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1. Scattering theory

In 1951–1956, when L. D. Faddeev was studying at university, quantum mechan-
ics was still regarded as a new field. Indeed, only 25 years had passed since the
Schrödinger equation was published in 1926! The remarkable achievements of quan-
tum mechanics and quantum field theory (its unification with the special theory of
relativity) attracted both theoretical physicists and mathematicians. A fundamen-
tal role in the description of quantum phenomena is played by the scattering theory,
which studies changes in the quantum particle state as it passes through a potential
barrier. The mathematical formalism uses a Hamiltonian operator (a Hamiltonian)
acting in the Hilbert space L2(R3),

H = H0 + V, (1.1)
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where H0 = −∆ is the Hamiltonian of a free particle,1 ∆ is the Laplace oper-
ator in R3, and V is the operator of multiplication in L2(R3) by a measurable
function v(x) which decays appropriately as |x| → ∞. For example, it suffices to
require that v(x) be bounded and

v(x) = O(|x|−3−ε) as |x| → ∞. (1.2)

Specifically, the evolution of the particle is described by the Schrödinger equation

i
∂ψ

∂t
= Hψ (1.3)

for the wave function ψ(t) ∈ L2(R3). If (1.2) holds, then there are solutions

ψ±(t) = e−itH0ψ±

of the free Schrödinger equation such that

∥ψ(t)− ψ±(t)∥ → 0 as t→ ±∞.

The passage from a free motion as t → −∞ to a free motion as t → +∞ is given
by the scattering operator

ψ+ = Sψ−.

The operator S is unitary on L2(R3) and commutes with a free-particle Hamilto-
nian H0. More precisely,

S = U∗+U−,

where the wave operators U± are defined by

U± = lim
t→±∞

eitHe−itH0 . (1.4)

The limits exist in the strong operator topology. The wave operators intertwine
the free Hamiltonian and the perturbed Hamiltonian:

HU± = U±H0. (1.5)

In the so-called stationary approach to the scattering theory, S is defined as an
integral operator with kernel obtained from a solution of the stationary Schrödinger
equation

−∆ψ(x) + v(x)ψ(x) = k2ψ(x). (1.6)

Namely, for all k ∈ R3, the equation (1.6) with k = |k| has solutions u(±)(x,k)
satisfying the so-called radiation conditions as r = |x| → ∞:

u(±)(x,k) = ei(k,x) + f (±)(k,ω,n)
e±ikr

r
+ o

(
1
r

)
.

1For convenience we let the Planck constant ~ be equal to 1 and the mass of a particle to 1/2.
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Here k = |k|, k = kω, and x = rn, where ω and n are in S2 (the two-dimensional
sphere in R3) and ( · , · ) is the standard scalar product in R3. We write F for the
Fourier transform operator on L2(R3),

ψ̂(k) =
1

(2π)3/2

∫
R3
e−i(k,x)ψ(x) d3x,

which switches between the position and momentum representations. In the
momentum representation, the scattering operator takes the form Ŝ = F−1SF
and is given explicitly by

(Ŝψ)(k) = ψ(k) +
i

2π

∫
R3
δ(k2 − l2)f(k, l)ψ(l) d3l,

where

δ(k2 − l2) =
δ(k − l)

2k
, f(k, l) = f (+)(k,ω,ω′), k = kω, l = kω′.

In physics, the operator Ŝ is referred to as the S-matrix, and the function f(k, l)
(defined for |k| = |l|) as the scattering amplitude. The S-matrix is a fundamental
object in quantum mechanics and quantum field theory.

1.1. First papers. Scattering theory was Faddeev’s first love. It all began at
a student seminar organized by O. A. Ladyzhenskaya and devoted to the monograph
Mathematical aspects of the quantum theory of fields [96] by Friedrichs. Faddeev
was the main speaker and dreamed of being able in the future to get a serious
hold on quantum field theory, which describes quantum systems with infinitely
many degrees of freedom. For its study one first needs to understand systems
with finitely many degrees of freedom, that is, quantum mechanics. In his first
paper [1],2 published in 1956, Faddeev proved that the Fourier transform v̂(p) of
a potential v(x) is a limit of the scattering amplitude f(k,ω,ω′) as k →∞ at fixed
k(ω−ω′) = p. Hence, in this case the potential v(x) is uniquely determined by its
S-matrix.

In the 1950s, the mathematical theory of operators arising in quantum mechan-
ics was an inspiration and a source of important problems for the spectral theory of
differential operators. Achievements of the Soviet mathematical school, which was
brilliantly represented by M. Sh. Birman, I. M. Gelfand, M.G. Krein, B. M. Levi-
tan, V. A. Marchenko, A.Ya. Povzner, and others, were second to none. At that
time one major and difficult problem was development of the spectral theory for
a multidimensional Schrödinger operator with decaying potential that describes the
scattering of a quantum particle on a potential centre. The problem of two inter-
acting particles reduces to this case after separation of the centre of mass. The
spectral theory of the Schrödinger operator for three interacting particles was at
that time an insoluble problem.

In 1955, Povzner was the first to prove the eigenfunction expansion theorem
for a three-dimensional Schrödinger operator3 with compactly supported potential.

2Refereed by Norman Levinson in Mathematical Reviews.
3Multidimensional Schrödinger operators can be studied in the same way.
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In his paper [2] of 1957,4 Faddeev substantially developed Povzner’s method and
proved the eigenfunction expansion theorem in the case when the potential v(x)
and its gradient ∇v(x) satisfy (1.2). He also proved an equiconvergence theorem:
the eigenfunction expansion converges at a point x ∈ R3 if the Fourier integral
expansion converges at this point.

In [4], published in a physics journal, Faddeev proposed an elegant and rigorous
proof of the analytic properties of the zero-angle scattering amplitude5 f(k,ω,ω)
as a function of the energy E = k2. Namely, when the potential v(x) satisfies (1.2),
he proved that the function

f(E) = f(
√
E ,ω,ω)

with fixed ω ∈ S2 extends analytically to the complex plane C slit along the positive
real semiaxis, except for finitely many points El on the negative real semiaxis, where
it can have simple poles with real residues dl. This gives a rigorous mathematical
proof of the so-called dispersion relation

f(E) = f(∞) +
1
π

∫ ∞

0

Im f(E′)
E − E′

dE′ +
n∑

l=1

dl

E − El
, (1.7)

where E ∈ C \ [0,∞) and f(∞) = − 1
4π

∫
R3
v(x) d3x. This elegant argument was

reproduced in the famous textbook Quantum mechanics: non-relativistic theory by
Landau and Lifshitz [109] (Chap. XVII, § 130) with a footnote: “The idea of this
proof is due to L.D. Faddeev (1958).”

1.2. The Friedrichs model. In [6], Ladyzhenskaya and Faddeev studied the
Friedrichs model in the perturbation theory of the continuous spectrum. The
method developed in [6] and improved in [15] was successfully used by Faddeev
in various problems of scattering theory, from three-particle scattering theory [13]
to the spectral theory of automorphic functions [19]!

Thus, let H = L2(I, h) be the space of functions f(x) on an interval I ⊆ R with
values in an auxiliary Hilbert space h such that ∥f(x)∥h is square-integrable on I,
and let H0 be the operator of multiplication by x.6 Write V for an integral operator
whose kernel v(x, y) is compact in h and satisfies the realness condition

v(x, y) = v∗(y, x) for all x, y ∈ I

and certain boundedness and Hölder conditions, which take the following form in
the case when I = R.

Condition Aθ0 (boundedness).

∥v(x, y)∥h 6 K(1 + |x|+ |y|)−θ0 , θ0 >
1
2
.

4Refereed by the famous analyst Lars G̊arding in Mathematical Reviews!
5Also known as the forward scattering amplitude.
6Here we use the notation of [15].
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Condition Bµ0 (smoothness).

∥v(x+ h, y + k)− v(x, y)∥h 6 K(1 + |x|+ |y|)−θ0(|h|µ0 + |k|µ0), µ0 >
1
2
.

Faddeev developed the following method for studying the perturbed operator7

H = H0 + V.

Consider the second Hilbert identity

R(λ)−R0(λ) = R0(λ)V R(λ), λ ∈ C \ I, (1.8)

for the resolvents

R(λ) = (H − λI)−1 and R0(λ) = (H0 − λI)−1

of the self-adjoint operators H and H0. This equation is unusable for a study of
the resolvent R(λ) since the operator R0(λ) is non-compact. But if we put

T (λ) = V − V R(λ)V, (1.9)

then
R(λ) = R0(λ)−R0(λ)T (λ)R0(λ) (1.10)

and the operator T (λ) satisfies the equation

T (λ) = V − V R0(λ)T (λ), λ ∈ C \ I. (1.11)

In [15] this equation was proved to be Fredholm in the Banach space B(θ, µ) of
Hölder functions f(x) with the norm

∥f∥θ,µ = sup
x∈I, |h|61

(1 + |x|)θ

[
|f(x)|+ |f(x+ h)− f(x)|

|h|µ

]
, µ, θ > 0,

for all θ < θ0 and µ < µ0. This remarkable result enables one to establish that
H has finitely many eigenvalues of finite multiplicity, to describe its eigenfunctions
of the continuous spectrum, and to prove the corresponding expansion theorem.
The proof of the compactness of the operator V R0(λ) uses the following beautiful
line of argument.8 One first proves that this operator is bounded and acts from
B(θ, µ) to B(θ′, µ′), where θ′ > θ and µ′ > µ. The space B(θ′, µ′) is naturally
embedded in B(θ, µ), and this embedding maps weakly convergent sequences to
strongly convergent ones.

7An example of the operator H is the Schrödinger operator (1.6) in the momentum represen-
tation. The variable x in the Friedrichs model corresponds to the momentum variable k in the
other sections.

8Faddeev said: “In this paper, O.A. (Ladyzhenskaya) helped me by stating a splendid com-
pactness criterion in the space of Hölder functions”.
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1.3. Potentials of zero radius. In the early 1960s Faddeev became seriously
interested in quantum field theory (QFT), which was in a somewhat chaotic state
after the discovery of the ‘zero-charge’ paradox by Landau and Pomeranchuk.

Both the beauty and the difficulty of QFT stem from the fact that it deals with
local interactions. Faddeev always tried to find a simple model for understanding
complicated phenomena. In the joint paper [11] with Berezin, he chose a model
given by the Schrödinger equation (1.6) in R3 with Dirac’s δ-function as the poten-
tial:

−∆ψ(x) + εδ(x)ψ = Eψ(x). (1.12)

Clearly, the potential δ(x) does not belong to L2(R3). Hence, the suggestion in [11]
was to regularize the problem by studying an equation

−∆ψ(x) + ε(N)
∫

R3
uN (x,y)ψ(y) d3y = Eψ(x), (1.13)

where
uN (x,y) → δ(x)δ(y) as N →∞

and ε(N) is allowed to depend on N for self-consistency, as will be seen below. In
the language of QFT, the parameter N is called the ultraviolet cut-off, and ε(N)
is called the bare coupling constant. The equation (1.13) determines a well-defined
self-adjoint operator in L2(R3).

Passing to the Fourier transform and choosing a piecewise-constant approxima-
tion for the kernel uN (x,y), one can solve the spectral problem (1.13) quite easily
using the methods of the Friedrichs model (see § 1.2). This yields the following
remarkable result. For the wave function to have a non-trivial limit as N → ∞,
one should take

ε(N) =
8π3α

1− 4παN
, (1.14)

where α is an arbitrary constant, which in QFT would be called the physical or
renormalized coupling constant. We shall return to the physics interpretation of
this formula soon, but first we explain its mathematical meaning.

For a mathematician, it is natural to begin the study of (1.12) by considering the
closed symmetric operator −∆ in L2(R3), defined on smooth compactly supported
functions on R3 vanishing at the point x = 0. This operator has deficiency indices
(1, 1) and, therefore, admits a one-parameter family of self-adjoint extensions. The
parameter α labels this family of operators Hα, and the kernel of the resolvent
(Hα − zI)−1 takes the following form in the momentum representation:

R(p, q, z) =
δ(p− q)
p2 − z

− α

1 + 2π2iα
√
z sign Im

√
z

1
(p2 − z)(q2 − z)

. (1.15)

In the case of a two-dimensional Schrödinger operator, reconsidered by Faddeev
after many years [76], the renormalized coupling constant depends logarithmically
on the cut-off parameter N , while in the one-dimensional case, the Schrödinger
equation (1.12) describes an infinite potential barrier and the corresponding Schrö-
dinger operator is self-adjoint. In dimension n > 4 the operator −∆ in L2(Rn),
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defined on smooth compactly supported functions on Rn vanishing at the point
x = 0, is essentially self-adjoint. This corresponds to ε = 0 in (1.12) and is related
to Sobolev’s embedding theorems.

We now return to the interpretation of (1.14) by physicists. To obtain an exten-
sion with a given coupling constant α, one should let N tend to infinity and ε(N)
to zero in a compatible way. This suggests another approach to this problem using
perturbation theory with respect to ε. Such an approach is indeed possible and
(1.14) is then obtained by summing a geometric series. Remarkably, this is in
accordance with the removal of the ultraviolet cut-off and letting N →∞.

In the modern language, a field theory is said to be asymptotically free if it
admits a self-consistent procedure similar to that described above. Examples of
asymptotically free field theories are non-Abelian gauge theories which will be dis-
cussed later. Their ultraviolet behaviour is diametrically opposite to the paradoxical
behaviour discovered by Landau and Pomeranchuk in the Abelian case (of quantum
electrodynamics).

1.4. Three-body problem. Faddeev’s best-known result in scattering theory is
his solution of the quantum-mechanical scattering problem for three particles. It
was announced in [8], [10], and [12] and discussed in detail in [13]. Consider the
Schrödinger operator for three pairwise-interacting particles:

H3 = H0 + V12 + V23 + V13

in the Hilbert space L2(R9), where

H0 = − 1
2m1

∆1 −
1

2m2
∆2 −

1
2m3

∆3

is the free Hamiltonian and the Vij are the operators of multiplication by potentials
vij(xi − xj), which are assumed to be smooth and sufficiently rapidly decaying at
infinity. It is also assumed that the corresponding two-particle operators

H2 = − 1
2m1

∆1 −
1

2m2
∆2 + V12 and so on

in L2(R6) have only one discrete-spectrum point and no virtual levels at the lower
edge of the continuous spectrum.9

The three-body problem is difficult for many reasons, of which we mention the
two most significant. First, the total potential does not decrease along some direc-
tions in the nine-dimensional configuration space R9 (for example, x1−x2 = const).
Second, two of the three particles can form a bound state in the process of scat-
tering (conservation of energy prohibits this in the two-particle case). In mathe-
matical terms, this means that the continuous spectrum of H3 differs substantially
from that of the free three-particle Hamiltonian. Clearly, these two difficulties are
closely related. Overcoming them is the main content of Faddeev’s work.

As in the Friedrichs model [4], [15], Faddeev uses the Fourier transform (or the
momentum representation), where the free Hamiltonians of particles are the oper-
ators of multiplication by k2

i /(2mi), and the potentials Vij are given by integral
9The first restriction is inessential and can easily be omitted.
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operators whose kernels, to be described below, contain δ-functions in some vari-
ables. The two-particle problem is reduced by separation of the centre of mass to
a study of the operator

h = h0 + v, h0 =
k2

2m
,

in L2(R3) (here and in what follows we use the notation from [13]).
In the three-particle case, Faddeev separates the centre of mass and considers the

coordinates conjugate to the familiar Jacobi coordinates in the three-body problem.
This yields three pairs of variables:

k23,p1, k31,p2, and k12,p3,

each of which can be used independently. It is convenient to use the notation

kα,pα, where α = 23, 31, 12, and p23 = p1, p31 = p2, p12 = p3.

The three-particle Hamiltonian H3 is reduced to the following operator acting
in L2(R6):

H = H0 + V23 + V31 + V12,

where for each α = 23, 31, 12 we have

H0 =
k2

α

2mα
+

p2
α

2nα

and mα and nα are simply expressed in terms of the masses m1, m2, and m3 of the
individual particles. The operators Vα are integral operators with the kernels

Vα(kα,pα; k′α,p
′
α) = vα(kα − k′α)δ(pα − p′α), α = 23, 31, 12.

