axes according the positively oriented orthog-
onal basis basis k, by, +bs, we have

E,= bcos(wt—k-r—a),
E, = tbhysin(wt — k-1 — ),

where by = |by| and by = |bs]|. If by, by are non-zero, we have

E? E?
-z + P 2 1’
b b3

so that at each point of the space the electric field vector E rotates in the plane
perpendicular to the direction of propagation and describes the ellipse. Such
a wave is called elliptically polarized. If by = by the wave is called circularly
polarized. In case by or by is zero, the wave is called linearly polarized.
REMARK. Introduce the 4-vector (k) = (E,k) and (k,) = (E, —k) with
c c
the property k, k* = 0. We have k,x" = wt — k - r, so that

A(x) =Re {Aoe_ik“’”“} .

The electromagnetic waves describe photons, particles with 4-wave vector satis-
fying k2 = k2.

14.3. The general solution. The Cauchy problem for equation (|14.1))
has the form

0A =0,
A(O7T) = AO(T)a
04 (0,7) = Ay(7),

ot
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where Cauchy data Ag(r) and A;(r) satisfy Coulomb gauge condition
V-Ay=0 and V-A;=0

and rapidly decay as |r| — oco.
Cauchy problem for the wave equation in R* is solved by the Fourier trans-
form. Namely, let

1 ,
Ao(r) = (27T)3/R3 e ag(k)d’k,
1 -
) = o [ e

where ag(k) = ao(—k), a1(k) = a1(—k) and k- ao(k) = k- a1 (k) = 0. Then
the solution is given by

1 .
(14.4) A(t,r) = . / e*Ta(t,k)dk,
(27r)§ R3

where (el

a(t, k) = cos(clk|t)ao (k) + sm(|c’|€||)a1(k)_

c
Introducing
1 1
k)= -aolk)+ ——ai(k
alk) = ga0(k) + 5o (k).
we can rewrite (14.4]) as
— —i(wpt—k-r) t(wrt—kr) = 3

(145) A = G /R (c a(k) + ¢ a(k)) d°*,
where wg = c|k|. For electric and magnetic fields we have

0A

E=-°=
ot
_ i —t(wpt—Fk-7) k) — t(wrt—k-7r) = k dBk
(271')% /Rs Wk (e ak) —e a( ))
and
B=VxA
_ 1 _ / k x (e—i(wkt—k-r)a(k) _ ei(wkt—kr)a(k)) d3k
(271')5 R3

By Plancherel theorem we have for total energy of the electromagnetic field,

1 1
<E2 + B2) d3r

- % R3 62
- ﬁ [ (whalk)alk) + (0 x a) - (k x alk))d%

T 271e?

! / W2 alk) - a(k)dk,
RS
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where we have used the identity (k x a(k)) - (k x a(k)) = |k|?a(k) - a(k), which
follows from k - a(k) = 0.

Similarly,
L 3 1 3
— = — ExB
47 R3 Sd'r 4mc ]R3< x )d "
_1 = 3
= e ) wia(k) x (k x a(k))d’k
1
= — wi (a(k) - a(k))kd’k.
2w R3

Finally, putting

- Wl )
PN 2c\/T

we obtain a representation of the energy and momentum of electromagnetic field
in terms of the oscillators

P(k) (a(k) +a(k)) Q(k) = (a(k) — a(k))

! (1E2 + B2> d*r = 1/ (P?(k) + wiQ*(k))d*k
2 Jpa

8 R3 02
1 c

(E x B)d®r = — /R (wy ' P2 (k) + wip Q% (k))kd’E,

are Jps 2

where

k-P(k)=k- Q(k)=0.

These representations will be used for the Hamiltonian formulation of Maxwell’s
equations.
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Lecture 15. Hamiltonian formalism. Real scalar field

Here we consider four-dimensional space-time R* with coordinates z =
(2%, 2%, 2%, 23) and Minkowski metric (dz°)? — (da')? — (dz?)? — (dz3)2. We
put ¢ =1 so that z° = ¢t.

15.1. Lagrangian formulation. The scalar field ¢(x) is a smooth real-
valued function on R?* of the Schwartz class for each time slice t = to. The
corresponding Lagrangian function has the form

2(plw), uplw)) = 5 (D)0 () — () — Vi (p(a)),

where

_ 9
QD - ax# )
In particular, Viyt(¢) = 0 corresponds to the Klein-Gordon model, and Viy (@) =

gt /4! — to the p*—model.
The action functional

Oy n=0,1,2,3.

S(p) = /«i”(%@w)d‘*x,

where integration goes over the part of R* between the slices t =t and t = t;
with fixed ¢(tg,x) = @o(x) and p(t1,x) = @1(x),0r over R, where p(z) is
assumed to be rapidly decaying as |z| — oo. Corresponding Euler-Lagrange
equation 65 = 0 takes the form

0L 0 0Z

(51 o 0w 90, "

and yields equation of motion of the massive real scalar field
(15.2) (O +m?)g + Vi (v) = 0.

For the ¢*-model this equation takes the form

3
O+ m*)p+ g5 =0,

and is a nonlinear Klein-Gordon equation with cubic nonlinearity.

REMARK. Let .Z be the space of scalar fields on R*. The Lagrangian L is
map from .Z to the functions on R* such that L()(z) depends only on the 1-jet

of p at x € RY, i.e., L(p)(x) = ZL(p(z), Oup(x)).

15.2. The energy-momentum tensor. Since the Lagrangian function
does not depend explicitly on z, we have

0L 0L
0,Y =—0,p+ ———0,0
99 7T 90p) MY

0L 0L 0L
=—-90,=——— ) 0,p+0 <8V>.
<a@ “awm) 7T 8(0,0) "
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Thus on the solutions of the Euler-Lagrange equation (|15.1]) we have

0, — 0, (wa ¢> =0,

3((%(,0) v
or
(15.3) 8, T =0,
where 5.5
TH = = 00— 1%
9(0.0) 7

is the energy-momentum tensor. The tensor THY = n")‘Tf satisfies the conser-
vation law

0,T"" =0,
and is defined up to the addition of 9, ¥H#¥?, where WH"7 = —WHIV,
For the scalar field the tensor T"” = 0"pd"p — .7 is symmetric and
1
T = 5 ((909)” + (Vo)* +m*¢” + Vini(9)) ,
T% = 9900, TV = 9'pd .

Conservation law for the energy-momentum vector (h,p), where h = T and
p = (T, T92 T93) reads

oh
— +V-p=0.
ar VP
For the electromagnetic field £ = —ﬁFuyF #¥ " and the tensor
0L
—0"A, — &
9(0,A,) 7

is no longer symmetric. Adding to it

1 1
- vpopy — _ v ou
47r80 (AVFoH) 471_8014 F

(remember that equations of motion are used!), we get the energy-momentum
tensor discussed in Lecture 12 (see Sect. |12.3]).

REMARK. In physics textbooks one proves ([15.3)) by using the invariance of
the action functional under the translations = — Z = = + a,

[ #Goas- [ 2eopds=o
1% 1%

where 3(Z) = @(x), V = V +a for arbitrary domain V' C R?*, and expressing the
resulting zero as the variation of the action with §¢ = 8,a" using the Stokes’
theorem and that ¢(x) satisfies Euler-Lagrange equations.
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15.3. Hamiltonian formulation. As in classical mechanics, let

0L
vy~ 0P)

m(x) =

be canonically conjugated momentum to the field ¢(z), and define the Hamil-
tonian functional density S (m, p) by the Legendre transform

H(n(z), p(x)) = 7*(2) — L (p(2), 0u0(2)) |5 pr
1
=5 (P(@) + (Vo())? + m*¢*(@)) + Vi (#(2)).
Equations of motion of the theory are Hamiltonian equations for the infinite-

dimensional Hamiltonian system (., Q, H) with the phase space .#Z = .7 (R3,R)x
< (R3,R), the symplectic form

Q= » (dr(z) A dp(z)) dz,

and the Hamiltonian functional

H= Hdx.
R3

REMARK. The Schwartz space .#(IR?) is a Fréchet space with the topology
defined by the system of the semi-norms

11

ap = sup |z D" f(a)]
zER3

for all multi-indices «, 8 € Z8§0~ The symplectic form €2 is continuous skew-
symmetric bilinear form on .# defined by

Q((m1,1), (72, 02)) = /Ra (71 () pa () — ma () o1 (2)) dPa.

The symplectic form 2 is (weakly) non-degenerate:  ((m1, ¢1), (72, @2)) = 0 for
all (7727 SDZ) e M lmphes (7T'17 @1) =0.

Darboux coordinates on .# are 7(x), (), € R3, and canonical Hamil-
ton’s equations

(15.4) o (t, @) = — 52{1 S(n(t. ). 0(t,2)),
(15.5) hglt,2) = 57 (n(t.2), (1. 2)

give equation ([15.2)). Indeed, by calculus of variations we obtain

0H

m(r(z), p(x)) = 7(x)
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and
DL ) p(0)) = —pla) + () + Vi (o)

so that (15.4)—(15.5) yield
Bp(x) = Ap(r) — mPp(x) — Vi (p(2)).

To make these arguments rigorous, we consider the algebra 7 of classical
observables on ., which consists of smooth real-analytic functionals F : .4 —
R. By definition, a real-analytic F () is represented by the following absolutely
convergent series

Z | |/ / cmn L1y wmvyh'"?yn)
mm:. Jgrs R3

m,n=0
xm(@y) - w(@m)e(yr) - p(yn)d @y - Py dPyy - Py,

where cgg = ¢ — a constant, and tempered distributions

Conn (T1, o B3 Y1, - Yn) € L (R x - x R3Y
R —~
m—+n
are independently symmetric with the respect to the variables x4, ..., x,, and
Y1, ..., Yn- The real-analytic functional F' is called admissible, if the variational

derivatives

:ZZ —llnl/]Rs /Rscmnwa"' wm’yl""7yn)

m=1 n:O

X (@) - (@m) (Y1) - - - o(yn)d@y - - - Bapdy - - dPy,

and

0o oo 1
_ - C (:1:1,...,113 L, Y2, .Y )X
mZ:oT; mi(n —1)! Jgs /]R3 " " !

x (@) m(@m)e(y2) - @(yn) @y -+ P d®ys - - Pyy,

belong to the Schwarz class .7 (R3).

