EXTRA PROBLEMS FOR HOMEWORK 2

- 1. Determine whether the Fourier series of the following functions converge uniformly or not. Sketch each function.
 - (a) $f(x) = e^x$, -1 < x < 1;
 - (b) $f(x) = x + |x|, -\pi < x < \pi;$
 - (c) $f(x) = 1 + 2x 2x^3, -1 < x < 1.$
- 2. The Fourier series of the function

$$f(x) = \frac{\sin x}{x}, \quad -\pi < x < \pi,$$

converges at every point. To what value does the series converge at x = 0? at $x = \pi$? The convergence is uniform. Why?

3. Let a_n and b_n be Fourier coefficients of the function f(x), $-\pi < x < \pi$. If a_n and b_n tend to zero as n tends to infinity, show that the series

$$a_0 + \sum_{n=1}^{\infty} e^{-\alpha n} (a_n \cos nx + b_n \sin nx),$$

where $\alpha > 0$, converges uniformly.