The presence of the δ-function of pα reflects a difficulty (already mentioned above)
of a three-particle problem.

As in the Friedrichs model, the functions vα(k) defining the difference-type ker-
nels Vα are subject to the realness condition

vα(−k) = vα(k)

and the decay and smoothness conditions Aθ0 and Bµ0 . When θ0 > 1/2, these con-
ditions coincide with the hypotheses of the well-known Kato theorem, and therefore
the operators h and H are self-adjoint and their resolvents

r(z) = (h− zI)−1 and R(z) = (H − zI)−1

are bounded operators for z ∈ C \ R. Faddeev’s main tool is a study of the resol-
vent R(z), whose behaviour near R determines the spectral properties of the oper-
ator.

The two-particle resolvent r(z) is studied following the scheme of the Friedrichs
model given above and using an operator t(z) which is defined by (1.9) and satis-
fies (1.11).10 We now pass to the three-particle problem and consider the Hilbert
identity

R(z)−R0(z) = R0(z)VR(z), (1.16)
10The improvements in [15] in comparison with [4] stem precisely from Faddeev’s work in [13]!
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where
V = V23 + V13 + V12 and R0(z) = (H0 − zI)−1.

As in § 1.2, the operator
T (z) = V − VR(z)V

satisfies the equation
T (z) = V − VR0(z)T (z) (1.17)

and we have
R(z) = R0(z)−R0(z)T (z)R0(z). (1.18)

However, in contrast to (1.11), this equation cannot be used to investigate the oper-
ator T (z). The thing is that, for example, the kernel of the operator V23R0(z) con-
tains a δ-function and this singularity persists under iterations. At the same time,
the singularity disappears in the kernel of the operator product V23R0(z)V13R0(z).
This observation led Faddeev to his discovery of the class of integral equations bear-
ing his name!

Namely, we put
Mαβ(z) = δαβVα − VαR(z)Vβ ,

so that
T (z) =

∑
α,β

Mαβ(z).

The following system of equations for the operators Mαβ(z) is obtained from (1.16):

Mαβ(z) = δα,βVα − VαR0(z)
∑

γ

Mγβ(z). (1.19)

The system (1.19) is no better than (1.11): its iterations still give rise to kernels
containing δ-functions. To remedy this, Faddeev proposes an approach that should
be learned by everybody working seriously in quantum mechanics! Namely, he
suggests using the knowledge already obtained about the two-particle problem and
summing up these unpleasant terms, which are completely of two-particle origin.
More precisely, we transfer the terms containing Mαβ from the right-hand side
of (1.19) to the left-hand side:

(I + VαR0(z))Mαβ(z) = δαβVα − VαR0(z)
∑
γ ̸=α

Mγβ(z) (1.20)

and invert the operators (I + VαR0(z)). To do this, we introduce operators Tα(z)
with kernels

tα

(
kα,k

′
α, z −

p2
α

2nα

)
δ(pα − p′α),

where tα(kα,k
′
α, z) is the kernel of the operator of the two-particle problem with

potential vα(k) and mass mα. The operators Tα(z) satisfy the equations

Tα(z) = Vα − VαR0(z)Tα(z),
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whence Tα(z) = (I + VαR0(z))−1Vα and we obtain

Mαβ(z) = δαβTα(z)− Tα(z)R0(z)
∑
γ ̸=α

Mγβ(z). (1.21)

These are the famous Faddeev equations for the quantum three-particle system!
The equations (1.21) are the main tool for studying the resolvent R(z), which

is constructed from their solutions by the simple formulae (1.17) and (1.18). Since
the kernels of the constant terms in (1.21) contain δ-functions, one should con-
sider the operators

Wαβ(z) = Mαβ(z)− δαβTα(z),

which satisfy the same equations with other constant terms:

Wαβ(z) = W
(0)
αβ (z)− Tα(z)R0(z)

∑
γ ̸=α

Wγβ(z), (1.22)

where
W (0)

αα (z) = 0, W
(0)
αβ (z) = −Tα(z)R0(z)Tβ(z). (1.23)

Further analysis of these equations is incredibly complicated. We can only admire
Faddeev’s technical power revealed in his sophisticated calculations and clever esti-
mations of various singular integrals.

Thus, define a family of operators Ã(z) acting on triples of functions χ(z) =
{χ23(k,p; z), χ31(k,p; z), χ12(k,p; z)} by the formula

(Ã(z)χ(z))α = −Tα(z)R0(z)
∑
γ ̸=α

χγ(z).

Separate the contribution of the discrete spectrum to the kernels tα(k,k′, z):

tα(k,k′, z) =
ϕα(k)ϕα(k′)
z + κ2

α

+ t̂α(k,k′, z),

where the ϕα(kα) are the normalized eigenfunctions of the corresponding two-part-
icle operators with eigenvalues −κ2

α. The kernels t̂α(k,k′, z) are analytic in the
whole of the z-plane slit along the positive semiaxis and have continuous boundary
values on the edges of the slit. This representation suggests that we should express
the functions χα(k,p; z) in the form

χα(k,p; z) = ρα(k,p; z) +
ϕα(kα)σα(pα)

z + κ2
α − p2

α/(2nα)
(1.24)

and thus obtain an operator A(z) acting on vector-valued functions

ω(k,p; z) =
{
ρ23(k,p; z), ρ31(k,p; z), ρ12(k,p; z), σ23(p23), σ31(p31), σ12(p12)

}
.

However, A(z) cannot be applied directly to the analysis of (1.22) and (1.23) since
it maps the smooth functions ρα(k,p; z) to the functions ρ′α(k,p; z) that are deter-
mined by ω′(z) = A(z)ω(z) and can have singularities induced by the singularity of
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the free resolvent R0(z). Faddeev’s remarkable discovery was that these singulari-
ties become milder under iterations and A(z)n with n > 4 does not generate them
at all. Moreover, endowing the set of Hölder vector-valued functions ω with the
structure of a Banach space similar to B(θ, µ), he proved that the operators A(z)n

with n > 4 are compact. Using Nikolskii’s well-known theorem on operators with
compact powers on a Banach space, he proved that the inhomogeneous equation
with operator A has a unique solution if and only if the homogeneous equation

A(z)ω = 0 (1.25)

has only a zero solution, which is the case for non-real z. It is particularly difficult
to prove that the operator H has no singular spectrum, that is, the set of points z
for which the homogeneous equation (1.25) has a non-trivial solution is a countable
closed subset of a finite interval of the real axis which has no limit points other than
−κ2

α, α = 23, 31, 12. All such points z (except possibly the limit points) belong to
the discrete spectrum11 of H.

In contrast to the two-particle case, the absolutely continuous spectrum of H in
the three-particle problem does not coincide with the spectrum of the free Hamil-
tonian H0. The eigenfunction expansion theorem for the operator H was proved
in [13] and says that the projection of H onto the subspace of L2(R6) corresponding
to the absolutely continuous spectrum is unitarily equivalent to the operator

Ĥ = H̃0 ⊕ H̃23 ⊕ H̃31 ⊕ H̃12

in the Hilbert space

Ĥ = H0 ⊕ H23 ⊕ H31 ⊕ H12, (1.26)

H0 = L2(R6), Hα = L2(R3), α = 23, 31, 12,

given explicitly by the formulae

H̃0 =
k2

α

2mα
+

p2
α

2nα
, H̃α =

p2
α

2mα
− κ2

α,

where the first expression is independent of α.
Similarly to the two-particle case, but in a much more complicated and involved

way, it is proved in [13] that there are wave operators U±: Ĥ → L2(R6) such that

U∗U = I, UU∗ = I − P d , HU = UĤ, (1.27)

where U = U± and Pd is the projection onto the subspace of L2(R6) corresponding
to the discrete spectrum of H. In the stationary approach, the wave operators

U± = U±
0 ⊕U±

23 ⊕U±
31 ⊕U±

12 (1.28)

are defined in terms of the solution of the scattering problem for H, and in the
non-stationary approach they are defined similarly to (1.4):

U±
0 = lim

t→±∞
eitHJ0e

−itH̃0 , U±
α = lim

t→±∞
eitHJαe

−itH̃α .

11An inaccuracy in the proof of Lemma 7.11 in [13] was corrected by Yafaev [127].
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Here J0 is the operator of identification of H0 with L2(R6), and the operators Jα

embed Hα isometrically in L2(R6):

(Jαf)(kα,pα) = ϕα(kα)f(pα).

The scattering matrix
S = U (+)∗U (−)

is a unitary operator on Ĥ, which has a block structure in accordance with the
decompositions (1.26) and (1.28). The blocks of the S-matrix describe different
physical processes: scattering of three particles into three particles, or into one
particle and a bound state of the other two, and an inverse process of scattering
of one particle and a bound state of the other two into an analogous state with or
without transition. This reflects the more versatile nature of three-particle scatter-
ing compared to scattering by a central potential. The first is an example of the
so-called multi-channel scattering while the second is a one-channel scattering.

Faddeev’s equations are a powerful mathematical tool for studying the quantum
three-body problem. They were used in numerical calculations for concrete pro-
cesses of nuclear physics in the 1970s. These equations give incomparably better
results than näıve attempts to solve the Schrödinger equation numerically. Nowa-
days an excellent accuracy in the calculation of scattering processes can be obtained
by solving Faddeev’s equations numerically using a PC. The iterations converge
very quickly. We conclude by expressing our general impression from this work of
Ludwig Dmitrievich Faddeev. His technical arsenal and virtuosity were second to
none, his ingenuity was boundless, and his diligence must serve as an example for
new generations of Russian scientists.

Faddeev’s ideas and methods have been successfully developed by his students.
The many-body problem was studied by O.A. Yakubovskii. The proof of the com-
pactness of integral operators in this case becomes incredibly complicated even
compared with [13]. The second direction of considerable interest for Faddeev
himself is a generalization to slowly decaying potentials, with Coulomb interac-
tion as the most interesting case. This problem was studied by S. P. Merkur’ev.
The main difficulty arises because the trajectories of particles in a slowly decaying
potential field are not asymptotically linear, whence the Fourier transform cannot
be used and one must work in the position representation, which is very difficult.
These and other results are described in the resulting monograph [50] by Faddeev
and Merkur’ev.

2. Quantum inverse scattering problem

Another important problem of the spectral theory of differential operators is the
so-called inverse problem. It has two aspects.

(a) The spectral aspect involves recovering a differential operator from its spec-
tral function.

(b) The quantum-mechanical aspect involves finding the analytic properties
of the scattering amplitude f(k, l) for the Schrödinger operator (1.6) and recovering
the potential v(x) from a given scattering amplitude. Faddeev made fundamental
contributions to the solution of the inverse scattering problem and its applications
to the theory of integrable non-linear evolution equations.
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2.1. Radial Schrödinger equation. Faddeev’s survey [7] (1959), devoted to
the inverse problem for the radial Schrödinger equation, plays a special role. This
equation arises from the separation of variables in (1.6) for a spherically symmetric
potential

v(x) = v(r), r = |x|.

As a result, we obtain the equation12

− d2ψ

dr2
+ v(r)ψ(r) = k2ψ(r), r > 0, (2.1)

with the boundary condition ψ(0) = 0. An analogue of (1.2) is∫ ∞

0

r|v(r)| dr <∞, (2.2)

and in this case the solution ϕ(r, k) of (2.1) with the initial data

ϕ(0, k) = 0 and ϕ′(0, k) = 1

has the following asymptotics for real k as r →∞:

ϕ(r, k) =
1

2ik
(
M(k)eikr −M(k)e−ikr

)
. (2.3)

The function M(k) satisfies M(−k) = M(k) and extends analytically to the upper
half-plane of the variable k. We have

M(k) = 1 + o(1) as k →∞, Im k > 0 (2.4)

and M(k) has a finite number N of simple zeros k = iκl, which correspond to the
discrete eigenvalues −k2

l of the radial Schrödinger operator. The functions

A(k) = |M(k)| and η(k) = argM(k)

are referred to as the asymptotic amplitude and the asymptotic phase. The corre-
sponding S-matrix is the operator of multiplication by the function

S(k) =
M(−k)
M(k)

= e−2iη(k)

in L2(0,∞), and we have η(k)
∣∣∞
−∞ = 2πN .

Before Faddeev’s survey [7], which has become classical, there were several
approaches to the inverse problem. They were proposed by Marchenko, Krein,
and Gelfand and Levitan. Marchenko’s approach enables one to deduce neces-
sary and sufficient conditions for the S-matrix: the function 1− S(k) must be the
Fourier transform of an absolutely continuous function F (x) ∈ L1(0,∞) such that∫ ∞

0

x|F ′(x)| dx <∞.

12In the case when l = 0. The eigenvalues of the Laplacian on the two-dimensional sphere S2

in R3 are l(l + 1).
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The corresponding potential v(r) is constructed from the solution of an integral
equation (Marchenko’s equation) and satisfies (2.2). Krein’s approach uses inte-
gral equations for Krein’s canonical system. The approach of Gelfand and Levitan
recovers a differential operator from its spectral function using another integral
equation (the Gelfand–Levitan equation).

With an ingenious use of the method of transformation operators (operators U
that satisfy (1.5) and are different from the wave operators U±), which goes back to
Friedrichs, Faddeev proved in [7] that these approaches are equivalent and estab-
lished relations between the corresponding integral equations. In particular, the
spectral function ρ(k) in the Gelfand–Levitan approach is nothing other than
1/|M(k)|2 in the approaches of Marchenko and Krein.13 The survey [7] and its
more recent continuation [28], to be discussed below, became reference books for
several generations of experts in scattering theory and mathematical physics, both
in the USSR and elsewhere.

We cite from [7]: “It is interesting to note that in the USSR the inverse prob-
lem has been studied on the whole by mathematicians, whereas abroad it has been
studied almost exclusively by physicists”. Faddeev’s students inherited his esteem
for the pioneering papers by the Soviet mathematicians Z. S. Agranovich, Birman,
Gelfand, M.G. Krein, Levitan, Marchenko, Povzner, and others. He kept offprints
of Krein’s notes in Doklady Akademii Nauk SSSR with special esteem and admired
the depth of Krein’s results and the conciseness of their statements. The origin of [7]
is also interesting. In 1958, the academician N. N. Bogolyubov invited Faddeev to
give a talk on the inverse problem for the radial Schrödinger equation at a confer-
ence organized by the Dubna Laboratory of Theoretical Physics. Gelfand, Krein,
Levitan, and Marchenko were among his audience. The talk was based on a paper
which Faddeev had prepared for his postgraduate examination, and it resulted in
an invitation to the 25-year old author to write a survey in Uspekhi Mat. Nauk !

2.2. Trace identities. Another important problem in the spectral theory of dif-
ferential operators involves finding the so-called trace identities, which express
the (appropriately regularized) spectral trace of a differential operator in terms
of its coefficients. These identities may be regarded as far-reaching generaliza-
tions of the equality between the matrix trace and the sum of eigenvalues in the
finite-dimensional case.14 The first important result of this kind was obtained
in 1953 by Gelfand and Levitan in the simplest case of a regular Sturm–Liouville
operator

L = − d2

dx2
+ v(x)

on the closed interval [0, π] with zero boundary conditions. In L2(0, π) the opera-
tor L has a simple discrete spectrum of eigenvalues λn with a limit point at infinity.
If v(x) ∈ C2(0, π), then

λn = n2 + c+O

(
1
n2

)
as n→∞,

13A similar relation between the spectral function and the S-matrix plays an important role
in the representation theory of semisimple Lie groups.

14The equality of the matrix trace and the spectral trace for trace-class integral operators
on L2(0, 1) with continuous kernels is a well-known theorem of B. L. Lidskii.
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where

c =
1
π

∫ π

0

v(x) dx.