REMARK. For every real-analytic functional F': .# — R its differential dF
at every point (m,¢) € .# is a continuous linear map dF : .# — R, so that
dF € (R? x R3)". A functional F is admissible dF € .7 (R3 x R3), i.e., there

oF OF
exist Schwartz class functions, denoted by and @)’

om(x)

oF u oF v 3
for all (u,v) € .

such that
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REMARK. Condition that F' is admissible means that for all m,n > 0 and
Ty ey Pmy @1y - -, Pn € F(R3) the distributions

Crn(T2 @+ @ Ty ® 1 ® -+ ® ) € S (R?)

and
Crn(M @ T ® P2 ® -+ ® @) € L (R

are represented by the Schwarz class functions.

Clearly if F,G € o then their product F'G € &, so that &/ is an algebra.
The symplectic form Q endows & with the Poisson algebra structure given by

5F G OF  0G
(15.6) {F,G}(m,¢) = /]RS (57r(:13) sp(x) o Sp(x) 57T(:1:)) Bz,

where all variational derivatives are evaluated at (7, @) € . It follows from the
definition of real-analytic functionals and the above remark that {F,G} € &
whenever F,G € /. This provides a rigorous foundation for the Hamiltonian
mechanics with the infinite-dimensional phase space .Z .

The Darboux coordinates m(x), ¢(x), considered as evaluation functionals of
(7, ) at € R3, do not belong to «7. Nevertheless, we have in the distributional
sense,

brl@) o @) o delw) o delw)
or(y) @~y dp(y) 0 and om(y) 0 dp(y) o =)
and it follows from that
oF oF
{F,?T(IE)} = _6<p(w) and {F7<p($)} = 57’((:13)

Since for I' € &

i) = [ (Do + T D apine) ) da.

Hamilton’s equations for smooth observables
OF ={H,F}

are equivalent to canonical Hamilton’s equations ([15.4)—(15.5]).

REMARK. In physics textbooks, Poisson structure ((15.6) on 7 is defined by
the following Poisson brackets

(15.7)  Ar(@),m(y)} = {¢(@), ¢(y)} =0 and {n(z),p(y)} = i(z —y),

understood in the distributional sense.
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15.4. Fourier modes for the Klein-Gordon model. The Klein-Gordon
equation

(15.8) (O+m?)p(x) =0

in terms of the Fourier transform

1

o(k) = 22 /R‘L e*rp(x)d*z, where k-x=ktz, =k"2" - ke,

takes the form
(k* —m?)p(k) = 0.

Its general solution is a distribution supported on the two-sheeted mass hyper-
boloid k% = (k°)? — k? = m?, which can be written as

p(k) = 6(k* —m?*)p(k).
Here
p(k) = (k) pr(K) + 0(—k°) pa(K),
where (k) is the Heavyside function and pi, po are distributions supported
on R3. By definition of the distribution §(k* — m?) = 6((k")? — wi), where
wi = Vk2 +m?2 > 0, for a test function u(k) € .%(R*) we have
(O(k")pr (k)3 (k> —m?),u) = (p1(K), ur),
(O(=k%)p2(k)o(k* —m?),u) = (p1(K), uz),

where ( k) ( "
- Uk B) _ u=wk, k) 3
uy (k) = SR us (k) o € S (R?).
Whence ) .
N 0 0
¢(k) = 2wk:01(k)5(k wk) + 2o p2(k)o(k” + wg),

where reality condition p(k) = p(—k) gives pa(k) = p1(—k).
Substituting this ¢(k) into the inverse Fourier transform

(p([lj) = 5 /R4 eiik'm@(k)délk,

introducing a(k) = v2mp1(k), a(k) = a(k) and changing in the second integral
k by —k we obtain

Pk

. where k%= wy.
ka

_L a efik-x a eik-r
(5.9 o) = g [ (o) 1 ath)e)

From this general distributional solution we can obtain a solution of the Cauchy
problem for the Klein-Gordon equation, which consists in finding a solution ¢(x)

of (15.8)) satisfying
¢(0,z) = p(z) and Oop(0,2) = ().
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Namely, from

— 1 ~ ezkm 31 — 1 ikx a —ikx

o@) = g [ e = o | +a(k)e )
) = 1 # elkw 37, —1 we (a ezkac P —ikax
w@) = g [ AR = o [ (age —ak)e )

we get
a(k) = wpp(k) + it (k) € L (R3),

so that (15.9)) gives classical solution of the Cauchy problem.

It follows from Poisson brackets (15.7) that in the distributional sense

{7(k), 7(1)} = {@(k),¢()} =0

and
{7(k), o( y) e~ ke tly) B3y
R3 R3
= e dy = §(k +1),
{7(k), &( {m(x), o(y) e {F=W) Prddy
R R3

(%)3 e ke @de = §(k —1).

\w

R3

Thus we obtain

(15.10)  {a(k),a(D)} = {a(k),a(l)} =0 and {a(k),a(l)} = 2iwkd(k

Now it follows from Plancherel’s theorem that
1

=3 [ @)+ (Ve @) + mi (@) d'o

=5 [ (RR + wRlo(h)?) &

—1).



LECTURE 15. HAMILTONIAN FORMALISM. REAL SCALAR FIELD 81

Thus we see that in terms of Fourier modes Hamilton’s equations ([15.4])—

(15.5)) decouple

and in accordance with (15.9)
a(t,k) = e ™ ta(k), a(t k) =e“*a(k).

The real coordinates in the Fourier space

a(k) + a(k) i(a(k) — a(k))
P = =
are Darboux coordinates for the symplectic form €,
Q= [ (dP(k)AdQ(k))d*k,

]R3
and the Hamiltonian of the Klein-Gordon model takes the form

1
H= 7/ (P?(k) + wpQ*(k)) d’k.
2 Jps
Thus in terms of Fourier modes the classical Klein-Gordon field is a collection of
infinitely many non-interacting harmonic oscillators, parametrized by k € R3,
with the frequencies wi, = Vk2 + m?2.
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Lecture 16. Hamiltonian formalism. Maxwell’s equations.
Here we put ¢ = 1 and use the gauge Ag = 0, so that
(AOa Ala AQ? A3) = (0? 7A)
Recall that Lagrangian function of the free electromagnetic field is

_ 1

A) = F,, F*
g( ) 1671_ yi24 ’
where

o 04, _ 04,

o gar Qv
The action functional is given by
1
S(A)= | ZL(A)d*z=— | (E*- B?*d",
R4 8 R4
where
A

(16.1) E = _oA and B =V x A.

ot

16.1. Legendre transform and the phase space. Canonically conju-
gated momentum to A, is given by

_oZz 1
6Au 4n

70
)

P
so that p° = 0, which is compatible with the condition Ay = 0. Using (16.1)), we

get
1 1 . 1 .
plo= i ke 12123

where the dot stands for the time derivative. )
The Hamiltonian density J# is given by the Legendre transform A; = —4mp;
we get

Di =

1
= —(E>+ B?).
Ai:747rpi 87'('( + )

H = (p'Ai — Z(4))

Thus as in the previous lecture, we obtain the Hamiltonian system with the
phase space .# = ./ (R3,R3) x . (R3,R3)H the symplectic form Q

(16.2) Q-1 (dE;i(z) A dA;(z)) dx,
47 R3

and the Hamiltonian functional

(16.3) H= | #(x)d’x !

_ L 2 2\ 53
. =3 RS(E +(V x A)?) d’x.

I8Here . (R3, R3) stands for the R3-valued Schwartz functions on R3.
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Equivalently, the symplectic form €2 can defined by the following non-vanishing
Poisson brackets

It is instructive to check how Maxwell equations appear as Hamilton’s equa-
tions. We have

(16.5) Ai(x) ={H, Ai(x)} = E;(x),

and since A = —(A41, As, A3), it gives first equation in ([16.1). Moreover, using
Bj = (V x A); = —€;0rA; (note the negative sign!), we have

Bi() = {.E@) = [ B@){(Vx A),). @)}y

0
= e [ B, By = < [ Byly)rile— )iy
R3 R3 Y
= EikjakBj(:L‘),
which gives the Ampére-Maxwell law

OF
— =V X B.
ot~ "
This gives the first pair of Maxwell’s equations. The Gauss law for the magnetic
field follows from the definition of B = V x A, but the Gauss law for the electric
field
V-E=0

is missing from Hamilton’s equations!

16.2. Reduced phase space and Maxwell’s equations. Since the Gauss
law does not contain time derivatives, it seems natural to consider it as a con-
straint

Clz) ¥V Ex) =0

in the phase space .#. Indeed, it follows from the previous computation that
{H,C(x)} ={H,V-E(x)} =V -(Vx B)(x)=0.
Moreover, putting D(x) Lfy. A(z) we get from (16.5),
{H,D(x)} =V - E(z) =0,

so it is natural to impose another constraint D(x) = 0, which forces the Coulomb
gauge and is compatible with the first equation in ((16.1)).
Thus the reduced phase space of the theory is a submanifold .# in .# defined
by
My ={(E(z),A(x)) € 4 :C(z) = D(x) =0 YV € R*}
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and we need to find a Poisson structure on structure on .4, obtained by re-
stricting the symplectic form €2 on .# to .#,. Since the Poisson brackets

[0(@). A;()} = —{D(@). B;(y)} = 4755 —5(@ —y)

do not vanish, one cannot simply restrict Poisson brackets to M.

Nevertheless, the Poisson structure on .#; can be obtained by reducing a
modified Poisson structure on .# which has a nontrivial center (annulator),
generated by C(x) and D(x). This new transverse Poisson structure on .#
should have non-trivial brackets of the form

(16.6) {Ei(@), Aj(y)} = dndj5(x —y), x,y € R?,
where the distribution §;; () satisfies

Loy — -
(16.7) 00k (x) =0, j=1,2,3.

It is given by the transverse §-function, defined as follows

1 kik;\ o
(16.8) 55(x) = W/R <5ij = k2j> e*ePr, i,j=1,2,3.

