1) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be power series with R = 1. A point z_0 on the unit circle is called regular if there exists a disk $D(\rho, r)$ with the center at some point ρ , $|\rho| < 1$, and radius r > 0 such that $z_0 \in D(\rho, r)$ and corresponding power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(\rho)}{n!} (z - \rho)^n$$

absolutely converges on $D(\rho, r)$. In particular, $\lim_{z\to z_0^-} f(z)$ exists. Otherwise, z_0 is called singular point.

- (a) Prove that if all coefficients a_n are real and the series $\sum_{n=0}^{\infty} a_n$ diverges to infinity, then z=1 is a singular point for f.
- (b) Show by example that weaker condition $|a_0 + \cdots + a_n| \to \infty$ does not guarantee that z = 1 is a singular point.
- (c) Prove that if $a_n \geq 0$ for all n then z = 1 is a singular point.
- 2) Prove that for function $f(z) = \sum_{n=0}^{\infty} z^{2^n}$ every point on the unit circle is singular.
- 3) Suppose that f(z) is analytic and satisfies the condition $|f^2(z) 1| < 1$ in the region Ω . Prove that either $\Re f(z) > 0$ or $\Re f(z) < 0$ throughout Ω .
- 4) Let $S(z) = \frac{az+b}{cz+d}$ be a Möbius transformation with real coefficients normalized such that ad bc = 1. Prove that if S not the identity, then
 - (a) S is elliptic iff -2 < a + d < 2
 - (b) S is parabolic iff $a + d = \pm 2$
 - (c) S is hyperbolic iff $(a+d)^2 > 4$.
- 5) Express cross ratios corresponding to all 24 permutations of four points z_1, z_2, z_3, z_4 in terms of $\lambda = (z_1, z_2, z_3, z_4)$.
- 6) Let z_1, z_2, z_3, z_4 be consecutive points on the circle. Prove that $|z_1-z_3||z_2-z_4|=|z_1-z_2||z_3-z_4|+|z_2-z_3||z_1-z_4|$

and interpret the result geometrically.

- 7) Find the most general Möbius transformation of the circle |z| = R into itself.
- 8) Map the region between |z| = 1 and |z 1/2| = 1/2 conformally onto the half plane.
- 9) Map conformally the complement of the arc |z| = 1, $\Im z \geq 0$ on the outside of the unit circle so that the points ∞ correspond to each other.