The equality
∞∑

n=1

(λn − c− n2) =
v(0) + v(π)

4

is the Gelfand–Levitan trace formula, which expresses the trace of the difference
L − L0 of two regular Sturm–Liouville operators, where L0 = −d2/dx2. Another
much more sophisticated example of a trace identity is Selberg’s famous trace for-
mula for the Laplace–Beltrami operator on a fundamental domain of a Fuchsian
group of the first kind on the Lobachevskii plane.

Faddeev’s papers [3] and [9] made a fundamental contribution to the trace iden-
tities for the Schrödinger equation. In [3] he considered a singular Sturm–Liouville
operator: the radial Schrödinger operator

H = − d2

dr2
+ v(r)

with zero boundary conditions and a potential v(r) satisfying (2.2). The operatorH
has a simple absolutely continuous spectrum filling [0,∞) and a finite number of
negative eigenvalues. We define the trace of the difference H1 − H2 of two such
operators:

Tr(H1 −H2) = lim
R→∞

∫ R

−∞
λ dTr(E1

λ − E2
λ),

where Eλ is the resolution of the identity for H in the von Neumann spectral
theorem (the distribution function of the corresponding projection-valued measure
on R). Using scattering theory, Faddeev proved that if∫ ∞

0

(v1(x)− v2(x)) dx = 0,

then the limit of the integral as R →∞ exists and is equal to −(v1(0)− v2(0))/4.
This is the trace identity in the singular case.

This topic was further developed in the joint paper [9] with V. S. Buslaev, Fad-
deev’s first student,15 who considered the difference Rλ−R0

λ between the resolvents
of H and the free operator H0. Here

Rλ = (H − λI)−1

for λ in the complement to the spectrum of H in C, I is the identity operator
on L2(R), and similarly for H0. The remarkable result is that for such λ the
operator Rλ −R0

λ is trace-class and

Tr(Rλ −R0
λ) = − d

dλ
logM(

√
λ ), 0 < arg

√
λ < π, (2.5)

15Buslaev had Ladyzhenskaya and Faddeev as scientific advisors.
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where M(k) is the function introduced in (2.3). Since V R0
λ is trace-class, it follows

from (2.5) that
M(

√
λ ) = det(I + V R0

λ),

where det is the Fredholm determinant. This gives an expression for the regularized
determinant of H − λI. Moreover, when the potential v(r) is smooth and decays
rapidly with all derivatives as r → ∞, both sides of (2.5) admit an asymptotic
expansion in inverse powers of k =

√
λ as k → ∞ in the upper half-plane, and

this expansion extends by smoothness to the real axis. The expansion for logM(k)
is obtained from a dispersion relation of type (1.7), which follows from the analytic
properties of M(k) described above. The expansion of the left-hand side of (2.5)
is obtained by reducing the Schrödinger equation to a Riccati equation. Its coef-
ficients are given by the integrals of certain recursively defined polynomials in the
function v(r) and its derivatives over the positive semiaxis as well as the values
of these derivatives at r = 0. These identities will play a fundamental role in
the proof of the complete integrability of the Korteweg–de Vries equation as an
infinite-dimensional Hamiltonian system!

2.3. One-dimensional Schrödinger equation. The one-dimensional Schrödin-
ger equation

− ψ′′(x) + v(x)ψ(x) = k2ψ(x), −∞ < x <∞, (2.6)

is intermediate between the three-dimensional (1.6) and radial (2.1) Schrödinger
equations. An analogue of (2.2) is∫ ∞

−∞
(1 + |x|)|v(x)| dx <∞. (2.7)

Under this condition, H has a two-fold absolutely continuous spectrum filling [0,∞)
and a finite number of negative eigenvalues. A complete study of the direct and
inverse problems for the equation (2.6) with condition (2.7) was undertaken by
Faddeev in [5] and constituted his Ph.D. thesis “Properties of the S-matrix for
scattering by a local potential” (1959), which was published as [16]. In this case,
the S-matrix is the 2×2 matrix S(k) which is defined for k ̸= 0 in terms of solutions
of the scattering problem.

Namely, let f1(x, k) and f2(x, k) be the Jost solutions. For real k they are
uniquely determined by the asymptotic conditions

f1(x, k) = eikx + o(1) as x→∞,

f2(x, k) = e−ikx + o(1) as x→ −∞

and extend analytically to the upper half-plane of the variable k for every fixed x.
The transition coefficients a(k) and b(k) are defined for k ̸= 0 by the formula

f2(x, k) = a(k)f1(x,−k) + b(k)f1(x, k)

and satisfy the symmetry conditions a(k) = a(−k), b(k) = b(−k) and the normal-
ization condition

|a(k)|2 = 1 + |b(k)|2.
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The solutions u1,2(x, k) = f1,2(x, k)/a(k) satisfy the one-dimensional analogue of
the radiation conditions, and the S-matrix takes the form

S(k) =
(
s11(k) s12(k)
s21(k) s22(k)

)
,

where

s11(k) = s22(k) =
1

a(k)
, s12(k) =

b(k)
a(k)

, s21 =
b(k)
a(k)

.

The S-matrix is unitary:
S∗(k)S(k) = I.

It satisfies the realness condition S(k) = S(−k) and

S(k) = I +O(|k|−1) as |k| → ∞.

In quantum mechanics, the function t(k) = s11(k) is called the transmission coeffi-
cient, and r(k) = s12(k) is called the reflection coefficient.

By using Marchenko’s integral equations it was proved in [6] and [16] that under
the condition (2.7) the Fourier transforms F1(x) and F2(x) of the functions s12(k)
and s21(k) are absolutely continuous and, for every a,∫ ∞

a

(1 + |x|)|F ′1(x)| dx <∞ and
∫ a

−∞
(1 + |x|)|F ′2(x)| dx <∞.

The entries of the S-matrix satisfy the conditions16

lim
k→0

k(s12(k) + 1)
s11(k)

= lim
k→0

k(s21(k) + 1)
s11(k)

= 0

and

|s12(k)| = |s21(k)| 6 1− Ck2

1 + k2
as k → 0.

Similarly to the function M(k) in the radial case, a(k) extends analytically to
the upper half-plane of the variable k with asymptotic behaviour (2.4) and can
have only a finite number N of simple zeros iκl there. The following relation is an
analogue of (2.5):

Tr(Rλ −R0
λ) = − d

dλ
log a(

√
λ ), 0 < arg

√
λ < π. (2.8)

Here
f2(x, iκl) = clf1(x, iκl), cl ̸= 0,

whence the −κ2
l are the negative eigenvalues of H. The normalization constants ml

are given by

m−1
l =

∫ ∞

−∞
|f1(x, iκl)|2 dx =

iȧ(iκl)
cl

.

16These conditions, which improve the relations (2.8) in [16], were stated in Marchenko’s
monograph [116] (see Chap. 3, § 5). We also note that the American mathematicians Deift and
Trubowitz [93] suggested a stronger condition

∫∞
−∞(1 + x2)|v(x)| dx < ∞ instead of (2.7) for

solving the inverse problem. Marchenko’s analysis shows that this condition is not necessary.
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Using the condition of analyticity of 1/s11(k), the relation

|s11(k)|2 = 1− |s12(k)|2,

and the above formulae for the entries of S(k), we get that the S-matrix is com-
pletely determined by specifying one of the entries s12(k) or s21(k) and the poles iκl

of s11(k). Thus, this enables us to recover the function log s11(k) in terms of
log |s11(k)|2 = log(1 − |s12(k)|2) using the Poisson–Schwarz formula, an analogue
of the dispersion relation (1.7):

s11(k) = exp
{
− 1

2πi

∫ ∞

−∞

log(1− |s12(p)|2)
k − p

dp

} N∏
l=1

k + iκl

k − iκl
, Im k > 0, (2.9)

and
s11(k) = lim

ε→0
s11(k + iε) for k ∈ R.

Since s12(−k) = s12(k), the whole matrix S(k) is determined by a single complex-
valued function s12(k) on the positive semiaxis k > 0 and a finite set of iκl. This
corresponds to the single real-valued function v(x) on the whole real axis −∞ <
x <∞, thus giving a correct calculation of functional parameters.

The main result of [6] and [16] (Faddeev’s theorem) says that all these conditions
on the matrix S(k) and the constants ml > 0 are also sufficient for S(k) to be the
S-matrix of the one-dimensional Schrödinger equation with a potential v(x) satis-
fying (2.7), eigenvalues −κ2

l , and normalization constants ml. In other words, the
potential v(x) is uniquely recovered from the set s = (r(k),κl,ml) of the so-called
scattering data. Thus, by analysing Marchenko’s equation on the right-hand end-
point, one proves the existence of a potential v1(x) satisfying the same bound as
for F ′1(x), and Marchenko’s equation on the left-hand endpoint gives rise to a poten-
tial v2(x) satisfying the same bound as for F ′2(x). Finally, using the formula

s21(k) =
s12(−k)s11(k)

s11(−k)
,

the unitarity of the S-matrix, and Marchenko’s equations, one proves that

v1(x) = v2(x) = v(x).

2.4. Three-dimensional Schrödinger equation. The inverse problem for the
three-dimensional Schrödinger operator is much more complicated than the analo-
gous problem for the radial and one-dimensional Schrödinger equations. The main
difference from the one-dimensional case is that, at first sight, the S-matrix, which
is uniquely determined by the potential v(x), depends on a larger number of func-
tional parameters than the potential itself. Namely, the scattering amplitude f(k, l)
is a complex-valued function of the energy E = k2 = l2, 0 6 E <∞, and two vec-
tors in the unit sphere S2, while v(x) is a real-valued function on R3 and thus
depends on the radius r, 0 6 r < ∞, and a vector in S2. The symmetry property
f(k, l) = f(−l,−k) and the unitarity of the S-matrix reduce the scattering ampli-
tude to a real-valued symmetric function of energy and two vectors in S2, which
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is insufficient. Thus, the problem is to find all properties of the S-matrix uniquely
determined by the potential v(x).

This important and very hard problem was solved in Faddeev’s papers [17], [18],
and [25], with a detailed exposition in the survey [28]. Faddeev himself regarded
these as his technically most advanced papers and was proud of them. The main
idea is to define and study a family of transformation operators {Uγ}γ∈S2 in L2(R3),
HUγ = UγH0, which are Volterra operators in the direction γ:

(Uγψ)(x) = ψ(x) +
∫

(x−y,γ)>0

Aγ(x,y)ψ(y) d3y.

To prove the existence of the operators Uγ it suffices to show that for every γ ∈ S2

the Schrödinger equation (1.6) has a solution fγ(x,k) which extends analytically
to the upper half-plane of the variable s = (k,γ) for all fixed values of x and
k⊥ = k − (k,γ)γ, admits there the bound

|fγ(x,k)e−is(x,γ)| 6 C,

and has the following asymptotic behaviour for large s:

fγ(x,k)e−is(x,γ) = ei(k⊥,x) + o(1).

These solutions are multidimensional analogues of Jost solutions.
In the one-dimensional case the existence of Jost solutions was proved using the

Volterra-type Green functions G1(x−y, k) and G2(x−y, k) of the operator H0−λI:

G1(x, k) = −θ(−x) sin kx
k

and G2(x, k) = θ(x)
sin kx
k

,

where k =
√
λ and θ(x) is the Heaviside function:

θ(x) = 1 for x > 0, θ(x) = 0 for x < 0.

We recall that the ordinary Green function G(x− y, k) (the kernel of the resolvent
R0

λ of the operator H0 in L2(R)) is

G(x, k) = −e
ik|x|

2ik
.

In the three-dimensional case, the ordinary Green function G(x− y,k) (the kernel
of the resolvent R0

λ of the operator H0 in L2(R3)) is given by the classical formula

G(x,k) = − 1
4π

ei|k| |x|

|x|
, λ = k2.

Remarkably, the existence of the functions fγ(x,k) is proved using the multi-
dimensional generalization of Volterra-type Green functions which was discovered
by Faddeev in [17] (now referred to as Faddeev–Green functions). These functions
form a family Gγ(x,k), where γ ∈ S2, and are given by the formula

Gγ(x,k) =
1

(2π)3

∫
R3

ei(l,x)

k2 − l2 + i0(k − l,γ)
d3l,
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where the distribution (x+ i0a)−1 is understood as

(x+ i0)−1 for a > 0 and (x− i0)−1 for a < 0.

The Faddeev–Green function Gγ(x,k) has an important analyticity property: for
all fixed γ, x, and k⊥ it extends analytically to the upper half-plane of the variable
s = (k,γ), where it satisfies the estimate

|Gγ(x,k)e−is(x,γ)| 6 C

|x|
.

The integral equation

uγ(x,k) = ei(k,x) +
∫

R3
Gγ(x− y,k)v(y)uγ(y,k) d3y, γ ∈ S2, (2.10)

is a multidimensional analogue of the integral equation for the Jost functions. How-
ever, in contrast to the one-dimensional case, (2.10) is not a Volterra-type equation,
but just a Fredholm equation. Thus, the solution uγ(x,k) is bounded only when
the homogeneous equation with a given s has no non-trivial bounded solutions; oth-
erwise the solution uγ(x,k) has poles at points s with Im s > 0. It was shown in [28]
that such singular values of s always exist if the Schrödinger operator H has dis-
crete eigenvalues. Further use of Faddeev’s method requires an analogue of Kato’s
theorem asserting that the homogeneous equation (2.10) has no bounded solutions
for real s. This is the case for small potentials, but in general one must assume
that the potential v(x) satisfies this condition. In [28] it is called Condition C. If
it holds, then

uγ(x,k) = uγ(x,−k)

and the analogues fγ(x,k) of the Jost solutions are given by

fγ(x,k) = uγ(x,k)∆γ(k),

where ∆γ(k) is the regularized Fredholm determinant of the equation (2.10). Using
integral equations and differentiation with respect to γ (the Lie derivatives of the
action of SO(3) on S2) with ingenuity, Faddeev proved in [28] that the regularized
determinants ∆γ(k) can be expressed in terms of the scattering amplitude f(k, l).

The analytic properties of the S-matrix can be completely described in terms of
the solutions uγ(x,k). Thus, we put17

hγ(k, l) = − 1
4π

∫
R3
e−i(l,x)v(x)uγ(x,k) d3x

and define the operators Q(±)
γ by

(Q(±)
γ ψ)(k) = ψ(k)± 1

2πi

∫
R3
δ(k2 − l2)hγ(k, l)θ(±(k − l,γ))ψ(l) d3l.

17Note that the amplitude f(k, l) in [28] is our f(k, l) divided by −2π2. Therefore, our function
hγ(k, l) is hγ(k, l) in [28] multiplied by −2π2.
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Remarkably, for any γ ∈ S2 the operators Q(±)
γ determine a factorization of the

scattering operator:
Ŝ = (Q(+)

γ )−1Q(−)
γ ,

where the function hγ(k, l) is uniquely determined by the scattering amplitude via
the integral equation

hγ(k, l) = f(k, l)+
1

2πi

∫
R3
δ(k2−m2)hγ(k,m)θ((m−k,γ))f(m, l) d3m. (2.11)

Condition C is equivalent to the unique solubility of (2.11).
A key point is the following analyticity property of the functions hγ(k, l), which

Faddeev discovered. For (k,γ) = (l,γ) = s and any fixed k⊥, l⊥ and γ, the
function hγ(k, l) extends analytically to the upper half-plane of the variable s with
finite-order poles at the singular values of s. We stress that the proof of analyticity
uses the locality of the potential v(x) (that is, the fact that V is the operator
of multiplication by v(x) in L2(R3)) in a crucial way. This property of hγ(k, l)
discovered by Faddeev is a far-reaching generalization of the analyticity of the
forward scattering amplitude.

To sum up, we get that the scattering amplitude f(k, l) of a smooth poten-
tial v(x) decaying at infinity and satisfying Condition C, possesses the following
properties.

I. Equation (2.11) is uniquely soluble for all γ ∈ S2. This gives a family of
solutions hγ(k, l).

II. The function ∆γ(k) constructed from hγ(k, l) has a bounded analytic con-
tinuation to the upper half-plane of the variable s = (k,γ).

III. For (k,γ) = (l,γ) and fixed k⊥ and l⊥ the functions hγ(k, l)∆γ(k) also
extend analytically to the upper half-plane of the variable s = (k,γ).