Here the first term gives the ordinary J-function, and the second term in (16.8))
ensures that (16.7) holds. The resulting Poisson structure on the reduced phase
space .4 is given by Poisson brackets ((16.6)) and is non-degenerate.

Since

[ e =@y = @

for any f(xz) € . (R3,R?) satisfying V - f(x) = 0, it immediately follows from
previous computations that Hamilton’s equations on .#

E(z)={H, E(x)}",
A(z) = {H, A(z)}*,

yield
a—E:VXB, where B=V x A and %:,E_
ot ot

Together with the Gauss law, they give the full set of Maxwell equations in the
Coulomb gauge.

REMARK. A simple finite-dimensional analog of the reduced phase is the
following. Consider a symplectic vector space R?” with the canonical symplectic
form

w=dpAdq

and Darboux coordinates p1,...,0n,q1,- - ., ¢, With the Poisson brackets

{pi,gj} =465, 4,j=1,...,n.
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The restriction of w on the hyperplane P = p; +- - -+ p, = ¢; is degenerate, but
imposing an additional constraint Q = q1 + - - - + ¢, = c2, we obtain a reduced
phase space .#y = P~'(c1) N Q™' (c2) C R*" such that wl , is non-degenerate.
Corresponding Poisson brackets on .# are obtained by restricting degenerate
Poisson brackets on R2"

|
{p%%‘}:éi]’_ﬁ, ihj=1,...,n

to the symplectic leaf P~1(c1) N Q71 (co).

REMARK. Transverse Poisson brackets (16.6) have a meaning of the Dirac
brackets for the constraints C(x) = D(x) = 0. Indeed, it is easy to verify that

(Bi@), A; ()} = {Bi(w), A ()}~
- / {E:(w), D(w)}E(u, v){C(v), 4;(y)}dud®,
R3 JR3

where E(u,v) is a distribution satisfying
E(u,v){D(v),C(w)}d*v = 6(u — w).
R3
16.3. Normal modes. As in Sect. in Lecture 14, we have

1

Q/Rs (E*+ B?) d’r = %/RB(PQ(I::) +wirQ*(k))d’k

1 f 1
e (E x B)d*r = 3 /R (wy ' P?(k) + wip Q% (k))kd’E,

where wg, = |k| and

kE-Pk)=k-Q(k)=0.
Here P(k) and Q(k) satisfy the following Poisson brackets

(R Q0 = (5 - 324 ) sk -1

— transverse Poisson brackets in the Fourier space. This finishes Hamiltonian
formulation of Maxwell’s equations.

PROBLEM 16.38. The abelian group C*(R?, R) of gauge transformations acts on
the phase space .# by f-(E,A) = (E,A + Vf). Prove that this action is Poisson
and find the corresponding moment map (see Problem. Show that the reduced
phase space for the regular value 0 is .#, and the corresponding symplectic structure
is given by transverse Poisson brackets .






Part 3

Special relativity and theory of
gravity



Lecture 17. Special relativity

Maxwell’s equations in vacuum are invariant with respect to the Lorentz
group G = O(1,3) — the isometry group of Minkowski space-time M?* — the
vector space R* with Minkowski metric

ds® = N datde” = Adt? — dx?® — dy® — dz°.

Points in the space-time are thought of as coordinates of events and the Minkowski
distance between two events Py = (ct1,21,y1,21) and Py = (cto, x2, Y2, 22) is
called the interval,

sty = (ta —t1)? — (w2 — 21)® — (2 — 11)® — (22 — 21)°.

17.1. The relativity principle. The Minkowski structure of physical
space-time is a mathematical formulation of Einstein’s relativity principle: “the
speed of light is the same in all inertial frames of reference”. If K and K’ are
two inertial reference frames, then the relativity principle is the statement that
if ds =0 in K then ds’ = 0 in K’. From here it follows that

ds* = a(v)ds'?,

where the constant a(v) can depend only on the absolute value v = |v| of
the relative velocity v of the inertial frames K and K’. Applying this to three
reference frames K, K1, Ko we get

a(v1)
a(v2)

= a(”m),

where v12 = |vg — v1|, which implies that a(v) = 1.

The Einstein relativity principle states that the physical laws are invari-
ant with respect to the Lorentz group G, and replaces the Galilean relativity
principle in Newtonian mechanics.

The orbits of the Lorentz group G in M* have the form

Om :{9:EM4::z:“:z:u:cztzfxznyfZQ:mQ}

for all m? € R and are two-sheeted hyperboloids when m? > 0, one-sheeted

hyperboloids for m? < 0 and a cone c*t? = z2 + y2 + 22 for m = 0, the light
cone (see Fig. 1). Correspondingly, two events z1, 2o € M* are called timelike
if s2, > 0, spacelike if s3, < 0 and lightlike if s12 = 0. It follows from the
transitivity of the G-action on orbits that for two timelike events there is a
Lorentz transformation such that they take place in the same point in space,
P, — P, = (t2 — t1,0,0,0), while for the two spacelike events there is a Lorentz
transformation such that they take place at the same time, P,—P; = (0, z2—x1).
Clearly the space-like events cannot be causally related. Correspondingly, the
points inside the light cone with ¢ > 0 represent the absolute future of the event
at the origin O, while the points inside with ¢ < 0 belong to the absolute past.
The points outside the light cone are not causally related to the origin O and are
absolutely remote relative to O. This means that the concepts “simultaneous”,
“earlier” and “later” are relative for these regions.



LECTURE 17. SPECIAL RELATIVITY 89

FI1GURE 1. Light cone

17.2. The Lorentz group. The Lorenz group G = O(1,3) consists of
4 x 4 matrices A = {A#} satisfying

AfnpA =1,
where n = diag{1, —1, —1, —1}. Equivalently,
ALAG = Nag.
The group G acts linearly on M4, x + 2/ = Ax, where z'# = A*z”. We have
(A9)? = (Ap)* = (A9)® — (Ap)* =1,

so that A8 >1or A8 < —1. We also have det A = +1, so that the Lorentz group
G has four connected components.

The component of the identity SO (1,3) preserves the future and past light
cones and is called the proper orthochronous Lorentz group or restricted Lorentz
group. Other components are obtained from it by applying the space inversion
P = diag{1,—1,—1,—1} or the time reversal T = diag{—1,1,1,1}, or PT.

The restricted Lorentz group SOT(1,3) is six-dimensional connected Lie
group generated rotations in z*z”-planes, 0 < p < v < 3. Spacial rotations
generated a subgroup SO(3), while rotations in z°x%-planes give Lorentz boosts.
Explicitly, the rotation in xz°z!'-plane preserves c*t> — 22, where x = z'. The
corresponding transformation z# — z'# can be written as

x = 2’ cosh ) + ct’ sinh ),
ct = x' sinh ¢ + ct’ cosh .
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Putting
v
1 , -
coshy) = ——, sinhy = ,
v? i v?
1 _
c? c?
where |v| < ¢, we get
/ /
'+ ot U+ Sz
(17.1) m:;, y=1vy, z2=2, t=—5E—.
v? v?
1-— 1— —
2 2

This transformation relates coordinates (¢, x,y, z) in the inertial reference frame
K with the coordinates (¢',z’,y’, z’) in the inertial reference frame K’ moving
relative to K with velocity v along the z-axis. The formula for (¢,2’,y/,2’) in
terms of (¢,z,y, z) is given by replacing v by —v. wge When |v| < ¢ (or in the
limit ¢ — oo) Lorentz boost becomes Galilean transformation in
Lecture 2,

z=x +ot', y=19, 2=2, t="1.

17.3. The Lorentz contraction and time delay. Consider a rod at
rest in the K reference frame and suppose that it parallel to z-axis with the
endpoints x1 and x2. The length of the rod, measured in the K reference frame,
is just Az = zo —x1. To determine the length of the rode in the moving reference
frame K’, we need to find its endpoints | and x5 in K’ at the same time t'.

From ((17.1)) we obtain

) + ot xh + vt
T = —— T2= —F—=
2 2
v v
c c
and
Az’
AQ::72.
v
1--
c

Denoting by lg = Ax the proper length of the rod, the length in a reference
frame where it is at rest, and by [ = Az’ its length in a moving reference frame
K', we obtain the Lorentz contraction

so that [ <.

Next consider the clock which is at rest in the reference frame K’. Let
(t), 2y, ") and (5, 2',y', 2’) be two events occurring at the same point (2/,y’, 2’)
in space in the K’ reference frame, so that the time between these events in K’
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is At =t, — t}. Now it follows from ([17.1)) that in the reference frame K

/ v / / v /
t1+7$ t2+3$
tp = — € 4, =__€C
1 5 2 5
v v
C C

Thus the time that elapses between these two events in the reference frame K
is

/
At D
2

v
s

so that At < At'. This is time dilation in special relativity: the time between

events in a moving frame of reference is always larger than the time in a reference

frame where the events occur at a same point in space. The latter time is called

proper time.

REMARK. Note that notion of being on the same point in space depends
on the reference frame. Thus events (¢,2',v’, z’) and (¢}, 2',y’, 2") occur in the
same point in space in the reference frame K’, but in the reference frame K

' + vt} x' + vt

e i e
v v

1-Z 1- 2
c c

and I # 9.
17.4. Addition of velocities. Consider a particle in a reference frame K

dr
moving with velocity v = e In the reference frame K’ moving relative to K
/

with velocity V' in the x direction velocity of a particle is v’ = d—:/ Using
v
/ !/
dp =XV dr=de, df— ——
V2 V2
== -z
we obtain
dx v+ V
Vg = —F7 = 3
dt " v;’C2V
c
V2
_ay VT F
W T vV
1+ 3
c
V2
!/
dz  Uz\/ 1-— =
Ve = (77 =7+,
dt vV
1+

c2
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When |V] < ¢ we get

! / /
vy =0, +V, vy =vy, v, = v,
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Lecture 18. Relativistic particle

A motion of a particle in M* is described by a world line, the map v :
[t1,t2] — M*, y(t) = z#(t), such that at each t € [t1, 5] the tangent vector v/ (t)
is timelike. Explicitly, v(t) = (ct,r(t)) where v(t) = r(¢) satisfies |[v(t)| < ¢,
where v = |v|. In terms of the natural parameter s on the world line,

2
ds:c\/l—v—zdt,
c

the unit tangent vector is given by

ut = — = ;o uuut =1,

and the acceleration is
B dut

m
ot =
ds’

REMARK. The natural parameter is ¢ times the proper time along the world

line,
NG
s(t):c/t1 1- = dr.

