MAT 534: HOMEWORK 1

DUE THU, SEPT.

Problems marked by asterisk (*) are optional. Notation:

 \mathbb{Z} – integer numbers

 $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ – congruence classes modulo n (considered as a group with respect to addition) For some problems might need the following basic result from number theory (we will prove it later): an integer k has a multiplicative inverse modulo n if and only if k, n are relatively prime.

- 1. Construct the isomorphism between the dihedral group D_6 (all symmetries of equilateral triangle) and the symmetric group S_3
- **2.** Let D_{2n} be the group of all symmetries of a regular n-gon. Let $r \in D_{2n}$ be the counterclockwise rotation by $2\pi/n$ and let $s \in D_{2n}$ be a reflection around one of the lines of symmetry. Prove the following results:
 - (a) $r^n = e$ (where e is the group unit)
 - (b) $s^2 = e$
 - (c) $rs = sr^{-1}$
 - (d) Any reflection $s' \in D_{2r}$ n be written in the form $s' = r^k s r^{-k}$, for some $k \in \mathbb{Z}$
- **3.** Construct a bijection between the coset space $S_n/S_k \times S_{n-k}$ and the set B of all sequences of k zeroes and n-k ones. (Hint: applying an element of S_n to the sequence 00...0111...1 produces a new sequence).
- **4.** Prove that any subgroup of index 2 is normal.
- **5.** Describe all subgroups of symmetric group S_3 . For each of them, say whether it is normal; if it is, describe the quotient.
- **6.** Prove that any subgroup in \mathbb{Z} must be of the form $H = a \cdot \mathbb{Z}$ for some $a \in \mathbb{Z}$ (hint: choose the smallest positive number in H).
- 7. Let p be a prime number and \mathbb{Z}_p^{\times} the group of all non-zero remainders modulo p (with respect to multiplication). Deduce from Lagrange theorem that for any integer a not divisible by p, we have $a^{p-1} \equiv 1 \mod p$.
- **8.** (a) Prove that an element $k \in \mathbb{Z}_n$ is a generator of \mathbb{Z}_n if and only if k is relatively prime with n.
 - (b) A complex number ζ is called a primitive root of unity of order n if $\zeta^n = 1$, but for all $k = 1, 2, \dots n 1$, we have $\zeta^k \neq 1$. How many primitive roots of unity of order 15 are there? Describe them all.