A fundamental result due to Faddeev [28] says that the properties I–III of the
scattering amplitude f(k, l) are also sufficient! Thus, if these conditions hold,
then there is a local potential v(x) (whose uniqueness was proved in [1]) with
scattering amplitude f(k, l). Thus, the potential is constructed in terms of solu-
tions of Gelfand–Levitan type equations for some functions Aγ(x,y), which in turn
determine the solutions fγ(x,k). The Gelfand–Levitan equations form a family
(parametrized by γ ∈ S2) of integral equations with positive kernels expressed in
terms of the scattering amplitude. For every γ ∈ S2 the solution Aγ(x,y) of the
Gelfand–Levitan equation gives rise to an integral operator Vγ with kernel Vγ(x,y)
which is local in the direction γ. Using the analyticity properties of the scatter-
ing amplitude (described above) one can establish relations between the Vγ with
distinct γ and prove that

Vγ = V for all γ ∈ S2

and V (x,y) = δ(x− y)v(x)!
We leave it to the reader to work out all these details following [28]. Of course,

[28] gives only a general way to solve the inverse problem for the three-dimensional
Schrödinger operator. The task of proving the main assumption (Condition C) and
establishing correspondences between function classes of potentials and scattering
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amplitudes similarly to the one-dimensional case (considered above) still awaits
a solution. Perhaps some readers will be able to bring this important and difficult
problem to completion.

The scattering matrix is the most important object in quantum theory. Solution
of the inverse scattering problem in various cases tells us whether it contains full
information about the system. This question has special importance in quantum
field theory. Integrable models of quantum field theory, to be described in § 5, are
the only cases in which an affirmative answer is known. Namely, it was shown by
F. A. Smirnov, a student of Faddeev, that the knowledge of the factorized scattering
matrix determines the local observables completely by means of a certain system
of equations. Here, as in the cases considered above, a decisive role is played by
analytic properties of the scattering matrix and the matrix entries of local observ-
ables.

3. Spectral theory of automorphic functions

In the 1950s the classical theory of automorphic forms and functions was on
the rise in connection with Selberg’s famous paper [119], translated into Russian
in 1957. At the same time Gelfand, Graev, Pyatetskii-Shapiro, and Fomin estab-
lished a connection between Selberg’s approach and the theory of infinite-dimen-
sional representations of semisimple Lie groups. Namely, let G be a real semisimple
Lie group, K a maximal compact subgroup of G, and Γ a discrete subgroup of G
such that the volume18 of Γ\G is finite. The space Γ\G/K is acted on by a represen-
tation of the commutative algebra D of invariant differential operators (the Laplace
operators), and the main task is to derive an expansion in eigenfunctions of opera-
tors in D on L2(Γ\G/K). In the case when Γ\G is compact this problem was solved
in the monograph Representation theory and automorphic functions [97] (issue 6
of the series Generalized functions) by Gelfand, Graev, and Pyatetskii-Shapiro using
the methods of representation theory. Namely, the representation of G induced by
a finite-dimensional unitary representation of Γ decomposes into a countable direct
sum of irreducible unitary representations with finite multiplicities, which proves
the eigenfunction expansion theorem in this case.

3.1. Expansion in eigenfunctions of the Laplacian. Especially interesting is
the case of rank 1 when

G = SL(2,R), K = SO(2),

the homogeneous space G/K is the Lobachevskii plane realized as the upper half-
plane

H = {z = x+ iy : y > 0},

and Γ is a Fuchsian group of the first kind which acts on H by fractional-linear
transformations. Then the main task is reduced to studying the Laplace–Beltrami
operator A of the Poincaré metric,

Af = −y2

(
∂2f

∂x2
+
∂2f

∂y2

)
, (3.1)

18With respect to the Haar measure on G.
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and to prove the theorem on expansion in eigenfunctions of the operator A in the
Hilbert space H = L2(Γ\H). We already mentioned that when the closure F of
a fundamental domain19 is compact, this problem can be solved completely using
the methods of representation theory. But when F is non-compact and has finite
area in the Lobachevskii geometry, the problem becomes much more difficult. The
result obtained in [97] is an expansion of the Hilbert space H into an orthogonal
sum of two A-invariant subspaces. The first subspace consists of functions having
zero integrals over all horocycles in Γ\H, and A has a discrete (possibly finite)
spectrum on this subspace. On the second subspace, it was written in [97] (see
Chap. 1, § 6) that: “It can be shown that the discrete spectrum of the second sub-
space has only a finite number of points, and that the spectrum of its remaining
part is continuous of finite multiplicity. This multiplicity of the continuous spec-
trum is equal to the minimum number20 of cusps of a fundamental domain of Γ.
The proof is based on perturbation theory for differential operators. To avoid over-
loading the book with special problems in the theory of differential operators, we
give an account of this proof elsewhere”.

This is the problem solved in Faddeev’s paper [19], written in 1966! Thus, the
following assertions were proved in [19].

(a) The spectrum of the Laplace operator consists of an n-fold absolutely con-
tinuous spectrum filling the semiaxis 1/4 6 λ <∞ and a discrete spectrum of finite
multiplicity lying on the semiaxis 0 6 λ < ∞ and having no limit points on any
finite interval.

(b) The so-called Eisenstein–Maass series (over the cosets of Γ), which converge
absolutely for Re s > 1, admit a meromorphic continuation to the whole complex
s-plane with poles for Re s < 1/2.

(c) The system of eigenfunctions of the continuous spectrum for A is given by
the analytic continuations of the Eisenstein–Maass series to the line Re s = 1/2.

(d) The theorem on expansion in eigenfunctions of A holds in H .
Although these results were well known to experts,21 and Selberg himself used

them explicitly to derive the trace formula, in the general case their complete proofs
had not been published. Thus, [19], written 10 years after Selberg’s famous paper,
was the first to give rigorous proofs of all these results. Although Faddeev under-
stood the importance of these results and the methods used to obtain them, he
modestly wrote in the introduction to [19] that “this paper may have only a method-
ological value”. The fundamental role of [19] was mentioned by Lang in his mono-
graph [110], whose second part is devoted to an exposition of this paper of Faddeev.
Thus, Lang writes in the Introduction: “The Faddeev paper on the spectral decom-
position of the Laplace operator on the upper half-plane is an exceedingly good
introduction to analysis, placing the latter in a nice geometric framework. Any
good senior undergraduate or first year graduate student should be able to read
most of it, and I have reproduced it (with the addition of many details left out
for more expert readers by Faddeev) as Chap. XIV. Faddeev’s method comes from

19Here F is a fundamental domain of Γ in H, that is, an open subset of H such that γ1F∩γ2F =
∅ for γ1 ̸= γ2 and the union

⋃
γF over all γ ∈ Γ is equal to H.

20More precisely, to the number n of inequivalent cusps of Γ. – Note by L.A.T.
21An approach using potential theory was given in Selberg’s lectures at Göttingen University

in 1954, still unpublished at the time.
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perturbation theory and scattering theory, and as such is interesting for its own
sake, as well as to analysts who may know the analytic part and may want to see
how it applies in the group-theoretic context”.

In concrete terms, Faddeev’s method involves using perturbation theory for con-
tinuous spectra which he developed in [15] for the Friedrichs model (see § 1.2).
He first considers the self-adjoint operator A0 in L2(H) (the Laplacian on the
Lobachevskii plane defined by the differential expression (3.1)). As in the case
of the Schrödinger equation it is convenient to use the parametrization

λ = s(1− s),

where λ ∈ C \ [1/4,∞) and s satisfies the condition Re s > 1/2. For Re s > 1, the
resolvent

R0(s) = (A0 − s(1− s)I)−1

of A0 is an integral operator whose kernel k(z, z′; s) depends on the invariant dis-
tance ρ(z, z′) on H and is given by a simple definite integral, easily expressed in
terms of a hypergeometric function. It can easily be proved that the differen-
tial expression (3.1) determines a unique self-adjoint operator A acting in H =
L2(Γ\H), and its resolvent

R(s) = (A− s(1− s)I)−1

for Re s > 2 is an integral operator whose kernel r(z, z′; s) is obtained by the method
of images:

r(z, z′; s) =
∑
γ∈Γ

k(z, γz′; s), (3.2)

where the series converges absolutely for Re s > 1. The resolvent R(s) satisfies
Hilbert’s first identity

R(s)−R(s′) = (s(1− s)− s′(1− s′))R(s′)R(s).

Putting s′ = κ, where κ > 0 is sufficiently large, and writing

R = R(κ), ω(s) = s(1− s)− κ(1− κ),

we obtain the equation
R(s) = R+ ω(s)RR(s). (3.3)

Like (1.8), the equation (3.3) is unusable for the study of R(s) since the opera-
tor R is non-compact and has continuous spectrum. However, one can distinguish
and explicitly invert the principal part that generates this spectrum. Consider for
simplicity the case of one cusp22 at i∞ and choose the fundamental domain F of Γ
in the form

F = F0 ∪ F1,

where F 0 is compact and F 1 is the strip

{z = x+ iy : 0 6 x 6 1, y > a} for some a > 0.
22The case of several cusps is studied in a similar way.
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Write P0 and P1 = I−P0 for the orthogonal projection operators on H correspond-
ing to multiplication by the characteristic functions of F0 and F1. Using (3.2), we
easily prove that for κ > 2 the operators

R00 = P0RP0, R01 = P0RP1, and R10 = P1RP0

are compact. To study the cusp part of R, that is, the operator R11 = P1RP1,
we define an orthogonal projection P of the subspace P1H onto L2([a,∞); y−2 dy)
using integration over horocycles of F1:

f(z) 7→ P (f)(y) =
∫ 1

0

(x+ iy) dx, y > a.

It follows from (3.2) that R11 is an integral operator with kernel

R11 =
∑

γ∈Γ∞

k(z, γz′; κ),

where
Γ∞ =

{(
1 n
0 1

)
, n ∈ Z

}
.

Hence we get that R11 = PR11P +R′11, where T = PR11P is an integral operator
acting in L2([a,∞); y−2 dy) with kernel t(y, y′; κ),

t(y, y′; κ) =
1

2κ − 1

{
yκy′1−κ , y < y′,

y1−κy′κ , y > y′,

and R11 is a compact operator. The operator T is the value at s = κ of the resolvent

R0(s) = (B − s(1− s)I)−1

of the self-adjoint operator B in L2([a,∞); y−2 dy) that is given by the differential
expression −y2 d2ϕ/dy2 with the boundary condition

ϕ(a) = κaϕ′(a).

A remarkable observation by Faddeev, which is necessary for application of the
method developed in [15], says that A may be regarded as a perturbation of
the operator B with the same absolutely continuous spectrum!

More precisely, writing R = T + V , where V is a compact operator, and using
again the Hilbert identity for R0(s),

(I − ω(s)T )−1 = I + ω(s)R0(s),

we rewrite (3.3) in the following way:

R(s) = R0(s) + (I + ω(s)R0(s))V + ω(s)(I + ω(s)R0(s))V R(s).

Finally, putting

R(s) = R0(s) + (I + ω(s)R0(s))B(s)(I + ω(s)R0(s)),
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we obtain an integral equation

B(s) = V +H(s)B(s) (3.4)

for the resulting operator B(s), where

H(s) = V (I + ω(s)R0(s)).

ThusB(s) is an analogue of the operator T (λ) given by (1.9) in the Friedrichs model,
and (3.4) is an analogue of (1.11)! With ingenious use of the analytic methods
developed in [15], Faddeev proved that H(s) is a Fredholm operator acting in the
Banach space B−1 of continuous functions f(z) on F with the norm

∥f∥ = sup
z∈F0

|f(z)|+ sup
z∈F1

y|f(z)|

and depends analytically on s in the strip 0 < Re s < 2. This extends the ker-
nel r(z, z′; s) of the resolvent of A analytically to 0 < Re s 6 1 with poles of finite
order, and poles with Re s > 1/2 can only lie on the line Re s = 1/2! Analytic
continuation of eigenfunctions of the continuous spectrum and their completeness
also follow from the technique of perturbation theory for the continuous spectrum
(developed in [15]). Since these eigenfunctions coincide for Re s > 1 with the
Eisenstein–Maass series

E(z, s) =
∑

γ∈Γ∞\Γ

ys(γz),

this also yields analytic continuations and functional equations for them. The
reader will enjoy the detailed proofs in Faddeev’s paper [19] and Lang’s book [110]
mentioned above.

3.2. Scattering theory for automorphic functions. Besides the general and
stationary approaches to scattering theory (mentioned above), there is a more spe-
cial approach proposed by Lax and Phillips in their monograph Scattering the-
ory [112]. Instead of the time-dependent Schrödinger equation (1.3) they use the
wave equation

∂2u

∂t2
+Hu = 0 (3.5)

associated with H and the evolution operators U(t) of Cauchy data. The latter
form a group of unitary operators on the Hilbert space HE , the completion of
the space of smooth compactly supported Cauchy data orthogonal to the negative
spectrum of H with respect to the energy norm of the equation (3.5). Hence, by
Stone’s theorem

U(t) = eitL,
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where L is a self-adjoint operator acting in HE . Application of the Lax–Phillips
approach is based on the existence of the so-called incoming and outgoing sub-
spaces D± in HE such that

i) U(t)D− ⊂ D− for t < 0 and U(t)D+ ⊂ D+ for t > 0;

ii)
⋂
t<0

U(t)D− =
⋂
t>0

U(t)D+ = {0};

iii)
⋃
t>0

U(t)D− =
⋃
t<0

U(t)D+;

iv) D+ ⊥ D−.

The scattering operator S is now related to the contraction semigroup

Z(t) = PU(t)P,

where t > 0 and P is the orthogonal projection of the subspace H a
E of absolutely

continuous spectrum23 of L onto the orthogonal complement to D+ ⊕D−.
In his joint paper [26] with B. S. Pavlov, Faddeev applied the Lax–Phillips scheme

to the case when
H = A− 1

4
I,

where A is the Laplace operator in H = L2(Γ\H), which had previously been
considered in [19]. Considering for simplicity the case of one cusp, they proved
that the scattering operator S in the Lax–Phillips method coincides with the oper-
ator of multiplication by the reflection coefficient c(s), which is determined by the
asymptotic behaviour as y →∞ of the Eisenstein–Maass series

E(z, s) = ys + c(s)y1−s + o(1), Re s =
1
2
.

In the case when Γ = SL(2,Z), the classical Fourier series expansion of E(z, s) (the
so-called Selberg–Chowla formula) shows that

c(s) =
√
π

Γ(s− 1/2)ζ(2s− 1)
Γ(s)ζ(2s)

,

where Γ(s) is the Euler gamma function and ζ(s) is the Riemann zeta function.
Remarkably, it is proved in [26] that the Riemann hypothesis about non-trivial
zeros of the zeta function is equivalent to the operator estimate

lim sup
t→∞

1
t

log ∥Z(t)(B + iI)−1∥ = −1
4
, (3.6)

where B is the generator of the semigroup Z(t). This gives a purely operator-
theoretic formulation of the Riemann hypothesis!

This brilliant and unexpected result inspired Lax and Phillips to give
a systematic exposition of the spectral theory of the Laplace operator using

23H a
E = HE for the Schrödinger operator (1.1) with potential (1.2).
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their approach developed in [112]. In the preface to the monograph Scattering
theory for automorphic functions [113] they write: “Our interest in harmonic
analysis of SL(2,R) stems from the fascinating 1972 Faddeev–Pavlov paper [6],24
in which they showed that the Lax–Phillips theory of scattering could be applied
to the automorphic wave equation. After studying [6] we decided to redo this
development entirely within the framework of our theory. . . ”. In Appendix 2 to § 7,
ironically called “How not to prove the Riemann hypothesis”, the authors suggest
their version of the Pavlov–Faddeev criterion.