18.1. The principle of the least action. Let a,b € M* be two events
with a timelike interval sﬁb > 0. It is natural to define the action of the a
relativistic particle along the world line 7y : [t1,t2] — M*, v(t1) = a and y(t2) =
b, by the following expression

b
S(v) = —« / ds.
a

Here integration goes over the world line v and « is a constant.
It follows from pseudo-Euclidean structure of the Minkowski space-time that

o _
a’u, = 0.

the integral fab ds takes a maximal value when it is taken along a straight world
line connecting a and b. Indeed, applying a Lorentz transformation, we can
assume that a = (ct}, 2/, y’,2") and b = (cth, 2,3/, 2’), so that along a world line
v

b
/ ds < c(th —t))

and the equality occurs for v being a straight line connection a and b with zero
velocity.
Thus to have a minimum of the action we put a > 0 and write

ta 5
S(v) :/ L(¥'(t))dt, where L = aﬂ_
t C

1
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The quantity « characterizes the particle. In classical mechanics the particle
is characterized by its mass m (see Lecture 1). In the non-relativistic limit ¢ — oo
we should recover the Lagrangian of a free particle mv?/2, and this comparison
gives the relation between o and m. Namely, we have as ¢ — oo

2 2
L=—-ac\/1- % = —ac+ 2= +0(c™).
c c

Omitting the constant term —ac (it does not affect equations of motion) we
obtain o = me. Thus the action of a free relativistic particle is

b

(18.1) S(y) = —mc/ ds,

and the Lagrangian is

2
v
(18.2) L=-mc*/1— =

PROPOSITION 18.7. The he FEuler-Lagrange equations for the action|18.1] are
du*

ds

and describe a particle moving with constant velocity.

Proor. Using ds = y/dz,dz#, we have

b1 dac; dxt
- _ Il Eeiad 23 iz -
0S8 = mc/a 5 ( 5 ddx +5dmu s )

b
= —mc/ utdéx,,
a
, b
= —mc u"dx,|, + mc/

a
b
dut
= mc/a Is oz, ds,

since oz, (a) = dz,(b) = 0. O

dut
Eémﬂds

18.2. Energy-momentum vector. Canonically conjugated momentum
p to the position r of the particle is given by

oL mw
P= %~ 02
1==
The corresponding energy is
2 2 2
éazp~'U—L=L—i-7nc2 1—%— me .
’U2 c ’1)2
1-— 1-—
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At v = 0 we obtain the rest energy &, of the particle,

& = mc>.

At small velocities we obtain

’ITI,’U2

=&+ + O(v*)

which, except for the rest energy, is the classical expression for the kinetic energy
of a free particle. We have

£}2 2 22 2
072:]7 +mc®, p°"=p-p,

so that the corresponding Hamiltonian function is

H = c\/p? + m2c2,

and Hamilton’s equations

o . 0H

P T

give Euler-Lagrange equations from Proposition Introducing the energy-
momentum four vector p* = (& /¢, p), so that p, = (£/c, —p), we have

wo__ 2 2
pup- = m-c .

Note that p = —(p1,p2, p3) and

_aL
P

18.3. Charged particle in the electromagnetic field. Here we con-
sider the interaction of a free relativistic particle of mass m and charge e with
the external electromagnetic field characterized by the potential A = A*dx*,
where A* = (cp, —A). To every world line 7 : [t1,t2] — M* one can associate a
holonomy of the connection d + A along -y, the integral

b
/ A, dzt

along the world line. Thus it is natural to define the action of a particle in the
electromagnetic field as linear combination of the action of a free particle and
the holonomy, and we put

b e b
S(v) = fmc/ ds — E/ A, dzt

12 ,02 e
18.3 = —mcP\/1— =4+ -A-v—ep|dt
(18.3) 5 ®

t c c
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PROPOSITION 18.8. The Fuler-Lagrange equations for the action functional

(118.3)) have the form

dp

- _F
dt ’
where F is the Lorentz force,

F=cE+SvxB.
C

PROOF. We have

b b
0A,, dz# doxt
no_ M v
5/{1 A, dx /a (ax’/ s ox 4—Au—dS )ds
b
_ 0A, dat o, O0A,dz”
_/a (5‘3:" ds o Oxzv ds ozl ) ds

b
dxH
:7/(1 F/L,,%(Sx”ds.

Now using Proposition [I8.7 we obtain
b
du, e dz# y
0S = /a (mcds + CFst) ox"ds,
and the Euler-Lagrange equations take the following invariant form

du, e dxt
-F,— =0, =0,1,2,3.
me ds + ¢ M ds v

Using mcu, = p,, (11.7) and this equation for v = 1,2, 3, we readily obtain

dp

7 :eE—i—gva.

Since mcug = v/m2c? + p?, equation for v = 0 follows from this equation. [

REMARK. In the non-relativistic limit |v| < ¢ Euler-Lagrange equations
turn into

d
md—;}:eE—l—Z'va,

Newton’s equations with the Lorentz force.

The Lagrangian of a charged particle in electromagnetic field is

2
L:—mczy/l—zfz—FZA-v—eap.

The canonically conjugated to 7 momentum of the charged particle, the gener-
alized momentum, is defined by

L
p=9Lb__ My g,
C C

ov ll—i
c
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and the corresponding energy is

oL 2
pooll o L.,

ov 2
fis
c
=/ m2c* + p? + ep.

The Hamiltonian function is obtained from the energy & by replacing p =
P-SAandis given by
c

H = \/m2c4—|- (P— ZA)Q +eg.

Hamilton’s equations of motion

p_ o i 0
- or’ 0P’
together with the definitions
0A
E=-Vo——, B= A
VSO at ? v X b

give Euler-Lagrange equations for a charged particle in the electromagnetic field.
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Lecture 19. Lorentz and Poincaré groups

Recall that the Lorentz group £ = O(1, 3) is a group of linear transformations
xt— Ablz¥ | 4 x 4 matrices A, satisfying

(19.1) A'gA =7, n=diag(l,—1,—1,-1).

The Lorentz group is a six-dimensional Lie group. The Poincaré group ‘B is a
semi-direct product of abelian group R* of translations in M* and the Lorentz

group,
L= xR

The Poincaré group is a ten-dimensional Lie group, the group of isometries
aH s AMx¥ + a* of Minkowski space-time M?. The group multiplication in
is given by

(A1,a1) (A1, a2) = (A1A2, a1 + Aag), A€ L, a1p € R*.
There is an embedding P — GL(5,R) given by

(A, a) — (/8 Cll) .

19.1. Lie algebra of the Lorentz group. Lie algebra so(1,3) of the
Lorentz group is a Lie algebra of 4 x 4 matrices X satisfying
X'n+nX =0,

which is obtained from (20.6)) by setting A = I +tX + O(t?). It is a semi-simple
six-dimensional Lie algebra with the generators M*, 0 < A\ < p < 3, and the
Lie brackets

[M)‘”, Mpo] _ —UAPM#G 4 nf\aMup _ anAp + n"pM)“’.

Here it is understood that M** = 0 (no summation over repeated indices!) and
MM = —M* for A > pu. The generators M** can be realized as the following
4 x 4 matrices
«
(MA)5 = Al — n"63.

Introducing

1
Ji = §€MMM and K; = My;, i=1,2,3,
we obtain the following Lie brackets
[T, J5] = €iji i,
(K, K] = —eijii,
[JZaK]] :eileh Za]:1a273

The generators J;, Jo, Js correspond to the rotations in R? and K, Ko, K3 —
to the Lorentz boosts.
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REMARK. Complexified Lie algebra so(1,3) is isomorphic to so(4,C) with
the generators

1
JE = 5 (i £ VK
satisfying
I I = e O T =g, I =0,

which establishes the Lie algebra isomorphism s0(4) 2 s0(3) @ s0(3). Note that
over R it follows from the Lie group isomorphism

SO(3) x SO(3) = SO(4) /{1, ~1}.

REMARK. Replacing n = diag(1,-1,—1,—-1) by n. = diag(c,—1,—1,—1),
we get generators J; and K¢, and since n_ ' = diag(1/c, —1 — 1, —1) we obtain

1
[Kic, K]C] = _cjfijljl-

Thus in the non-relativistic limit ¢ — oo for the generators J; and fQ =
lim._,~, K{ we obtain the relations

(i, J5] = eijidi,
(i, Kj) = i1 K,
[Ki>Kj] =0,

which characterize the Lie algebra se(3) of the Euclidean group E(3), discussed
in Sect. (2.1) in Lecture 2! Thus we see that Euclidean Lie algebra se(3) is a
contraction of the Lorentz Lie algebra so(1,3).

19.2. Deformation of Euclidean Lie algebra. The Lorentz Lie algebra
s0(1,3) can be considered as a deformation of the Euclidean Le algebra se(3)
with the deformation parameter being the inverse square of the speed of light c.

Recall that a formal deformation of a Lie algebra g with a Lie bracket [, ]
is a Lie algebra g over R|[[t]], a ring of formal power series in variable ¢, with the
Lie bracket

[‘T7y]t = [‘Tay] + tml(xay) + tQmQ(xay) +oee

The Jacobi identity for the bracket [, |; implies that the linear map m; : A%g —
g satisfies

[ml(xay)v Z}+ml([x7y]a Z)+[ml(y7 Z)7I]+m1([ya Z]a I)Jr[ml(z,x),y]+m1([z,x],y) =0

for all x,y,z € g. This is the equation of 2-cocycle in the Shevalley-Eilenberg
complex Hom(A®g, g), where g is considered as a left g-module with respect



to the adjoint action. Namely, for any g-module M the coboundary map dy :
Hom(A*g, M) — Hom(A*+1g, M) is defined by

k1
Orf)(x1, ..., Tpg1) = Z(—l)iﬂmi f(@r, By D)+
i=1

+ Z (*1)i+jf(l‘17...,57i,...,jﬁj,...ll?k+1).