3.3. Selberg trace formula. The methods developed in [19] could naturally be
used for a systematic derivation of the famous Selberg trace formula. Faddeev
posed this problem to A. B. Venkov and V. L. Kalinin, his students in the Faculty
of Mathematics and Mechanics at Leningrad State University. Its solution was
presented in the joint paper [27], which used the diploma theses of the first two
authors and Faddeev’s lectures in Vilnius25 in March 1973. This approach is based
on Krein’s method of the spectral shift function. Thus, suppose that H0 and V
are self-adjoint operators acting in a Hilbert space H and V belongs to S1, the
Schatten–von Neumann ideal of trace-class operators. As usual, we put

H = H0 + V.

Krein’s theorem (strengthened by Birman and Solomyak) asserts that for every
absolutely continuous function ϕ whose derivative ϕ′ satisfies the Lipschitz condi-
tion and ϕ′ ∈ Lp(R), where 1 6 p <∞, we have

ϕ(H)− ϕ(H0) ∈ S1.

Moreover, there is a unique function ξ ∈ L1(R) (called the spectral shift function
for the pair of operators H0 and H) such that

Tr(ϕ(H)− ϕ(H0)) =
∫ ∞

−∞
ϕ′(λ)ξ(λ) dλ

and, furthermore, ∫ ∞

−∞
ξ(λ) dλ = TrV.

The novelty of [27] is an explicit calculation of the spectral shift function for
the pair PcAPc and P̃BP̃ , where Pc is the orthogonal projection operator of
H = L2(Γ\H) onto the absolutely continuous spectral subspace of the Laplace
operator A, and P̃ = PP1 is the projection onto L2([a,∞), y−2 dy) (see our synop-
sis of [19] above). The spectral shift function is expressed in terms of the scattering
matrix of A, and the spectral trace Tr(h(A)− P̃ h(B)P̃ ) is calculated explicitly for
all functions h in some explicitly given function class that is used in the derivation of
the Selberg trace formula. The matrix trace of the integral operator h(A)−P̃ h(B)P̃

24This is item [26] in the bibliography of the present survey. – Note by L.A.T.
25There, a friendship emerged between Faddeev and Askol’d Ivanovich Vinogradov, an expert

in analytic number theory, who became interested in applications of the new methods of auto-
morphic function theory to number theory.
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(the integral of its kernel with coinciding arguments over the fundamental domain)
is calculated following Selberg’s approach described in Kubota’s book [105]. Then
the equality

spectral trace = matrix trace,

which follows from the general theory of trace-class operators (see [99]), gives the
Selberg trace formula! It is also explained in [27] that the function Z(s) (introduced
by Selberg and now known as the Selberg zeta function) is the regularized charac-
teristic determinant of the Laplace operator A. Remarkably (see (2.8)), Z(s) is an
analogue of the transmission coefficient a(

√
λ ) for the one-dimensional Schrödinger

equation (2.6)!
It should be noted that, although Faddeev did not publish anything else on

this, he was always interested in it. For example, he believed that a new idea
was required for a successful realization of his and Pavlov’s approach [26] to deter-
mining the poles of the automorphic scattering matrix. Faddeev’s methods in the
spectral theory of automorphic functions were further developed by Venkov. The
idea of regularization (either of the Hilbert identity as an equation for the resol-
vent of a self-adjoint operator, or of the definition of its trace and characteristic
determinant) is a recurrent theme in all of Faddeev’s work, from the theory of the
Schrödinger operator and automorphic Laplace operator to the quantum theory of
gauge fields. In 1981 Faddeev gave a plenary lecture at the conference dedicated
to the 90th birthday of I. M. Vinogradov. He talked about the universal role of
determinants in mathematics and theoretical physics, from the Selberg zeta func-
tion Z(s) for the group SL(2,Z), with poles at s = ρ/2, where ρ are the non-trivial
zeros of the Riemann zeta function, to the ‘Faddeev–Popov ghost determinants’ in
the theory of Yang–Mills fields. As reported by the academician Yu.V. Prokhorov,
Kolmogorov was deeply impressed by this talk by Faddeev.

4. Classical integrable equations

4.1. KdV equation. Faddeev gave a talk about his results on the inverse problem
for the three-dimensional Schrödinger equation at a symposium in Novosibirsk at
the beginning of 1971. V. E. Zakharov, who was then working in Novosibirsk, told
him about the remarkable paper [101] by the American applied mathematicians
Gardner, Greene, Kruskal, and Miura on the integration of the Korteweg–de Vries
equation (KdV), a well-known equation in the theory of non-linear waves, and about
Lax’s interpretation of this paper in [111].

The discovery of Gardner, Greene, Kruskal, and Miura was as follows. Consider
a Cauchy problem for the KdV equation:

ut − 6uux + uxxx = 0, u(x, t)
∣∣
t=0

= u(x), −∞ < x <∞, (4.1)

whose initial datum u(x) decays rapidly as |x| → ∞, and associate with it a one-
dimensional Schrödinger operator L(t) (see (2.6)) with the potential u(x, t), which
depends on the parameter t. Remarkably, it turns out that the non-linear evolution
of u(x, t) according to the KDV equation is given by surprisingly simple formulae
in terms of the scattering data of the Schrödinger operator:

r(k, t) = e8ik3tr(k), κl(t) = κl, ml(t) = e8κ3
l tml, l = 1, . . . , N, (4.2)
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where (r(k),κl,ml) are the scattering data of the initial potential u(x). Thus,
the solution u(x, t) of the Cauchy problem (4.1) is given by solving the inverse
problem for the one-dimensional Schrödinger operator with scattering data (4.2)!
Lax explained the formulae (4.2) by showing that the KDV equation is equivalent
to the operator equation

dL(t)
dt

= [L(t), A(t)], (4.3)

now called a Lax equation,26 where A(t) is a third-order differential operator27
depending explicitly on u(x, t). Later it turned out that there is a wide class of
non-linear evolution equations integrable by a similar method, which was called the
‘inverse scattering method’.

Discussion of these results with Zakharov led to their joint paper [24], where
the KDV equation was shown to be an infinite-dimensional completely integrable
Hamiltonian system! The fundamental role of this paper cannot be overestimated.
The notion of complete integrability goes back to the classical works of Euler,
Lagrange, Jacobi, and Kovalevskaya on rigid-body dynamics. However, in the mid-
dle of the 20th century this theme slid into irrelevance (integrability seemed to be
a very rare phenomenon) and there were no non-trivial integrable examples with
infinitely many degrees of freedom. The paper [24] by Zakharov and Faddeev is
extremely important. For the first time it showed the existence of an interesting
and non-trivial infinite-dimensional integrable system and started the Hamiltonian
theory of equations integrable by the inverse scattering method.

Namely, the phase space for the KDV equation is the set of Cauchy data, the
Schwartz space M = S (R) of real-valued functions. The infinite-dimensional
Fréchet manifold M is a Poisson manifold with the Poisson bracket

{F,G}(u) =
∫ ∞

−∞

d

dx

(
δF

δu(x)

)
δG

δu(x)
dx (4.4)

for smooth functionals F and G on M , where δF/δu(x) means the Fréchet deriva-
tive (variational derivative) of F . The symplectic leaves Mc of the Poisson bracket
(4.4), referred to as the Gardner–Zakharov–Faddeev bracket, are the affine spaces
given by the equation ∫ ∞

−∞
u(x) dx = c.

The corresponding symplectic form on Mc is

Ω =
∫ ∞

−∞
du(x) ∧

(∫ x

−∞
du(y) dy

)
dx,

where d is the exterior differentiation operator on M . It is easy to check that the
KDV equation can be written in the Hamiltonian form

ut = {H,u} =
d

dx

δH

δu(x)
, where H(u) =

∫ ∞

−∞

(
1
2
u2

x + u3

)
dx.

26The notation L and B used in Lax’s original paper, was later changed to L and A, the first
two letters of the name Lax! The notation L and M is also often used.

27Namely, A = 4
d3

dx3
− 6u

d

dx
−
∂u

∂x
.
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Another parametrization of the phase space M is given by the scattering data s =
(r(k),κl,ml) of the potential u(x), and the inverse map ı : s→ u(x) comes from the
solution of the inverse scattering problem (discussed in § 2.3) for a one-dimensional
Schrödinger operator. By an elegant use of the general Gelfand–Levitan equation
for the difference of two potentials and Wronskian identities for the Jost solutions,
Zakharov and Faddeev [24] calculated the pullback of the symplectic form Ω on Mc

under the map ı and explicitly constructed canonical variables (Darboux variables).
Remarkably, one has

ı∗Ω =
∫ ∞

0

dP (k) ∧ dQ(k) dk +
N∑

l=1

dpl ∧ dql, (4.5)

where
P (k) =

4k
π

log |a(k)|, Q(k) = arg b(k),

pl = 2κ2
l , ql = log cl, l = 1, . . . , N.

(4.6)

Here the function a(k) is recovered from the reflection coefficient r(k) and the
zeros iκl by using the dispersion relation (2.9), where a(k) = 1/s11(k), and

b(k) = a(k)r(k), cl = imlȧ(iκl).

The variables P (k) and Q(k) are infinite-dimensional analogues of the classical
action-angle variables in the Liouville–Arnold theorem.

Moreover, using the trace identities for the one-dimensional Schrödinger opera-
tor, which are derived similarly to the proof for the radial Schrödinger equation in
§ 2.2, one can express the Hamiltonian H of the KDV equation explicitly in terms
of the canonical variables P (k) and pl of ‘action’ type! Namely, (2.9) implies that
the following asymptotic expansion holds as |k| → ∞ and Im k > 0:

log a(k) =
∞∑

n=1

cn
kn

,

where c2j = 0 due to the condition r(−k) = r(k). On the other hand, reducing
the Schrödinger equation for the Jost solution f1(x, k) with Im k > 0 to the Riccati
equation

σx + σ2 − u+ 2ikσ = 0 (4.7)

for the function
σ(x, k) =

d

dx
log f(x, k)− ik,

we obtain
log a(k) =

∫ ∞

−∞
σ(x, k) dx.

It follows from (4.7) that the solution σ(x, k) also has an asymptotic expansion

σ(x, k) =
∞∑

n=1

σn(x)
(2ik)n
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whose coefficients σn(x) are certain recursively defined polynomials in the poten-
tial u(x) and its derivatives, and moreover, the σ2j(x) are total derivatives. Mirac-
ulously,

H =
1
2

∫ ∞

−∞
σ5(x) dx = 8

∫ ∞

0

k3P (k) dk − 32
5

N∑
l=1

p
5/2
l , (4.8)

and this completes the proof of complete integrability of the KDV equation in [24]!
The contribution of the discrete spectrum to (4.8) corresponds to solitons, special

localized particle-like solutions of the KDV equation. More precisely, a soliton arises
in the case N = 1 and is described by the solution

u(x, t) = − 2κ2

cosh2(κ(x− vt− x0))
,

which propagates at the speed v = 4κ2, and the case N > 1 corresponds to the
N -soliton solution that describes the interaction of N solitons moving at velocities
vl = 4κ2

l . The different signs before the integral and the sum on the right-hand side
of (4.8) show that the continuous spectrum modes (respectively, solitons) propagate
at negative (respectively, positive) velocities.

The functionals

In =
1
2

∫ ∞

−∞
σ2n+1(x) dx, n = 1, 2, . . . ,

are in involution with respect to the Gardner–Zakharov–Faddeev bracket and are
first integrals for the KDV equation. The functional

I1 = −1
2

∫ ∞

−∞
u2 dx

plays the role of the momentum, I2 = H, and the In, n > 2, are higher integrals of
motion. The method of [24] also proves complete integrability of the ‘higher KDV
equations’

ut =
∑

n

an
d

dx

δIn
δu(x)

,

which play a major role in Novikov’s approach to the periodic problem for the KDV
equation.

Faddeev repeatedly stressed that [24] combined in a miraculous way subjects
that he had earlier worked on independently of each other: the inverse scattering
problem for the one-dimensional Schrödinger equation, the trace identities, and
Hamiltonian mechanics!

4.2. Sine-Gordon equation. At the beginning of 1972 Faddeev visited the USA,
where he gave a number of talks and, in particular, told about his new work
with Zakharov. The American physicist Klauder, who attended the lecture, men-
tioned the sine-Gordon28 equation (SG), which originally appeared in the study of

28As Faddeev himself later noted, the rhyme ‘sine–Klein’ is rather tasteless, but contagious.
However, what we call the Klein–Gordon equation, should be called the Klein–Fock equation.
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surfaces of constant negative curvature and then in non-linear optics and the theory
of superconductivity (Josephson effect). This equation

ϕtt − ϕxx +
m2

β
sinβϕ = 0, −∞ < x, t <∞, (4.9)

is relativistically invariant and may be regarded as an essentially non-linear model
of classical field theory in two-dimensional space-time.

Like the KDV equation, the SG equation is an infinite-dimensional Hamiltonian
system. The phase space M = {(π(x), ϕ(x))} is the set of Cauchy data for (4.9):

ϕ(x, t)
∣∣
t=0

= ϕ(x) and ϕt(x, t)
∣∣
t=0

= π(x), (4.10)

where π(x) ∈ S (R) and eiβϕ(x) − 1 ∈ S (R) is such that

lim
x→−∞

ϕ(x) = 0, lim
x→∞

ϕ(x) =
2π
β
Q.

The quantity Q ∈ Z plays the role of a topological charge. The symplectic form Ω
on M is written canonically as

Ω =
∫ ∞

−∞
dπ(x) ∧ dϕ(x) dx,

and the SG equation takes the Hamiltonian form

ϕt = {H,ϕ}, πt = {H,π}

with the Hamiltonian

H =
∫ ∞

−∞

(
1
2
π2 +

1
2
ϕ2

x +
m2

β2
(1− cosβϕ)

)
dx.

The functionals
P = −

∫ ∞

−∞
πϕx dx

(the momentum of the field ϕ(x)) and

K =
∫ ∞

−∞
x

(
1
2
π2 +

1
2
ϕ2

x +
m2

β2
(1− cosβϕ)

)
dx

(the Lorentz boost) realize a Hamiltonian action of the Lie algebra of the Poincaré
group of two-dimensional space-time. This reflects the relativistic nature of the SG
equation.

The SG equation attracted Faddeev’s attention, and in 1973 he and his new stu-
dent L. A. Takhtajan began to seek a Lax representation for (4.9).29 Such a repre-
sentation was obtained jointly with Zakharov, in the paper [29] by all three authors.

29A Lax representation of the form (4.3) in the light-cone coordinates ξ = (t + x)/2, η =
(t− x)/2 was already known (see [124] and [82]). But the Hamiltonian setup of the SG equation
in these coordinates differs from that given above, so we need a Lax representation in the original
coordinates x, t.
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The operator L in this Lax representation is a first-order matrix differential opera-
tor acting on vector-valued functions in C4, and the constant 4× 4 matrix in front

of
d

dx
in L has rank 2. Matrix operators of this type were not previously considered

in the literature. The eigenvalue equation

LΨ = λΨ

reduces to a 2× 2 matrix differential equation containing the spectral parameter λ
as well as 1/λ. The formalism for the direct and inverse scattering problems for L
was given in [29]. As in the case of the Schrödinger equation, the scattering data
s = (r(λ), ζj ,mj) consist of:
• the function r(λ) = b(λ)/a(λ), where a(λ) and b(λ) are analogues of the

transition coefficients satisfying the realness conditions

a(λ) = a(−λ) and b(λ) = −b(−λ)

and the condition
|a(λ)|2 + |b(λ)|2 = 1;

• the zeros ζj , j = 1, . . . , N , of the function a(λ), which are symmetric with
respect to the imaginary axis in the upper half-plane;
• the corresponding normalization factors mj .
In the paper [30] by Faddeev and Takhtajan the formalism of the inverse problem,

that is, inversion of the map to the scattering data

ı : (π(x), ϕ(x)) → s = (r(λ), ζj ,mj),

was constructed. It is based on the existence of triangular transformation oper-
ators and on integral equations of Gelfand–Levitan–Marchenko type. The main
result of [30] is the proof of the complete integrability of the SG equation as an
infinite-dimensional Hamiltonian system!