1<i<j<k+1

REMARK. In case when M = C*°(X), where X is a smooth manifold, and
g = Vect(X), the Chevalley-Eilenberg complex Hom(A®g, M) becomes the de
Rham complex Q3 (X,R).

Thus the equation for m; can be written as domq = 0. Coboundaries

mi(z,y) = [z, f(y)] = [y, f(@)] = f([z,9])

give infinitesimally trivial deformations: the linear map Fi(x) = = + tf(x) es-
tablishes the infinitesimal isomorphism

Fy([z,y]e) = [Fe(2), Fi(y)] + O(t?).

Thus nontrivial infinitesimal deformations are in one-to-one correspondence
with the second cohomology group H?(g,g). The Lie algebra is called stable
if this cohomology groups vanishes, which is the case for semi-simple Lie alge-
bras.

For the case g = se¢(3) we have H?(g,g) = R and for the 2-cocycle m;
with the only non-zero values mq (R’i, f(j] = —¢&;;1J, we obtain that the bracket
[z, y]: = [z, y]+tmi(x,y) is a Lie bracket (contribution of the terms proportional
to t? to the Jacobi identity is zero). Putting ¢t = ¢=2 we obtain the Lorentz Lie
algebral

The Lorentz algebra is semi-simple and therefore is stable. To summarize, the
passage from the Newtonian space-time to the Minkowski space-time represents
the deformation from the unstable structure to the stable one, so that special
relativity is natural deformation of Newtonian mechanics.

19.3. Lie algebra of the Poincaré group and Noether integrals.
The Lie algebra p of the Poincaré group ‘B is a ten-dimensional Lie algebra,
a semi-direct sum of the abelian Lie algebra R* and the Lorentz Lie algebra
50(1, 3). Denoting by P* the generators of p corresponding to space-time trans-
lations we obtain the following set of relations:

[P*, P"] =0,
(MM, P7] = 7 Pt — "7 P2,
[M)\[L, Mpo] _ _nApM;LU 4 nAﬂMpp _ n/LaM)\p + nupMAa.

The Lagrangian function of a free relativistic particle

dat dzy

L=—
N T
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is invariant under the action of the Poincaré group. According to the Noether
theorem, there are ten integrals of motion corresponding to the generators P*
and M. The integrals of motion for the abelian Lie algebra R* are

0L
Pu = T oin’
that is,
I mu
po=— =\/p*+m?c?, p=
c 02
1-=

(recall that p,, = (po, —p), see Sect. in Lecture 18). The vector fields on R*
which corresponds to the one-parameter subgroups e*™"” of the Lorentz group
generated by M* are

0
O0x°

X = (M )7 = (ot — o)

Oz’
The corresponding Noether integrals are given by (see Lecture)

JHY — (nauxu o na,ul,u) v

i LA

Thus we obtain components of the total angular momentum

Jp=J%B = o2 —23p? g, = T3 = o%pt —alpd, U, = J2 = 2'p? — pla?
and integrals of motion corresponding to Lorentz boosts
K, = J% = 2% — 2190, K, = JO2 = 2002 _ g2p0 K, = JO — 2003 — g8,

Of course it is easy to verify directly that these functions are integrals of
motion. Thus we have N ‘ A
JO% =cp' —i'p° =0

due to the relation
cp
/p2 ¥ m2c2’

which follows from
p =

PROBLEM 19.39. Prove that H?(g, g) = R for the Euclidean Lie algebra g = se(3).



102

Lecture 20. Hamiltonian interpretation

20.1. Hamiltonian formulation of relativistic particle. The Legendre
transform

(20.1) p=

maps B(0, ¢), the ball of radius ¢ in R*, onto R? and the phase space of a free
relativistic particle of mass m is R. The symplectic form is given by

w=dp Adr = dp* Adx' + dp? A dx® + dp?® A da?

with Darboux coordinateﬁ (p,7) = (p*,p?, p3, b, 22, 23).

It is remarkable that there is a Hamiltonian action of the Poincaré group B
on R6!

Indeed, let .Z be the set of all timelike straight line in R*. Every [ € % has
the form [ = {z + sv, s € R}, where x,v € R* and v is timelike, v*v,, > 0. The
Poincaré group P acts on £ by

(Aya)(l) = {Ax + a + sAv}.

Each timelike ! admits a unique representation ! = {z + sv, s € R} where
= (0,7) and v = (¢,v) with v = |v| < ¢. Thus £ = R? x B(0, ), which is
isomorphic to R® by the Legendre transform v — p, and we obtain the Poincaré
group action on RS.

This action preserves the symplectic form and is Hamiltonian. Specifically,
the action of the Euclidean group E(3) < 8 on RS = R3 xB(0, ¢) is Hamiltonian
with the Hamiltonian functions

Ji = 22p% — 22p3, Jy = aPpt — PP Jy = a'p? — apt

(see Example in Lecture 10) and P; = —p*. Indeed, abelian group of trans-
lations of R? acts on RS by (p,r) — (p,r + a) and the corresponding vector
field X, is given by

of
oz’

Xa(f)(par) f(p,r—a):—ai (p,'f‘).

du u=0
Thus the vector fields X, are Hamiltonian vector fields with Hamiltonian func-
tions —p?, i.e.,

0
Ot

The one-parameter subgroup 7' of time translations acts on .Z by [ — [ +
(2°,0,0,0) with the representative (r — z°v/c,v). Thus T acts on RS by

Xe, = = —J(dp"), i=1,2,3.

0
T
T*—)T’*piop, p—Dp

19Note that in accordance with Sect. in Lecture 18 we have p = (p', p?, p?).
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L)
P . Using that

and the corresponding vector field is X = — ——
p0 Ozt

or

(see Sect. in Lecture 7) we obtain that X = J(dp®), i.e., X is a Hamiltonian
vector with with the Hamiltonian function is p® = y/p? +m2c?, i.e., is 1/c times
the Hamiltonian of a free relativistic particle of mass m.

Next, consider the one-parameter subgroup J#; of & which consists on
Lorentz boosts in 2%z'-planes,

0 0
J(dp) ==— and J(dr)=-——,
(dp) (dr) =~

A()z = (2 coshyp + z' sinhep, 2% sinh ) + 2! cosh ¢, 22, 23), 4 € R.

To find the action of A(¢)) on RS we need to determine how in acts on the
representative (r,v) of a straight line . We have

A()(0,7) = (z* sinh ), z' cosh v, 2%, %),
A(¢)(c,v) = (ccoshtp + v sinh ), esinh o + v! cosh 1, v?, v3),

so that

A)(0) = cv! cosh ¢ + ¢ sinh ¢ cv? cv®
~ \ wlsinhv + ccosht " wvlsinhe + ccoshe)’ vl sinh) + ccosh

and from this we obtain

L cosh v + csinh
A — (4 coshios — 2 sinh oL
W) (m cosh) — " sin wvl sinh ) + ccosh )’
L2 xlv? sinh ¢ 23 xlv3 sinh ¢
vlsinh + ccosh)’ vl sinh ) + ccosh
_ cxt 22 x'v? sinh v 25 x'v3 sinh 4
vlsinh + ccoshi)’ vlsinh + ccosh)’ vlsinh + ccoshy )

Using the relation
cp

/pz + m2c2 ’

v =

we get

AW)(r) =
x'po 9 2'p? sinh v 3 x'p3 sinh v
Lo — - o — - .
plsinh ¢ + po cosh ¢ plsinh ¢ + po cosh v pl sinh ¢ + pg cosh ¢
To obtain the action of the Lorentz boost on the momentum vector p we need

to use equation (20.1). Namely, A(¢)(p) = p is relativistic momentum for the
velocity vector © = A(¢)(v). Denoting © = |0| we get

02 ? v?
1—— = 1-—=.
¢ (vlsinht + ccosh))? ( c? )
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Using
0 me
p = =,
LY
2
we obtain B
- v .
p= — = (p' cosh®) +p°sinh v, p, p%),
v
1— —
2
so that

A(W)(p) = (p' coshyp + p° sinh g, p*, p°).
The vector field corresponding to the #] action on RS is given by
d
X)) = go|  FaCop Ao
$=0

2t (0 5 0 3 0 0 0
—po(p oot Va2 Y ax) ot
Thus we obtained that X is a Hamiltonian vector field with the Hamiltonian
function Ki(p,r) = x'/p? + m2c?, i.e.,

X = J(dK,).

Similarly, we see that vector fields X and X3 for one-parameter subgroups
and %5 are Hamiltonian vector field with the Hamiltonian function Ks(p,r) =
22/p? + m2c? and K3(p,r) = 23/p? + m2c2.

Since Hamiltonian vector fields preserves symplectic form, the Poincaré group
B acts on RS by canonical transformations (symplectomorphisms). The follow-
ing theorem summarizes obtained results.

THEOREM 20.27. The defined above action of the Poincaré group B on the
phase space RS of free relativistic particle with mass m is Hamiltonian. The
Hamiltonian functions corresponding to space-time translations, space rotations
and Lorentz boosts are

Py = V p2 + m2027 P = _Pi, Ji = €ijkxjpk7 K; = xi \% p2 + m202a

1=1,2,3. They satisfy the following Poisson brackets

(20.2) {P;,P;} ={P;, P} ={Ji, Po} =0, {Ji,J;} = —eijui,
(20.3) {Ki, K} = eijiei, {Ji, Kj} = —eij Ky,
(204) {K“ Po} =P, {K“ Pz} = —(5ijP0, {J“PJ} = _Eijkpk-

PRrROOF. Straightforward computation using the Poisson bracket

of o0 of o
{f,g}(p,?“)=£afi—3%£~ O
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REMARK. As in Example in Lecture 10, Poisson brackets between
Hamiltonian functions have the same form as Lie brackets of the corresponding
generators of Poincaré Lie algebra, taken with the negative sign.

Using that cp = 7, the Hamiltonian of a free particle, we obtain from

E02) @),

(20.5) {Ji, 27} = —g42",
(20.6) AKi, o'} = 2 {2},
(20.7) {Pi,2?}y = —6;, i,j=1,2,3.