Namely, it was shown in [30] that30

ı∗Ω =
∫ ∞

0

dρ(λ) ∧ dϑ(λ) dλ+
n1∑
l=1

dpl ∧ dql +
n2∑

k=1

(dξk ∧ dηk + dθk ∧ dφk),

where

ρ(λ) = − 8
πβ2λ

log |a(λ)|, ϑ(λ) = − arg b(λ), λ > 0,

pl =
1
β2

log κl, ql = 8 log |cl|, l = 1, . . . , n1,

ξk =
4
β2

log |λk|, ηk = 4 log |dk|,

θk = arg λk, φk = − 16
β2

arg dk,

k = 1, . . . , n2.

30Here and in what follows we use the notation of [30].
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Here iκl (with κl > 0, l = 1, . . . , n1) are the zeros of a(λ) on the imaginary axis,
while (λk,−λk) (with Imλk,Reλk > 0, k = 1, . . . , n2) are the pairs of zeros of a(λ)
symmetric with respect to the imaginary axis, and N = n1 + 2n2. Moreover,

cl = mlȧ(iκl) and dk = mkȧ(λk).

Note that the corresponding Poisson brackets of the transition coefficients a(λ)
and b(λ) take the following elegant form:

{a(λ), a(µ)} = 0, {b(λ), b(µ)} = 0 (4.11)

and

{a(λ), b(µ)} =
β2λµ

4(λ2 − µ2)
a(λ)b(µ). (4.12)

These formulae are fundamental for the quantization of the SG model (see § 5.5).
As in the case of the KDV equation (see § 4.1), the trace identities, that is, the

asymptotic expansions

1
i

log a(λ) =
∞∑

n=1

In
λn

as λ→∞

and

1
i

log a(λ) =
∞∑

n=0

I−nλ
n as λ→ 0,

give an infinite set {In} of integrals of motion for the SG model. Here I0 ≡ πQ
(mod 2π), and

P =
2m
β2

(I−1 + I1) and H =
2m
β2

(I−1 − I1). (4.13)

The Hamiltonian H and the momentum P of the SG model are expressed solely in
terms of ‘action’-type variables by the following beautiful and transparent formulae:

P =
∫ ∞

0

p(λ)ρ(λ) dλ+
n1∑
l=1

Psl +
n2∑

k=1

Pbk, (4.14)

H =
∫ ∞

0

√
p(λ)2 +m2 ρ(λ) dλ+

n1∑
l=1

√
P 2

sl +M2
s +

n2∑
k=1

√
P 2

bk +M2
bk , (4.15)

where

p(λ) = m

(
1
8λ

− 2λ
)
, Psl =

m

β2

(
1
κl
− 16κl

)
,

Pbk =
m(λk − λk)

β2

(
1

|λk|2
− 16

)
,
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and
Ms =

8m
β2

, Mbk =
16m
β2

sin θk. (4.16)

These formulae admit the following interpretation in terms of the classical par-
ticles generated by the SG equation. The first summands in (4.14), (4.15) are
the contributions of relativistic particles with mass m, momentum p(λ), and den-
sity ρ(λ), which are generated by the continuous spectrum of L. The topological
charge of these particles is zero. The second summands are written as sums over par-
ticles with masses Ms and momenta Psl. These new particles are generated by the
discrete spectrum eigenvalues of L lying on the imaginary axis. They correspond
to solitons (localized particle-like solutions of the SG equation) with topological
charge

Q = sign cl.

The third summands in (4.14) and (4.15) are generated by the pairs of discrete
spectrum eigenvalues of L that are symmetric with respect to the imaginary axis.
These particles with mass Mbk and momentum Pbk possess an internal degree of
freedom and, depending on their internal state, their mass varies from zero to
twice the mass of a soliton. The corresponding solutions of the SG equation are
the so-called double solitons or ‘breathers’. They have topological charge zero
and correspond to the bound states of solitons with antisolitons. At the level of
the classical excitation spectrum, this realizes Einstein’s dream that ‘one non-linear
self-interacting field generates several kinds of particles’. As a result, besides a scalar
particle of mass m, the semiclassical spectrum contains31 solitons and antisolitons
of mass 8m/β2 as well as their bound states of masses

Mn =
16m
β2

sin
((

n+
1
2

)
β2

16

)
,

where it is assumed that the quantum theory is defined only for β2 = 8π/N , N
being an integer.32

As a continuation of [30], in the joint paper [37] with Takhtajan, Faddeev
proved33 that the Cauchy problem (4.9)–(4.10) for the SG equation in the class
of rapidly decaying initial data is equivalent to the corresponding problem in the
light-cone coordinates. The Hamiltonian formalism was also developed for the latter
problem, and its complete integrability was established.

4.3. Hamiltonian approach in soliton theory. A refined version of the Lax
representation (4.3) is the so-called zero-curvature representation

∂F

∂x
= U(x, t, λ)F, (4.17)

∂F

∂t
= V (x, t, λ)F, (4.18)

31These results were presented in a paper by Faddeev and Takhtajan, “The relativistic
one-dimensional model, generating several particles”, which was twice submitted to Physics Letters
(in December 1973 and June 1974), but remained unpublished for reasons that are still unclear
(see [33]).

32We shall see in § 5 that the assumption of integrality of 8π/β2 is not needed and the correct
formula in the one-loop approximation is (5.3) without adding the ‘Maslov index’ 1/2.

33Thus correcting an inaccurate remark in [29], which did not influence the rest of the paper.
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where U and V are n × n matrices depending on some functions uα(x, t) and
a parameter λ, the so-called spectral parameter. The compatibility condition of
the system (4.17)–(4.18),

∂U

∂t
− ∂V

∂x
+ [U, V ] = 0, (4.19)

must hold for all values of λ, and this determines a system of non-linear evolution
equations for the functions uα(x, t).

A large class of integrable non-linear equations can be represented in this form,
including the KDV equation, the SG equation, the non-linear Schrödinger equation,
the Heisenberg magnet equation, and many others. For example, the SG equation
has a zero-curvature representation34 of the form

U(x, t, λ) =
1
4

 −iβπ(x) mλe−iβϕ(x)/2 − m

λ
eiβϕ(x)/2

m

λ
e−iβϕ(x)/2 −mλeiβϕ(x)/2 iβπ(x)


(4.20)

and

V (x, t, λ) =
1
4

 −iβϕx(x) mλe−iβϕ(x)/2 +
m

λ
eiβϕ(x)/2

−m
λ
e−iβϕ(x)/2 −mλeiβϕ(x)/2 iβϕx(x)

 .

(4.21)
The formalism of the inverse scattering problem for the Schrödinger equation, which
was used to solve the KDV equation, extends naturally to the case of (4.17) as
the method of the Riemann–Hilbert matrix factorization problem. By the gen-
eral Gohberg–Krein theory, this problem is reduced to a Fredholm system of inte-
gral equations of Wiener–Hopf type. In simple cases, it can also be reduced to
Marchenko-type integral equations with compact integral operators.

The Hamiltonian approach to integrable non-linear equations was developed
by Faddeev’s students in the Laboratory of Mathematical Problems of Physics
at the Leningrad Branch of the Steklov Mathematical Institute: P. P. Kulish,
A. G. Reiman, N. Yu. Reshetikhin, Semenov-Tian-Shansky, Sklyanin, and Takhta-
jan. The Hamiltonian structure of the corresponding equations appeared to be
closely related to the Poisson structure on the dual space of a Lie algebra. As
shown by Semenov-Tian-Shansky, it can be elegantly written in terms of the clas-
sical r-matrix introduced by Sklyanin. For example, a connection between the
Poisson structure of integrable models of classical field theory and (generalizations
of) the loop algebra was established in Faddeev’s joint paper [46] with Reshetikhin.
All these results were reflected in the monograph [52],35 by Faddeev and Takhtajan.

The main example in [52] is the non-linear Schrödinger equation (NS)

iψt = −ψxx + 2κ|ψ|2ψ, −∞ < x, t <∞, (4.22)

which has many physical applications. In contrast to the KDV equation, the NS
equation has a natural quantum analogue. It describes a many-particle system

34Here, compared with [52], we change λ to 1/λ.
35Reprinted by Springer Verlag in 2007 in its series Classics in Mathematics.
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interacting with a δ-function potential (see § 5.2). Like the KDV equation and the
SG equation, the NS equation is an infinite-dimensional Hamiltonian system. Its
phase space is the vector space S (R; C) of complex-valued functions with complex
coordinates ψ(x) and ψ(x) and the symplectic form

Ω =
1
i

∫ ∞

−∞
dψ(x) ∧ dψ(x) dx

with the following Poisson brackets:

{ψ(x), ψ(y)} = {ψ̄(x), ψ̄(y)} = 0, {ψ(x), ψ̄(y)} = δ(x− y). (4.23)

The NS equation can be written in the Hamiltonian form

ψt = {H,ψ}, ψ̄t = {H, ψ̄},

with the Hamiltonian

H =
∫ ∞

−∞
(|ψx|2 + κ|ψ|4) dx. (4.24)

The corresponding Poisson brackets of the transition coefficients a(λ) and b(λ) are
given by36

{a(λ), a(µ)} = 0, {b(λ), b(µ)} = 0 (4.25)

and
{a(λ), b(µ)} = − κ

λ− µ
a(λ)b(µ). (4.26)

The trace identities
1
i

log a(λ) = κ
∞∑

n=1

In
λn

as λ→∞ (4.27)

give an infinite set of integrals of motion for the NS equation, and we have

H = I3. (4.28)

These formulae are fundamental for the quantization of the NS equation (see § 5.2).

5. Quantum integrable systems

5.1. Semiclassical quantization. From the very beginning of his work with
integrable equations, Faddeev realized their rich potential for quantization.37 The
most interesting equation from this point of view was the SG equation, whose quan-
tum version was expected by Faddeev to give an example of a relativistic quantum
field theory with a rich spectrum of particles (main particles, solitons, and their
bound states corresponding to breathers) generated by a single field ϕ in the origi-
nal equation (4.9). It would be natural to expect the quantum version of this model

36Here b(λ) corresponds to b(λ) in [52], for compatibility with § 5.2.
37He wrote in his scientific autobiography [54]: “If in a single word I had to focus the sphere

of my scientific interests, it would be quantization”.
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to be exactly soluble, as is the case with the original classical model. After that,
the task of constructing the theory of quantum integrable models (generalizing the
inverse scattering method) became the most important direction of Faddeev’s work.
Developing the Hamiltonian approach to soliton theory (see § 4.3) was a natural
part (and a necessary preliminary stage) of the quantization programme.

The first step in realizing this programme was quantization of the SG model in
the semiclassical approximation. In 1974 Kulish, one of Faddeev’s first students,
deduced from the existence of infinitely many local conservation laws for the SG
equation that the momenta pin of incoming (as t → −∞) particles and pout of
outgoing (as t→∞) particles (solitons, double solitons, and main particles) satisfy
the equations ∑

a

(p2n+1
a )in =

∑
b

(p2n+1
b )out, (5.1)∑

a

(p0
ap

2n
a )in =

∑
b

(p0
bp

2n
b )out, (5.2)

where p0
a =

√
p2

a +m2
a and n = 0, 1, 2, . . . . It follows directly from these equations

that the number of particles of each kind and their momenta are preserved in
interactions. It is remarkable that this property remains valid after quantization:
there is no multiple creation of particles in the SG model and the number of particles
of each kind and their momenta are preserved under interactions! This result,
which was unexpected38 for theoretical physicists, was proved in the framework
of perturbation theory by I. Ya. Aref’eva, one of Faddeev’s first female students,
and his new student V. E. Korepin. More delicate arguments using the locality
of the integrals of motion give rise to a remarkable conclusion: the scattering is
factorizable, that is, all many-particle processes are reduced to two-particle ones.

Faddeev performed a systematic quantization of this model by means of func-
tional integration in the joint paper [31] with Korepin and Kulish, continued with
Korepin in [32]. Namely, in the one-loop approximation they deduced a formula for
the mass of the bound state of a soliton and an antisoliton:

Mn =
16m
β2

sin
nβ2

16
(5.3)

(see the exact formula (5.34)). Apart from the spectrum of masses, the authors
of [31] and [32] calculated the scattering matrices of solitons in the semiclassical
approximation and predicted their exact expressions for the integer values of 8π/β2,
which correspond to the so-called reflectionless case. The calculation is based on
the fact that the classical limit of the two-particle scattering matrix is determined
by the generating function of the canonical transformation from the initial coordi-
nates to the final ones. An extended overview of the results for the SG equation is
contained in the joint survey paper [38] with Korepin. In the joint paper [36] with
Kulish and S. V. Manakov, analogous results were obtained for the NS equation,
which may be regarded as a non-relativistic limit of the SG equation.

38In physics seminars, Faddeev was fiercely attacked by V.N. Gribov and his school, who
asserted that quantum corrections destroy completely the classical integrability of the SG model.
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We note that the classical limit of the scattering matrix of solitons is expressed
in terms of dilogarithms. The expression proposed in [31] for the exact quantum
scattering matrix in the case of integer 8π/β2 involves a function (now called the
quantum dilogarithm), whose remarkable properties Faddeev analysed much later
(see § 6.2). Exact formulae for the scattering matrix of the quantum model for all
values of the coupling constant were derived by A. B. Zamolodchikov from the main
kinematic postulates of quantum field theory ([129], and see also [130]).

In computing the so-called one-loop quantum corrections in [31], [32], and [38],
Faddeev had another occasion to use his favorite tool: the calculation of the deter-
minants of differential operators.39 Namely, write the propagator G as a functional
(Feynman) path integral:

G =
∫

exp{iS(u)} du

with certain boundary conditions. Expanding the classical action function S(u)
near a stationary point, whose role is played by some trajectory u0(x, t) (for exam-
ple, a multisoliton solution: u = u0 + ϕ), we obtain

S(u) = S0 + ϕKϕ+O(φ3), K = K0 + εv(x, t), K0 = ∂2
t − ∂2

x +m2.

Then the one-loop approximation is given by the Gaussian integral

G ∼
∫

exp
{
i

∫
ϕKϕ

} ∏
Dϕ ∼ det1/2(K/K0),

which is formally defined as the regularized determinant of the differential opera-
tor K. As usual, this determinant is expressed via the trace of the resolvent:

d

dε
log detK = Tr vK−1.

Faddeev liked this trick very much and often used it (see § 2.2). Since there is
a complete description of the solutions of the SG equation in terms of the scattering
data (see § 4.2), we also have a complete description of all solutions of the linearized
equation near a multisoliton solution, and therefore we have an explicit formula for
its resolvent. Then finding the desired quantities reduces to a direct calculation.
Strictly speaking, the actual calculation scheme is somewhat more complicated
because K has zero eigenvalues (the so-called zero-mode problem). This problem
was solved in the joint paper [35] with Korepin.

5.2. Quantum inverse problem method: first steps. Successful quantiza-
tion of the SG equation in the semiclassical approximation raised hopes that this
model can be quantized exactly. At the same time, the possibilities of semiclassical
quantization were obviously exhausted, and in one of Faddeev’s seminars40 at the
beginning of 1978 he posed the problem of extending the inverse scattering method
to the quantum case.

39We again cite [54]: “If in a single term I had to characterize my technical means, it would
be determinants”.

40The importance of Faddeev’s seminars was described in detail by Semenov-Tian-Shansky in
his introduction to the collection of papers Faddeev’s seminar on mathematical physics [120].
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The following three groups of examples of quantum systems known at the end of
the 1970s could be referred to as ‘integrable’ in the sense that their exact solutions
were known.

First, there is the quantum NS equation. Quantization replaces the fields ψ(x)
and ψ̄(x) with Poisson brackets (4.23) by operators Ψ(x) and Ψ†(x) with the canon-
ical commutation relations41

[Ψ(x),Ψ(y)] = [Ψ(x)†,Ψ†(y)] = 0, [Ψ(x),Ψ†(y)] = δ(x− y)I.

The rapidly decreasing case

ψ(x), ψ̄(x) → 0, |x| → ∞,

corresponds to quantization in the Fock space (see [87]), which is an orthogonal
sum of the vacuum subspace spanned by a vector Ω with Ψ(x)Ω = 0 and N -particle
subspaces spanned by vectors of the form( ∫

RN

f(x1, . . . , xN )Ψ†(x1) · · ·Ψ†(xN ) dNx

)
Ω.