These Poisson brackets exemplify that RS is a phase space of a relativistic par-
ticle.

20.2. No-interaction theorem. It turns out that relativity principle im-
poses very strong restriction on Hamiltonian systems and implies that the in-
teraction of a relativistic particles is not possible. The precise statement is the
following.

THEOREM 20.28. Consider the Hamiltonian system of of n particles with the
phase space R™, the symplectic form

w= idpa Adrg,

a=1

where r, and p, are coordinates and momenta of the a-th particle, and with the
Hamiltonian function 7. Suppose that (RS, w, 7) is a system of n relativistic
particles, that is, the principle of relativity holds in the following form:

a) There exists a set of ten generators of the Poincaré Lie algebra — ten
functions Py = H/c, P;, J; and K; on R®™ with Poisson brackets
(120.2)—(20.4]).

b) The coordinates of the particles transform correctly under the Poincaré
group — coordinates o, a = 1,...,n, and the generators of the Poincaré

Lie algebra have Poisson brackets (20.5)—(20.7)).

In addition, suppose that the system is non-degenerate,

2
det 4 .% - 5 £ 0
opi,opy,

Then the acceleration of each particle vanishes,

{H#AH 23} =0, a=1,...,n,i=1,23.



Equivalently, there exist Darbouz coordinates p, and v, (the coordinates of the
particles are unchanged) and mg > 0 such that

n
P=-> po
a=1
n
=S e T
a=1
n
Ji = Zﬁijkﬂﬂﬁﬁfﬁ,
a=1
n
K, = foﬂ/ﬁg + m2c2.
a=1

The theorem implies the fundamental fact that relativistic invariant Hamil-
tonian systems should have infinite number of degrees of freedom with an in-
teraction described by a field theory. The examples are the theory of electro-
magnetism and charged relativistic particle interacting with the external elec-
tromagnetic field.

PROBLEM 20.40. Prove the no-interaction theorem for n = 1.
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Lecture 21. General relativity

Newton’s law of universal gravitation states that a particle with mass m; at
point 7 attracts a particle with mo at point 7, with the force

Ty —T
F2 = —Gm1m22713
|72 — 71
and F; = —F5. Obviously the Newton’s law is not a Lorentz invariant and one

needs to find a Lorentz invariant description of gravity.

The first attempﬂ was to include the theory of gravity into special relativity
by assuming that gravitation field is determined by the four potential AE. The
interaction of a relativistic particle of charge e and mass m would be described

by the action
S = —mc/ds— E/A#dac“—m/Afjd;zc“.
c

Considering the case e = 0 and using Afj = (4,0,0,0), one gets a Lorentz
invariant modification of Newton’s law of universal gravitation,
dp Oy muv

i~ Mo PT 0

However, this approach does not give correct answer for the precession of the
perihelion of Mercury.

21.1. Space-time in general relativity. A smooth connected four-manifold
M is called a Lorentzian manifold if it carries a pseudo-Riemannian metric

ds® = g (v)dztdx”

with the signature (4+,—,—,—) at every z € M. The Minkowski space is a
non-compact Lorentzian manifold, and it is easy to see that every non-compact
manifold admits a Lorentzian metric. However, a compact manifold M admits a
Lorentzian metric if and only if its Euler characteristic vanishes. In other words,
a manifold M admits Lorentzian metric if and only if is has nowhere vanishing
vector filed?]

As for the case of Minkowski metric, a tangent vector v € T, M is timelike,
null, or spacelike if, respectively, its length is positive, zero, or negative. A curve
v [ur, ug] — M is timelike if 4/(u) is timelike for all u € [ug,uz] and is causal
if if 4/(u) is timelike or null for all u € [uj,us]. A Lorentzian manifold M is
time-orientable if admits a timelike vector field X € Vec(M) which defines a
time orientation of M. The opposite time orientation is given by the vector field
—X. The time oriented curves are also called future-directed.

20A. Poincaré in 1905.

21Indeed, according to the theorem of Steenrod, a compact manifold admits everywhere
defined, continuous quadratic form of signature k if and only if it admits a continuous field of
tangent k planes.



DEFINITION. A space-time is time-oriented Lorentzian four-manifold M.

DEFINITION. The chronological future I} (x) of x € M is the set of points
that can be reached from x by future-directed timelike curves. The causal future
JM(z) of z € M is the set of points that can be reached from z by future-directed
causal curves and of x itself.

ProprosITION 21.9. If the space-time M is compact, there ezists a closed
timelike curve in M.

PROOF. The familiy {I¥(z)},cn is an open covering of M. By compact-
ness, M = IM(z)) U UI¥(zy). If 21 € I¥(22) U--- UI¥(xy), then
r1 € I_]y(xk) for some 2 < k < m. Then I_]y(xl) - Ij\_/[(xk) and we can omit
IM(zy) from the covering. Thus z; € I} (z1), so that there is a timelike future-
directed curve starting and ending in ;. O

Since this allows for the time travel, we will consider only non-compact
space-times. Recall that a piecewise Cl-curve in M is called inextendible, if
no piecewise C'-reparametrization of the curve can be continuously extended
beyond any of the end points of the parameter interval. A set S is called achronal
if there is no timelike curve which intersects S twice.

DEFINITION. An achronal hypersurface X in M is a Cauchy hypersurface if
every intextendible causal curve intersects X exactly once.

ProrosiTiON 21.10. If a space-time M admits two Cauchy hypersurfaces
Y1 and Yo, then ¥ is diffeomorphic to Xo.

DEFINITION. A space-time M satisfies the causality condition if it does not
contain any closed causal curve. A space-time M satisfies the strong causality
condition if there are no almost closed causal curves. That is, for each x € M and
for each open neighborhood U of x there exists an open neighborhood V' C U
of x such that each causal curve in M starting and ending in V is entirely
contained in U.

Clearly the strong causality condition implies the causality condition.

DEFINITION. A space-time M is globally hyperbolic if it satisfies the strong
causality condition and for all z,y € M the intersection J (z) N JM(y) is
compact.

The following fundamental result holdﬂ It describes the structure of glob-
ally hyperbolic space-times explicitly: they are foliated by smooth spacelike
Cauchy hypersurfaces.

THEOREM 21.29. Let M be a space-time M. The following are equivalent.
(1) M is globally hyperbolic.

(2) There exists a Cauchy hypersurface in M.

22Bernal, A.N., Sanchez, M.: Smoothness of time functions and the metric splitting of
globally hyperbolic spacetimes, Commun. Math. Phys. 257 (2005), 43.
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(3) M is isometric to R x X with the Lorentzian metric Bdt? — -y, where 3
18 a smooth positive function on M, v is is a Riemannian metric on
Y depending smoothly on t € R and each {t} x ¥ is a smooth spacelike
Cauchy hypersurface in M.

COROLLARY 21.30. On every globally hyperbolic space-time M there exists
a smooth function h : M — R whose gradient Vh € Vec(M) is timelike and
future-directed and all level sets of h are spacelike Cauchy hypersurfaces.

Such function & is called a Cauchy time function and its gradient Vh is
defined by
o O D

Oxt Oxv’

where gH¥ is the inverse matrix. In factlﬂ7 for every Cauchy hypersurface ¥ in
M there is a Cauchy time function h such that ¥ = h=1(0).
From physics point of view, a proper time 7 along a timelike curve ~y is

defined by
1 u
7(u) = 7/ ds,
¢ Ju,

where the integration goes over ~. It is natural to consider only those coordi-
nates x* for which z° play sa role of a time variable, and z!, 22, 23 are space
coordinates. Specifically, two events occurring at a same point (z!, 22, 23) in
space should be connected by a timelike curve v(u) = (2°(u), x', 22, 2%). This

implies that gog > 0 and the proper time between these two events is

Vh=g

1
T = E/deo.

To determine the metric dI? = %jdxidxj in space induced by ds? we can-
not simply put dz® = 0 since proper time at different points in space depend
differently on the coordinate z°. However,

2
ds? = goodx? + 2go;da’da’ + gijda:idxj = goo (dmo + gmda:i) — %jdxidmj,
gdoo

where

(21.1) vij = —gig + 299 2123
goo

is a three-dimensional metric tensor. Since ggg > 0 it is a Riemannian metric
tensor. It depends on 2 so that the distance in real space depends on time. The
relation
daz® + &dwi =0
goo

23Bernal, A.N., Sanchez, M.: Further results on the smoothability of Cauchy hypersur-
faces and Cauchy time functions, Lett. Math. Phys. 77 (2006), 183.
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can be integrated over any curve in space to define z° along the curve. This
allows to synchronize the clocks in general relativity along any curve in space.
However, this synchronization depends on a curve connecting two points in
space. Proposition[21.29]asserts that for a globally hyperbolic space-time one can
choose coordinates such that gg; vanish and one can synchronize clocks over all
space. The corresponding coordinates (reference system in physics terminology)
are called syncrhonous.

It is easy to see from (21.1)) that
—ij g% = .

The relations ggp > 0 and +;; is positive-definite 3 x 3 matrix are equivalent to
the
g g goo goir go2
goo > 0, det ( 00 01) <0, det {gi0 911 g12| >0
gio 911
920 G211 g22

and

goo gor Goz Jos
dgio 911 912 913
g20 G921 922 g23
g30 931 g32 9gs3

g = det

Physically these conditions should hold for any choice of coordinates on M which
can be realized with the aid of “physical bodies”.

21.2. Particle in a gravitation field. A gravitational field is a change
of a metric of a space-time and is described by the metric tensor g, (x). The
action of a relativistic particle of mass m in a gravitational field has the same
form as in Lecture ,

_dz*

S(y) = —mc/ds = —mc/ Vouwutuvds, ut = a5
s

In other words, the action functional is —mc times the length functional in
pseudo-Riemannian geometry. Correspondingly, the Euler-Lagrange equations
are the geodesic equations with respect to the natural parameter,

d?a? \ dz* dx¥

ds? + ods ds

where

1 g vo v
(21.2) ), = nga <8gu N dgvs gy >

oxv oxH 0x°

are Christoffel’s symbols. The free particle in a gravitational field moves along
the geodesics.
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21.3. The Riemann tensor. Recall that the metric g, (z) on the space-
time M determines a Levi-Civita connectiorﬁ in the tangent bundle TM. Ex-
plicitly it is given by

V=d+A, where A=A,dx".

0
Here A, (x) are linear operators in T, M which in the basis Dot are given by
x

the matrices

(21.3) (Aw), =T,

0
Thus directional derivative a (1,0)-tensor, a vector field V = v“ﬂ in the
x
direction of a tangent vector u* is given by

A
(V V) = %u“ + F;\wv“u”,
x

while a derivative of a (0, 1)-tensor, a 1-form 6 = a,dx* is

Oa
=3 ‘Zu” —I‘f;l,a)\u”.
x

(V)

Directional derivative of an arbitrary (p, g)-tensor is defined similarly and de-

0
rivative in Dot direction will be denoted by V,. We have

(21.4) Viagu =0 and Vyg"" =0.
The curvature of the connection V is F = dA+ A A A, a 2-form with values

in EndTM. We have
F = Z Fltydos# AN dil?y,

pu<v
where 54 84
F,, =—2— L T B
M 8.73“ 6xy +[ 123 ]

On 2-forms B with values in End T'M the connection V acts by
VB=dB+AANB—-BAA,

which gives the Bianci identity
VF =0

for a curvature 2-form. Equivalently,
V)\Fw, + quuA + VVF)\# =0.

24 A metric connection with no torsion.
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Using (21.3), we obtain the following formula for the Riemann curvature
tensor RY,,, = (F)

p7
ory, or)
A _ pv PI A 1o A o
(21.5) R, = 5 bl — = 4T, 17, ~T2,T7,

The Bianci identity for the Riemann tensor has the form

+V, R

A
(21.6) V.R o

A
o + VR, =0

The Ricci curvature
_ pA
RI‘«V =R pAV

is the trace of the Riemann tensor and is given explicitly by

A A
an,V o aru)\ F)\ o _ 710 F)\
B v + puvs Ao U ov*

(21.7) R, =
It follows from that

A
Fﬂ)\_

1 Ao agua + 99xr0 . 69/0\
2 oz* Oz Ox°

:1 )\gagJA
29" Bn
1 @_alog\/—g

"~ 29 dzk Dzt

Thus the Ricci tensor is symmetric, R, = R,,, and determines a symmetric
bilinear form R,,, dz*dz" on the tangent space.
Finally, the scalar curvature R is the trace of Ricci curvature tensor,

R=g""R,..
Contracting A and v in 7 we get
2V, R,e — VR, =0
and using we obtain
2V, Ry — VR, = 0.
Finally contracting p and p we get
2V, Rl —V,R =0,

or

1
(21.8) v, <Rfj - 2553) =0.
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Lecture 22. Einstein equations — I

22.1. Einstein field equations. In general relativity the Lorentzian met-
ric g, of the space-time M satisfies Finstein equations

1 8rG

R,uz/ - §Q;WR = CTT,LLI/7

where R, is the Ricci curvature, R is the scalar curvature and T}, is the
stress-energy tensor of matter. It is defined as

j_:u,y _ 6§nlat:er
gﬂ

It follows from Bianci identity (21.8]) that Einstein equations imply that neces-
sarily
v, T!'=0, v=0,1,23.

These are conservation laws in general relativity.
Rewriting Einstein equations in the form

1 831G
v Zsh R = 2" m
R 2l,R a I

and taking traces we obtain

8rG

R=-Tr
cd

where 7' = T}!. Thus Einstein equations can be also written as

81G 1

In particular, the empty space Einstein equations reduces to
R, =0.

22.2. Particle in a weak gravitational field. Here we solve the geodesic
equation and Einstein equations in case of a weak gravitational field. Namely,
suppose that M = R* and

1 1
(222) o) = + 02 40 (3 ).

where 7, is Minkowski metric. It is also assumed that these asymptotics can
be differentiated with respect to z*.
Timelike geodesic is slow if i%(t) < ¢, where i = 1,2,3 and t = 2°/c. Since

1 1
dr = —\/guarardt = (1 +0 <2>) dt,
c c
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the equation for slow geodesic takes the form

d?a* \ dzt dz¥ s 1
di2 HYode dt '

c
It follows from (22.2)) that

1 . 19g2 1
FgoO(cg), Too=—3 8£?+O<c)’

and all other Christoffel’s symbols are of order O(1/c?). Putting

goo(x) = 2¢p(2°,7)
we see that up to the order O(1/c¢) the geodesic equation becomes Newton’s
equation
Iy
or’

and the force acting on a particle is F = —m——.

To find the potential ¢ we need to use ETinstein equations. The energy-
momentum tensor of a macroscopic body which consists of slow moving particles
is given by

T = M (z)c*u"u”,
where M (x) is the mass density of the body and w* is a four-velocity vector.
If the macroscopic motion of the body is slow, we can put ©® = 1 and u’ = 0,
1 =1,2,3. Thus the energy-momentum tensor takes the form

TH = Mc*5460.
It follows from formula (21.7)) in Lecture 21 that in the weak gravitational field

R = O(1/c?) and the only nontrivial contribution to Einstein equation (22.1])
is

ArG .. ArM
0 __ _
Ry=—3'T=-5.

ori 1 1 1
o_ YLo0 _ 2
Ry = = +0<63> 3V cp+0<63),

Einstein equations for the weak gravitational field reduce to the Poisson equation

Vip=4rM

Since

for the gravitational potential. Namely,

o(r) = fG/ M(r?'d‘gr'

|r —7r

and in case M(r") = Md(r — r') we obtain Newtonian potential
GM
olr) = -

So that the force acting on a slow particle of mass m in a weak gravitational
force generated by a particle of a mass M is the Newtonian force!
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22.3. Hilbert-Eistein action. On the space .# of smooth Lorentzian
metrics on the space-time M consider Einstein-Hilbert functional

Seit(gu) = / Ry =g d'z,

where R is the scalar curvature of the metric ds? = Juvdztdx” € M, and
v/—gd*x is the corresponding volume form on M. Here integration goes over a
domain D in M (usually bounded by two spacelike Cauchy hypersurfaces) and
it is assumed that all metrics in .# have the same boundary value on dD. In
addition, normal derivatives of g,, on 0D are fixed.

PROPOSITION 22.11. Let u,, = 69, be a tangent vector to .4 at a point
Guv € A and ut = g"*g"Pusp. Then the Gato derivative of the Einstein-
Hilbert functional Sgu in the direction u is given by

1
5uSEH = / (Ruu - 2guuR> ul“/\/ —g d4.§C.
D
Proor. Putting

0SEn =

d
&, Sen(guy +€09,)

we have
0Spy = / (09" Ry + 9" 0R) V—g diz —|—/ Ré(/—g)d*x.
D D

To compute R, (x) we use geodesic normal coordinates at x € M to obtain

op a5,
N T

Since 0T}, is a (1,2) tensor, we get the formula

SRy, = V,0T%, — V,807

po

called Palatini identity. Since V,g*¥ = 0, we obtain from the Palatini identity

9" o R = Vo(g"017,) — Vu(g"0T,),

uv no
so that
9" R, = VW7, where W7 = g"éI'], — g4l .
Since

y 0
F;u/ = 3. log(\/ _9)7

OxH



116

we obtain
OWH
wo— T 7 V44
V. WH = Em + I‘WW
1 0
A O A 7 747

Thus we have

1 1o}
(22.3) g ORy, = ——= (V=g W").

\/—g Ozt
To find 6(y/—g), we use

8(39 =G" =gg"",
ny
so that
ag Nz nz
6g = Wcmu =99"09u = —9 909
iz

and we obtain
1
(22.4) 0(V=9) = =5V =9 909"

Substituting (22.3)—(22.4) into the formula for §S we obtain

SS:/ <RW - 1gl“,R> u“”«/—gd4m+/ 0 (V=g WH)d*z
D 2 D 81‘“

1
= / <R,u,l/ - 2gHVR> UIU‘V /_g d4l'
D

Here we used the Stokes theorem and the condition that 5I‘;}V = 0 on 0D, which
follows from our assumptions on the space .# of Lorentzian metrics on M. [

REMARK. ‘Tautologically’ computing variation of the Einstein-Hilbert ac-
tion we obtain the relation

R _19 po_L JOW=gR) 9 dV—gR)
we g Tt T =g dgr x> g
oz

REMARK. If one fixes only the values of metric tensor g,,, on 0D then 6 Sgu
will contain the boundary term. It is possible to add to the Hilbert-Einstein
functional S the so-called Gibbons-Hawking-York boundary term so that the §.5
is still given by Hilbert’s formula. This boundary term is the integral over 0D
of trace of the second fundamental form over the volume form of the induced
metric on dD.
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Denote

3

Sgravity = _msEH(Q)

The total action of the gravitational field in the presence of a matter with the
density function A(x), depending only on g,, and its first derivatives, is given
by

S = Sgravity + Smatter7

where

1
Smatter = E /A\/ —g d4(E.

Defining symmetric stress-energy tensor by

2c 6Smatter o 2 8(\/ -9 A) _ 0 a(\/ —9 A)
V=g dg /=g | Og" 9z 9g"
Ox

T =

from 65 = 0 we obtain Einstein equations

1 8rG
RHV — iguVR = CTTMV'
When A depends only on g,,,, the formula for the stress-energy tensor sim-

plifies
OA
TH’/ = 2@ — gHVA'

Thus for the electromagnetic field

1 1
A=— FeP — _ oo F g% ko
167 167 20709 9

and we obtain

1 Ao 1 «
T#U:E <F,u)\Fl/Ug +19#VF0‘5F '3> .
Up to the factor 1/4x this is formula (12.3]) in Lecture 12. For a macroscopic
body the energy-momentum tensor is

T;U/ = (p + €)UMUV — PGuv,

where p is the pressure and ¢ is the energy density of the body.