The quantum Hamiltonian is obtained from (4.24) by replacing ψ and ψ̄ by Ψ
and Ψ† and using the normal ordering:

H =
∫ ∞

−∞

(
−Ψ†x(x)Ψx(x) + κΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

)
dx. (5.4)

On an N -particle subspace, this Hamiltonian becomes the singular differential
operator

HN =
N∑

j=1

∂2

∂x2
j

+ κ
∑

16j<k6N

δ(xj − xk). (5.5)

Explicit expressions for its eigenfunctions were constructed by Berezin, McGuire,
Yang, Brézin, and Zinn-Justin.

The second source of examples of quantum integrable systems was Kostant’s
work on quantization of the open Toda lattice using the methods of representation
theory.

Third, exactly soluble lattice models of phase transitions (and closely related
spin chains) were extensively studied in solid state physics and statistical mechan-
ics following the classical papers of Ising and Bethe. In particular, an important
role in the creation of the quantum inverse problem method was played by the
transfer-matrix method brought to perfection by Baxter in the mid-1970s.

At first sight, all these approaches had nothing in common with the inverse
scattering method in the theory of solitons. The first step towards a synthesis of
classical and quantum methods was taken in Faddeev’s joint paper [39] with his new
student Sklyanin. Taking the example of the NS equation and the SG equation,
they suggested that quantization should be based on the transition coefficients a(λ)
and b(λ), which determine the scattering data (see § 4.2 and § 4.3).

41Here we set the Planck constant ~ to be 1.
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The fundamental Poisson brackets for a(λ) and b(λ) for both equations are of
the form

{a(λ), a(µ)} = 0, {a(λ), a(µ)} = 0, (5.6)
{a(λ), b(µ)} = a(λ)b(µ)ρ(λ, µ), (5.7)

where for the NS equation and the SG equation we have (see (4.26) and (4.12))

ρNS(λ, µ) =
c

λ− µ
, ρSG(λ, µ) =

2γλµ
λ2 − µ2

, (5.8)

respectively,42 and43 γ = β2/8. Here we also put c = −κ < 0 and thus restrict
ourselves to the case of an attracting potential in the Hamiltonian (5.5), since
this is the choice of the sign of the coupling constant that makes the NS equation
a non-relativistic limit of the SG equation.

It was conjectured in [39] that the correct quantum analogue of the quadratic
Poisson bracket (5.7) is the quadratic commutation relation

A(λ)B(µ) = B(µ)A(λ)ρ̌(λ, µ) (5.9)

for some quantum operators A(λ) and B(λ). In the semiclassical approximation,44

ρ̌(λ, µ) ≃ 1− iρ(λ, µ).

As exact expressions for α(λ, µ), it was proposed to use

ρ̌NS(λ, µ) =
λ− µ− ic/2
λ− µ+ ic/2

(5.10)

and

ρ̌SG(λ, µ) =
sinh(α− β)− i sin(γ/2)
sinh(α− β) + i sin(γ/2)

, (5.11)

where45 α = log λ and β = logµ are the so-called physical rapidities.
As in the classical case, the logarithm of A(λ) must be the generating function

for commuting local integrals of motion. It was also suggested in [39] to interpret
the operators B(λ) as creation operators for the eigenfunctions of A(λ). Indeed,
define the vacuum Ω as a common eigenvector of all A(λ) with the eigenvalue 1:
A(λ)Ω = Ω. Then by (5.9) the vector

Ψ(λ1, . . . , λN ) = B(λ1) · · ·B(λN )Ω

is also an eigenvector of all operators A(λ) with the eigenvalue
∏N

n=1 ρ̌(λ, λn).

42See the footnotes 34 and 36.
43This is compatible with the notation of [40] and [52]; in [30] one has γ = β2.
44Since we have put ~ = 1, it corresponds to κ → 0 or γ → 0.
45Since we mainly use γ = β2/8 as the coupling constant in the SG model, using β for the

rapidity should lead to no ambiguity.
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The concrete choice of the coefficients ρ̌(λ, µ) in [39] relied on a study of analytic
properties of the eigenvalues of A(λ) as functions of λ and on the requirement
that the results obtained for bound states must be compatible with (5.3). Another
argument in the case of the NS model came from the calculations of Sklyanin
in [121], who obtained the following explicit formulae in this case:

ANS(λ) = :aNS

(
λ+

ic

2

)
: and BNS(λ) = :bNS(λ): ,

where : Φ : is the operator in the Fock space whose normal symbol (see [87]) is the
classical functional Φ of the canonical fields ψ̄ and ψ that occur in the description
of the NS equation.

The expressions

H = I3 +
c2

12
I

for the quantum Hamiltonian of the NS model, where I is the identity operator,
and

logA(λ) = −ic
∞∑

n=1

In
λn

are the analogues of (4.27)–(4.28) in the classical case.
Expanding log

∏N
k=1 ρ̌(λ, λk) in powers of λ−1, we obtain

HΨ(λ1, . . . , λN ) = E(λ1, . . . , λN )Ψ(λ1, . . . , λN ),

where

E(λ1, . . . , λN ) =
N∑

k=1

λ2
k.

There was some element of luck in the case of the NS model: despite the pres-
ence of interactions, one was able to realize the quantum model in the same Hilbert
space where the canonical commutation relations for free fields have been real-
ized, that is, in the Fock space. Therefore, the problem splits into N -particle
quantum-mechanical problems, which can be solved explicitly, and the operators
A(λ) and B(λ) can be described explicitly in terms of the normal symbols. In the
case of a genuinely relativistic quantum field theory (such as the SG model) with
manifestly non-free representation of the canonical commutation relations as well
as divergences and renormalization, there was no chance of such a simple answer,
and an essentially new approach was required.

5.3. Quantum inverse problem method: the R-matrix. Surprisingly, among
the three approaches mentioned above, Faddeev was more interested in Baxter’s
papers (see [86]), which were the most difficult and most remote from his direct
interests. This testified to the intuitive genius of Faddeev, who had a feeling for
the deep mathematical potential hidden in those papers!

Using the joint paper [41] by Faddeev and Takhtajan, one can describe Baxter’s
approach as follows. Let V be a finite-dimensional vector space over C and R(λ)
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an operator46 in V ⊗ V depending on a complex parameter λ. Write R12, R13,
and R23 for the operators in V ⊗ V ⊗ V corresponding to three embeddings

End(V ⊗ V ) ↪→ End(V ⊗ V ⊗ V ).

More precisely,
R12 = R⊗ I, R23 = I ⊗R,

where I is the identity operator on V , and

R13(u⊗ v ⊗ w) =
∑

k

uk ⊗ v ⊗ wk, where R(u⊗ w) =
∑

k

uk ⊗ wk.

With every matrix R(λ) that satisfies

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ) (5.12)

for all λ and µ, we associate in a natural way a commutative family tN (λ) of
operators acting in the vector space

V ⊗N = V ⊗ · · · ⊗ V︸ ︷︷ ︸
N

for an arbitrary N . This family is described is follows. It is assumed in the general
case that detR(λ) is a meromorphic function of λ.

Let P be the permutation operator in V ⊗ V :

P (u⊗ v) = v ⊗ u, u, v ∈ V.

We define an embedding

ın : EndV ↪→ End(V ⊗N )

in such a way that, under this embedding, an operator a ∈ EndV acts non-trivially
only on the nth factor in the tensor product V ⊗N , n = 1, . . . , N . Using this
embedding, we define a map

End(V ⊗ V ) ∋ A =
∑

k

ak ⊗ bk 7→ An =
∑

k

ak ⊗ ın(bk) ∈ EndV ⊗ End(V ⊗N ).

In other words, An is a matrix in V whose entries are operators in V ⊗N . Putting

Ln(λ) = R(λ+ η)n and R̂(λ) = PR(λ), (5.13)

we see that (5.12) takes the form

R̂(λ− µ)(Ln(λ)⊗ Ln(µ)) = (Ln(µ)⊗ Ln(λ))R̂(λ− µ), n = 1, . . . , N. (5.14)

46In Baxter’s work, V = C2 and R(λ) is the 4× 4 matrix formed by the Boltzmann weights of
the eight-vertex model.
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Here ⊗ stands for the tensor product with respect to the ‘auxiliary’ space V and
the operator product in the ‘quantum’ space V ⊗N . Since the maps ın for different n
commute, from (5.14) we obtain

R̂(λ− µ)(TN (λ)⊗ TN (µ)) = (TN (µ)⊗ TN (λ))R̂(λ− µ), (5.15)

where
TN (λ) = LN (λ) · · ·L1(λ) (5.16)

is the ‘quantum’ monodromy matrix, that is, the ordered product of Ln(λ) along
the finite chain 1, . . . , N . Equivalently,

R(λ− µ)(TN (λ)⊗ I)(I ⊗ TN (µ)) = (I ⊗ TN (µ))(TN (λ)⊗ I)R(λ− µ). (5.17)

Putting
tN (λ) = TrV TN (λ) ∈ End(V ⊗N ), (5.18)

from (5.15) we obtain
[tN (λ), tN (µ)] = 0.

This property of commutativity of the ‘transfer matrices’ tN (λ) gives rise to an exact
solution of the eight-vertex model and enables one to regard tN (λ) as a generating
function of the integrals of motion for the corresponding quantum spin chain.

Remarkably, Faddeev saw the analogy between the quantum monodromy matrix
TN (λ) and the monodromy matrix for the zero-curvature representation (4.17),
(4.18)! Namely, the monodromy matrix T (x;λ) for (4.17) is defined as a solution
of the Cauchy problem for the differential equation

d

dx
T (x;λ) = U(x;λ)T (x;λ), T (0;λ) = I,

where I is the identity matrix.
In a discrete version when the continuous variable x varies over the lattice xn =

n∆ with spacing ∆ and n ∈ Z, equation (4.17) takes the form

Fn+1 = Ln(λ)Fn,

and the monodromy matrix is defined as follows:

TN (λ) = LN (λ) · · ·L1(λ). (5.19)

As ∆ → 0, we have
Ln(λ) ≈ I + ∆U(xn;λ).

It is now clear that the formulae (5.16) and (5.19) coincide.
These ideas underlie the joint paper [40] by Faddeev, Sklyanin, and Takhtajan,

where the authors gave an exact solution of the quantum SG model and formulated
the quantum inverse problem (or scattering) method (QISM), a method for the
exact solution of the quantum models that correspond to the equations solvable
by the classical inverse scattering method (see § 4). Before describing the results
of [40], we shall state the main algebraic principles of QISM following that paper.
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5.4. Quantum inverse problem method: general scheme. The first key
element of QISM is a local L-operator, a generalization of the matrices (5.13) in
Baxter’s approach. Suppose that for every site n of a finite lattice of length N
we are given a space of states (a Hilbert space hn of finite or infinite dimension)
and a matrix Ln(λ) in V (depending on a ‘spectral’ parameter λ) whose entries
are operators in hn. The matrix Ln(λ) is called an L-operator if there is a matrix
R̂(λ, µ) ∈ End(V ⊗ V ) such that (5.14) holds for all λ and µ, that is,

R̂(λ, µ)(Ln(λ)⊗ Ln(µ)) = (Ln(µ)⊗ Ln(λ))R̂(λ, µ). (5.20)

We stress that, in contrast to Baxter’s approach, the auxiliary space V is now
distinguished from the Hilbert space h playing the role of a quantum state space at
the nth lattice site. The equation (5.12) corresponds to the case

L(λ) = R(λ+ η),

which was considered by Baxter. This separation of the roles of the R-matrix and
the L-operator plays a key part in QISM and is a seed of the future theory of
quantum groups! (See § 6.1.)

Considering the tensor product of Hilbert spaces

HN = h1 ⊗ · · · ⊗ hN

(the full Hilbert space on N sites) and embedding, as above, operators in hn into
operators in HN , we see that the matrix

TN (λ) = LN (λ) · · ·L1(λ)

(the quantum monodromy matrix) satisfies the same relation (5.15) as that which
holds for the local L-operators:

R̂(λ, µ)(TN (λ)⊗ TN (µ)) = (TN (µ)⊗ TN (λ))R̂(λ, µ). (5.21)

As above, this yields the commutativity of the family of operators

tN (λ) = TrV TN (λ)

in HN .
The second fundamental principle of QISM is the algebraic Bethe ansatz (dis-

covered in [40]) of diagonalization of the commutative family of operators tN (λ).
We stress that, in contrast to Baxter’s approach, the algebraic Bethe ansatz uses
all entries of the quantum monodromy matrix TN and their commutation rela-
tions (5.21), not only the commutativity of the traces tN (λ).

For simplicity we consider the important case when V = C2 and, following [40]
and [41], assume that the matrix R̂(λ, µ) has the form

R̂(λ, µ) =


1 0 0 0
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0
0 0 0 1

 , (5.22)
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where the functions b(λ, µ) and c(λ, µ) satisfy

b(λ, µ)
c(λ, µ)

= −b(µ, λ)
c(µ, λ)

.

We represent the matrix TN (λ) in the form

T (λ) =
(
A(λ) B(λ)
C(λ) D(λ)

)
,

where the subscript N is omitted for simplicity of notation, and we write the com-
mutation relations that follow from (5.21):

[B(λ), B(µ)] = 0,

A(λ)B(µ) =
1

c(µ, λ)
B(µ)A(λ)− b(µ, λ)

c(µ, λ)
B(λ)A(µ),

D(λ)B(µ) =
1

c(λ, µ)
B(µ)D(λ)− b(λ, µ)

c(λ, µ)
B(λ)D(µ).

We also assume the existence of a vector Ω ∈ HN (a generating vector) which
is annihilated by the operator C(λ) and is an eigenvector of A(λ) and D(λ) with
eigenvalues a(λ) and d(λ), respectively. The existence of a generating vector (as
well as the equality (5.21)) often follows from similar properties of the L-operator.
Thus, write Ln(λ) in the form

Ln(λ) =
(
an(λ) bn(λ)
cn(λ) dn(λ)

)
and suppose that there is an ωn ∈ hn such that

an(λ)ωn = αn(λ)ωn, dn(λ)ωn = δn(λ)ωn, and cn(λ)ωn = 0. (5.23)

Then the generating vector is given by

Ω = ω1 ⊗ · · · ⊗ ωN

and

a(λ) =
N∏

n=1

αn(λ) and d(λ) =
N∏

n=1

δn(λ).

Finally, we seek eigenvectors of the commutative family of operators t(λ) =
A(λ) +D(λ) in the form

Ψ(λ1, . . . , λn) =
n∏

i=1

B(λi)Ω. (5.24)
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We get from the above commutation relations that

t(λ)Ψ(λ1, . . . , λn) =
(
a(λ)

n∏
i=1

1
c(λi, λ)

+ d(λ)
n∏

i=1

1
c(λ, λi)

)
Ψ(λ1, . . . , λn)

+
n∑

j=1

b(λ, λj)
c(λ, λj)

(
a(λj)

∏
16k6n

k ̸=j

1
c(λk, λj)

− d(λj)
∏

16k6n
k ̸=j

1
c(λj , λk)

)
B(λ)

∏
16k6n

k ̸=j

B(λk)Ω.

Indeed, to prove this, it suffices to use the symmetry of the vector Ψ(λ1, . . . , λn)
with respect to λ1, . . . , λn. This symmetry follows from the commutativity of the
‘creation operators’ B(λ). The summand containing Ψ(λ1, . . . , λn) appears in an
obvious way, and it is also clear that there are only two summands with B(λ1)
replaced by B(λ), and the other summands follow by symmetry. Now, for the
vector Ψ(λ1, . . . , λn) to be an eigenvector for the operators t(λ) with eigenvalue

Λ(λ;λ1, . . . , λn) = a(λ)
n∏

i=1

1
c(λi, λ)

+ d(λ)
n∏

i=1

1
c(λ, λi)

(5.25)

it suffices that the n-tuple λ1, . . . , λn is a solution of the system of equations

a(λj)
d(λj)

=
∏

16k6n
k ̸=j

c(λk, λj)
c(λj , λk)

, j = 1, . . . , n. (5.26)

These are the famous Bethe equations, obtained by Bethe in 1931 in another
form while solving the isotropic quantum Heisenberg magnet model (see [88]). The
novelty here is the compact formula (5.24) for eigenvectors and simple algebraic
derivation of (5.25) and (5.26) using only the commutation relations (5.21) and the
existence of a generating vector Ω.