For a complete determination of the distribution and motion of the matter
one must add to Einstein equations equation of the state of the matter, that is,
equation relating the pressure density and temperature. This equation must be
given along with the Einstein equations.
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Lecture 23. Einstein equations — II

23.1. Palatini formalism. In this approach to general relativity we con-
sider the metric tensor g,, on the space-time M and affine torsion-free connec-
tion Ff)u on TM as independent fields (due to the condition Ff;l, = F{}M there
are 50 = 10 + 40 independent functions). Consider the action

Sp:/ g“”RW\/—gd‘Lx,
M

where R, is given by formula (21.7) in Lecture 21,

or? ar,
uy o HA F)\ 0’ F/LAFAV .

R =
V2 oz” w

Its variation with respect to F;w is still given by the Palatini identity
6Rp,1/ = VA(ér,L)J\,V) - VV((SF/,);)\>7

whereas variation of /=g is given by formula (22.4)), in Lecture 22,

1
5(\/ 79) = 75\/ *gg,uu(;glw

Indeed,
20T, 96T
SR, = %I; - X 4§08, TS, + 0,00, — 609, — I'5,6I%,
06T I 96T
124 A o A A o B A o
= SR A TS0, = T5,015, = 15,007, — —-2% + 17,015,

= Va(0T,) = Vi (6T

pv

Denoting R = g"” R, and using Stokes’ theorem we obtain

55P:/ (RHD§gHV+gMV§R#V+R§(\/ )) =g d'x
M Vv

1
= /M <RW — 2gWR> Sghvy/—gdiz + /M g" SR/ —yg d*z

1 w
- /M ((R/w — 2gWR) dg"” + QX 5I‘2y> V—gdz,

where

v 1 a V_ggl“/ 1172 nlod oWV vomM
Q% T/ ( GIn) )‘f'gl ISy — 9" T, — 9",
1 v/ —ggh?
A (\/—9 - 3xg"g : +gp"1“f,fg> .
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Thus equation §Sp = 0 yileds

1
R, — §g,“,R =0 and Q)" =0.
Using
dgh”
Ox?

/- 1
J = *5\/7799#1/

Ox?
and definition of the covariant derivative,

gH”

0
7
Vg oz>

we can rewrite equation Q" = 0 as

+ TN, 97" +T%,9"7,

1 1
(23.1) = Vag" + 59" 90, Vag" + 6% (Vag’“’ - 2g“o‘gapvag""> = 0.

Equation (23.1) has free indices A, p and v. Putting A = v and summing
over v gives

1 1
_vyg!ﬂ’ + igl“jgapvugap +4 (Vagua - 29uaggpvagap> =0,

whence

1
Vl/gl“j = éguugovago-p.

Substituting this formula to (23.1]) gives,
1
(23.2) Vg™ = 59" 900 V9"

Contracting Juv using g,,g"" = 4 yields

9GopVag7? =0,

and putting it back to we finally obtain
Vg’ =0.

This shows that V is the Levi-Civita connection. Thus in the Palatini formalism
equations (21.2)) for the Christoffel’s symbols appear from the principle of the
least action.

23.2. The Schwarzschild solution. For the case of static spherically
symmetric metric in the empty space we consider the following ansatz

ds® = goo(r)Pdt® — g1y (r)dr? — r?(d6? + sin®0 dp?),
where we are using spherical coordinates

x=rcosfcosy, y=ycoslsiny, z=rcosb.
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It describes the gravitational field outside a spherical mass, on the assumption
that the electric charge of the mass and angular momentum of the mass are

all zero. Computing Fi‘”,, where 20 = ct, 2! = r,2%2 = 0,23 = ¢, and solving
R,, = 0 we obtain
a 1
goo(r) =1 — o= @
r
where a is a constant. Thus
d 2
ds? = (1= 2) ar? - = — r2a?,
r 1-2
r

where dQ? is the induced metric on S? c R3. In the limit » — oo we should
have

1 1
Gp = Nuv + ngiy +0 (C?’> s

SO
_ac _ _2MG

2
900 = =
00 r r

where M is the mass of a body creating gravitational field. By definition, the

quantity
2MG
a=—;

c

is called Schwarzschild radius and is denoted by 7%
Thus the Schwarzschild metric is

d 2
Trs —r2d0?

r

ds? = (1 — Ti) Adi? —
1

r

and it is applicable for » > R, the radius of the body. At r = r, we have
event horizon and r < ry describes the black hole, where the time coordinate ¢
becomes spacelike and the radial coordinate r becomes timelike. The singularity
at r = ry is apparent and can be eliminated by the change of coordinates, called
Gullstrand-Painlevé coordinates.

25Tor the Earth rs = 0.8.9 mm, while for the Sun rs = 3 km.
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Lecture 24. Kaluza-Klein theory

121

To unify the electromagnetism and general relativity, T. Kaluza (1921) and
O. Klein (1926) proposed to consider the five-dimensional space-time M =
M x S}, where the fifth dimension in the circle of small radius

r= \/§~10735m
c

— the Plank’s length. The coordinates on M will be denoted by z¢, a =
0,1,2,3,4, where * = 0, so that using 2*, u = 0,1,2,3, for coordinates on
M we have 2# = x#. Consider the following pseudo-Riemannian metric on M

of signature (+,—, —, —, —

),

goo — AoAo  go1 — AoA1  go2 — AoAz goz — AoAs A
g0 — A1Ag g1 — A1Ar g2 — A1As g1z — A1As Ay
Jab = | 920 — Az Ay g21 — Ay Ay 922 — Ay Ay 923 — AyAs Ay
930 — AzAo  g31 — AzA1 g3 — AsAy g3z — AsAz A3
Ay A Ag Az -1
so that

d3? = §apd3°3° = g datde” — (A,da" — d)>.

Also assume that the metric g,,dz"dz” and the 1-form A,dz* on M do not
depend on 6.
We have the following basic facts.

1) For g = det gq, one has g = —g, where g = det g,

2) The inverse matrix §* is given by

gOO 901 g02 gO3 AO
910 gl 1 gl2 913 Al
920 921 922 g23 A2
g30 g31 932 933 A3
A0 AT AT A3 14 ALAR

3) Under the change of variables x — 2’ = F(z), 6 — 6 4+ \(x) we have
Ay Al + 0, so that U(1)-gauge invariance is a relativity in the
fifth dimension!



122

24.1. Geodesic equation on M. From formulas for Christoffel’s symbols
we get for metric gqp:

. 1
Ftlﬁ =lag+ §gHU(AaFUB + ABFaa)a

fgél = Egua-FOéo'v

~ 1 0A 0A

4 _ o 8
Faﬂ = AHFZB — 5 (AH(AQFB# +A6FD¢H) - W - agja> 3
rt, = —A Fop,

~Z4 == 0

As usual, here

0Ap  0Aq
or>  OzP’
For the free particle of mass m on the five-dimensional space-time M we

have the action
dz® dxb
S ds =
S mce / s / Jab—— 7 d~

Fop =

T a

- d
Using the formulas for Christoffel’s symbols I'f. and putting u® = ;~ , we get
5

the following equations

dut
;g + Fgﬁuo‘uﬁ = —g" Ao F,puu’ — g" Foou®u®, p1=0,1,2,3,
and
du* 0A
7 + A I‘aﬁu uP = —AF utut + AUAaFgc,uau’B + Wguauﬁ.
Multiplying first equations by A,, and adding them to the second equation yields
du?* dut 3Aa wCuP —
ds TR
so that p
I —(ut = A ut) = 0.
Thus u* — A, u* = £ is constant and the first equation takes the form

du*
ds

+ Fgﬁuauﬁ = —EgMFu®.
Since 1 = g utu” + (ut — A,u”)? we have g, utu’ =1— &2 ie.,

ds m

ds
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Whence
dzt L ds ut

F T by
and we obtain

d?zt u dz®daf I3 o

n dz® da” & dz®
ds? B ds ds

\/@g FQU%

(&
vm2ct + e2

we see that the right hand side becomes

Putting

mc? g Fao ds

Thus we get the equation of a free charged particle moving in external gravita-
tional and magnetic fields, obtained from the action

—mc/ds— Z/Auda?“.

This is the so-called first Kaluza miracle.
24.2. Einstein-Hilbert action on M. By a direct and lengthy compu-
tation on gets
. 1
R=R+ EFWFWv

which is Kaluza’s second miracle. The pure gravity action on (M) is proportional
to the Einstein-Hilbert action,

3 ~
Spp = —— /R\/éd%z«,
M

167G

where G is the gravitational constant M. Putting G = 2nrG, replacing A, by
kA, where k = 2v/G/c?, and trivially integrating over S} we finally obtain

3 1
= R+ —F, F*" | /=gdz.
Sx 167rG/M( T Tome ) g

This is the desired unification of general relativity and electromagnetism. It
yields Einstein equations
1 8rG

R,u,l/ - iguVR = CTT/,LV

with the energy-momentum tensor of the electromagnetic field on M,

1

Ao
T/ux = E (_FMAFIJUQ +

1

4ngFaBFaﬁ> )
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and Maxwell’s equations
V,F* =0

on M in the presence of the gravitation field g,,. Thus the Kaluze-Klein pure
gravity action in the five-dimensional space M naturally produces Einstein-
Hilbert-Maxwell action on the space-time M.

24.3. Criticism of the Kaluza-Klein theory. Though mathematically
elegant, Kaluza-Klein theory gives unrealistic predictions for the masses of par-
ticles. Namely, consider the massless scalar field ®(x,0) on M satisfying the
five-dimensional wave equation

82
(54_892>©:07

where g,,,, is the Minkowski metric. Corresponding Fourier coefficients

o0
in6

O(z,0) = Z on(x)e

n=—oo

satisfy Klein-Gordon equations
(D4 +m2)p, =0

with masses

However, these masses are very large! Thus assuming that n = 1 gives electron,
the obtained mass would m. ~ 3-103° MeV, while the actual electron mass is
only 0.5 MeV.

Geometrically one can consider general Kaluza-Klein metrics

3 ,— DA A, DA
Gun(.0) = (g" a4, @ )

where ®(x,0) is a function on M, and consider the corresponding pure gravity
Einstein-Hilbert action. However, even assuming that the metric g, does not
depend on 6, setting ® = 1 in the field equations is not the same as setting first
® =1 and consider the resulting field equations, which unify general relativity
and electromagnetism. In other words, this unification is obtained considered a
special subvariety of metrics on M which have ® = 1.
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