The last, third element of QISM depends on the model considered and involves
a passage to the ‘infinite volume’ limit (N → ∞), and getting rid of the lattice
(∆ → 0) for continuous models. It is crucial to define a full (‘physical’) Hilbert
space H of the model so that the quantum integrals of motion (including the Hamil-
tonian H) act in H . By the main principle of quantum field theory, the operator H
must be positive definite and must annihilate the ‘physical vacuum’ (a special vector
Ωphys ∈ H ). The task of distinguishing a separable Hilbert space H in the ‘large’
non-separable Hilbert space H∞, finding the spectrum of the quantum integrals
of motion by passing to the limit in the Bethe ansatz equations (5.26), and con-
structing the asymptotic states and the S-matrix often requires involved technical
tools.47

47We note that the difficult analytic issues related to taking the limit as N → ∞ and ∆ → 0
and the construction of the subspace H ⊂ H∞ were not discussed either in [40] or in the other
papers on QISM. Their rigorous mathematical justification is an interesting and difficult problem
in functional analysis.
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5.5. Quantum inverse problem method: SG model. To get rid of ultraviolet
divergences (that is, divergences at small distances) in quantum field theory, one
must consider the theory on a finite lattice when the space variable x assumes
discrete values

xn = −L+ (n− 1)∆, n = 1, . . . , N, and xN+1 = L.

The lattice size ∆ (respectively, its length 2L) plays the role of the ultraviolet
(respectively, infrared) cut-off parameter.

The classical L-operator for the lattice SG model is of the form

Lcl
n (λ) = I +

∫ xn+∆

xn

U(x, λ) dx+O(∆2),

where U(x, λ) is given by (4.20). The following formula for the corresponding
quantum L-operator was proposed in [40]:

Ln(λ) =

 e−i∆βπn/4 m∆
4

(
λe−iβϕn/2 − 1

λ
eiβϕn/2

)
m∆
4

(
1
λ
e−iβϕn/2 − λeiβϕn/2

)
ei∆βπn/4

 .

(5.27)
Here πn and ϕn are canonical operators in hn = L2(R), which are embedded in
HN =

⊗N
n=1 hn as described above and satisfy the Heisenberg commutation rela-

tions
[ϕm, ϕn] = [πm, πn] = 0 and [ϕm, πn] =

i

∆
δmnI

obtained by discretizing the relations

[ϕ(x), ϕ(y)] = [π(x), π(y)] = 0 and [ϕ(x), π(y)] = iδ(x− y)I

for the field operators ϕ(x) and π(x). In other words, the unitary operators un =
ei∆βπn/4 and vn = eiβϕn/2 in the Schrödinger representation on L2(R) are of the
form

(unf)(x) = f

(
x+

β

4

)
, (vnf)(x) = eiβx/2f(x)

and yield a Weyl pair:

unvn = qvnun, q = eiγ , γ =
β2

8
.

Remarkably, the L-operator (5.27) satisfies (5.20) with anR-matrix of the form
(5.22), where

b(λ, µ) =
i sin γ

sinh(α− β + iγ)
and c(λ, µ) =

sinh(α− β)
sinh(α− β + iγ)

(5.28)

while α = log λ and β = logµ. The relation (5.20) holds up to the terms of order ∆2,
which is quite sufficient for passing to the limit as ∆ → 0.
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It was shown in [40] that after the modification of the diagonal matrix entries of
the L-operator following the rule48

(Ln(λ))11 7→ (L̃n(λ))11 = u∗n

(
1 +

S

2
(qv2

n + q−1v∗2n )
)
,

(Ln(λ))22 7→ (L̃n(λ))22 =
(

1 +
S

2
(qv2

n + q−1v∗2n )
)
un,

where S = (m∆/4)2, the pairwise products L̃n+1(λ)L̃n(λ) of L-operators satisfy
the relations (5.23), where

ωn,n+1 =
[
1 + S cos(β(xn + xn+1))

]
δ

(
xn+1 − xn −

β

4
+

2π
β

)
is a vector in the rigged Hilbert space L2(R2) and the eigenvalues of the operators
(L̃n+1(λ)L̃n(λ))11 and (L̃n+1(λ)L̃n(λ))22 at ωn,n+1 are independent of n and are
given by

α(λ) = 1 + S(λ2q−1 + λ−2q), δ(λ) = 1 + S(λ2q + λ−2q−1). (5.29)

A diagonalization of the commutative family tN (λ) = TrTN (λ), where TN (λ) is
the monodromy matrix

TN (λ) = LN (λ)LN−1(λ) · · ·L1(λ),

was done in the paper [40] by using the algebraic Bethe ansatz developed there
with generating vector

ΩN =
N/2∏
n=1

ωn,n+1. (5.30)

Letting N →∞ and ∆ → 0 in such a way that 2L = N∆ remains constant (or
using the Izergin–Korepin L-operator for finite ∆) and assuming that ΩN tends to
a vector Ω0, we see from (5.26) and (5.28), (5.29) that

Ψ(λ1, . . . , λn) =
n∏

l=1

BL(λl)Ω0

48The modification of the L-operator and the definition of ωn,n+1 used in [40] are different
from (but equivalent to) ours. We also mention the L-operator

Ln(λ) =

 u∗nρn
m∆

4

(
λv∗n −

1

λ
vn

)
m∆

4

(
1

λ
v∗n − λvn

)
ρnun

 , ρn =
(
1 + S(qv2n + q−1v∗2n )

)1/2
,

of the lattice SG model and the vector

ωn,n+1 =
[
1− 2S cos(β(u2n + u2n−1))

]−1/2
δ

(
u2n − u2n−1 −

β

4
+

2π

β

)
,

which were constructed in [103]. For these, the relations (5.20) and (5.23) for the pairwise products
of the L-operators hold with the same α(λ) and δ(λ) as in (5.29), but now for all ∆.
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is an eigenvector for the operators tL(λ) = TrTL(λ) with an eigenvalue

ΛL(λ;λ1, . . . , λn) = exp
{
m1 cosh(2α− iγ)L

2

} n∏
j=1

sinh(αj − α+ iγ)
sinh(αj − α)

+ exp
{
m1 cosh(2α+ iγ)L

2

} n∏
j=1

sinh(αj − α− iγ)
sinh(αj − α)

, (5.31)

if α1 = log λ1, . . . , αn = log λn satisfy the system of equations

exp{−im1 sin γ sinh(2αj)L} =
∏

16k6n
k ̸=j

sinh(αj − αk + iγ)
sinh(αk − αj + iγ)

. (5.32)

Here n is assumed to be finite and the ‘bare mass’ m in the L-operator is chosen
independent of ∆ so that m1 = m2∆/4 remains finite as ∆ → 0 (physicists call the
parameter 1/∆ the ‘cut-off momentum’). Thus, we are dealing with a system of
n particles with momenta m1 sin γ sinh(2αl) and energies m1 sin γ cosh(2αl), where
the rapidities 2αl satisfy (5.32).

However, this description is unsatisfactory. First, the state Ω0 has topological
charge Q = −∞. Second, the excitation energy becomes negative for Imαl = π/2.
In the physics language, Ω0 is a pseudovacuum and the excitations described are
quasi-particles. To resolve this difficulty, it was proposed in [40] to construct the
physical vacuum Ωphys as a ‘filled Dirac sea’ of quasi-particles with negative energy.
This means an application of a large number of operators BL(ieαl) to Ω0, where
the αl + πi/2 satisfy (5.32), which is formally written as

Ωphys = lim
∆→0
L→∞

∏
l

BL(ieαl)Ω0.

Since the operators BL(λ) raise the topological charge by 1, Ωphys has topological
charge Q = 0. This construction requires analysis49 of the limiting procedure
∆ → 0 and L → ∞ and a hypothesis on the uniform distribution of αl as L → ∞
on the interval −Λ 6 α 6 Λ with some density ρ(α), where

Λ ∼ log
1
m∆

.

In this limit, the system of equations (5.26) naturally becomes an integral
equation for the distribution function, and the requirement of finiteness of the
solution ρ(α) gives rise to a mass renormalization. Namely, it was shown in [40]
that the bare mass m depends on ∆ in the following way:

m = m(π−γ)/π
r ∆−γ/π , (5.33)

where the finite quantity mr (the ‘renormalized mass’) gives a scale for masses in
the theory, that is, the masses of physical excitations are proportional to mr.50

49See footnote 47.
50From the point of view of conformal field theory, it is natural to include the factor ∆−γ/π in

the definition of the operators vn and v∗n since the operators e±iβϕ(x)/2 have an ‘anomalous dimen-
sion’. Then the expressions m(π−γ)/π

r vn and m
(π−γ)/π
r v∗n in the L-operator have the dimension

of mass.
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We have
ρ(α) = Cmr coshα′,

where the constant C depends only on γ, and

α′ =
πα

π − γ
.

Physical excitations differ from the vacuum by finitely many quasi-particles that
polarize the vacuum. For example, a one-particle state is obtained by adding one
quasi-particle with real α. This ‘pushes out’ the vacuum’s quasi-particles and gives
rise to the formation of a ‘hole’ (omitting one of the αk + πi/2 with αk close to α),
which is formally written as

Ψ(α) = lim
∆→0
L→∞

BL(eα)
∏

l

BL(ieα̃l)Ω0.

One constructs a scattering state of n particles Ψ(α1, . . . , αn) obtained by adding n
quasi-particles with real α1, . . . , αn to the vacuum in a similar way.51 Their bound
states Ψn(α) are obtained by adding a ‘string’ (a bound state of n quasi-particles
with n 6 [π/γ]− 1) to the vacuum, where

αj = α+ iγ

(
j − n+ 1

2

)
, j = 1, . . . , n,

and the soliton–antisoliton pair Ψ(αs, αs) is constructed in a slightly more compli-
cated way. Denoting the mass of a main particle by M we find that the mass of
a bound state of n particles is

Mn = M
sin(nγ′/2)
sin(γ′/2)

, (5.34)

and the mass of a soliton is given by

Ms =
M

2 sin(γ′/2)
, (5.35)

where
γ′ =

πγ

π − γ

is the renormalized coupling constant. The exact formula (5.34) becomes the for-
mula (5.3) in the one-loop approximation, and the formulae (5.34) and (5.35) tend
to the classical formulae (4.16) in the semiclassical limit.52

51A construction of the ‘physical’ Hilbert space H spanned by these vectors as a subspace of
the non-separable Hilbert space H∞ (the tensor product of the rigged Hilbert spaces L2(R) over
all x ∈ R) is a difficult problem in functional analysis. See also the definition of the asymptotic
space Has in § 8.2.2.

52In the modern approach, solitons and antisolitons of massms are referred to as main particles
of the SG model. They have bound states (breathers) of masses 2ms sin(γ′k/2), where k 6 [π/γ′].
These main particles correspond to k = 1 and are absent when γ′ > π/2. Breathers may also be
regarded as bound states of the main particles, which is in accordance with ‘nuclear democracy’.
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Finally, defining an operator A(λ) as

A(λ) = lim
L→∞

tL(λπ−γ/πeiγ/2)
ΛL(λπ−γ/πeiγ/2)

,

where ΛL(λ) is the eigenvalue of the operator (5.5) at Ψ(α) for finite L, and defin-
ing B(λ) as the creation operator of the main particle,

B(λ)Ψ(α1, . . . , αn) = Ψ(α, α1, . . . , αn),

we get that A(λ) and B(λ) satisfy the relation (5.9) (predicted in [39]), where
ρ̌(λ, µ) is given by (5.11) with γ replaced by γ′! As in the classical case, the
quantum operators of momentum P and energyH can be found from the asymptotic
behaviour of the operator A(λ),

logA(λ) =
∞∑

j=1

I±2j−1e
∓α(2j−1), α→ ±∞, (5.36)

using formulae analogous to (4.13):

P =
Ms

4
(I−1 + I+

1 ), H =
Ms

4
(I−1 − I+

1 ).

This completes our description of [40].53

5.6. Quantum inverse scattering method: spin chains. Besides [40], the
algebraic Bethe ansatz was also described in detail in [41] along with Baxter’s
transfer-matrix method. Our exposition in § 5.3 is mainly based on [41]. Faddeev
very much liked to present this construction in his pedagogical surveys and lectures
([42], [43], [47], [61], [68], [69], [72], [77], [79]). However, the main theme of [41]
was a generalization of the algebraic Bethe ansatz to the so-called XY Z spin chain.
This integrable model is given by the Hamiltonian

HXY Z = −1
2

N∑
n=1

(Jxσ
1
nσ

1
n+1 + Jyσ

2
nσ

2
n+1 + Jzσ

3
nσ

3
n+1), (5.37)

defined as an operator in the quantum space (C2)⊗N . Here

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
are the standard Pauli matrices and the σa

n, a = 1, 2, 3, are their embeddings
in (C2)⊗N as operators acting on the nth factor of the tensor product. The peri-
odicity condition n+N ≡ n is also assumed in (5.37). When Jx = Jy, the Hamil-
tonian HXY Z commutes with the so-called magnon number operator

M =
N∑

n=1

(σ3
n − 1), (5.38)

53In the beginning of 1979, Faddeev sent a telegram to C.-N. Yang “Solved Sine-Gordon model
by Bethe Ansatz” and received his answer “Congratulations!” (there was no e-mail at that time).
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and the corresponding R-matrix is of the form (5.22), which enables us to use the
algebraic Bethe ansatz with a local generating vector ωn such that

(σ1
n + iσ2

n)ωn = 0.

However, in the general case of unequal constants J , the R-matrix has additional
non-zero entries d(λ, µ),

R̂(λ, µ) =


1 0 0 d(λ, µ)
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0

d(λ, µ) 0 0 1

 , (5.39)

and is parametrized by elliptic functions. It follows that the Hamiltonian HXY Z

does not commute with M , the operators B(λ) do not commute, there are no gen-
erating vectors annihilated by C(λ), and the algebraic Bethe ansatz in its original
form is not applicable. Baxter was able to bypass these obstacles and find the
spectrum of HXY Z using a very complicated ad hoc construction (the Q-operator
method). In [41], Takhtajan and Faddeev showed that Baxter’s construction can
be completely immersed in QISM after a modification of the latter. Thus, by intro-
ducing gauge transformations of the local L-operators

L′n(λ) = Mn+1(λ)Ln(λ)Mn(λ)

with carefully chosen matrices Mn(λ), one can ensure that a λ-independent local
generating vector exists for L′n(λ).54 These gauge transformations were used in [41]
to construct multiparameter operators Akl(λ), Bkl(λ), Ckl(λ), and Dkl(λ) whose
commutation relations enable one to apply the algebraic Bethe ansatz construc-
tion. It should be noted that the term the ‘Baxter–Yang equation’ (subsequently
transformed into the now commonly accepted Yang–Baxter equation) for (5.12) first
appeared in [41].

The papers [44] and [45] by Faddeev and Takhtajan are devoted to a study of the
so-called spin XXX-chain, that is, the Hamiltonian (5.37) in the totally isotropic
case

Jx = Jy = Jz ≡ J.

In this case the Hamiltonian has an additional symmetry: HXXX commutes with
the total spin operators

Sa =
1
2

N∑
n=1

σa
n, a = 1, 2, 3. (5.40)

As was shown in [44] and [45], this global SU(2)-symmetry implies that the
operators B(λ) generate by means of (5.24) only highest weight vectors with respect
to the action (5.40) (that is, the vectors annihilated by the operator S+ ≡ S1+iS2).

54This construction was discussed from the point of view of algebraic geometry by
Krichever [104].
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The missing eigenvectors of the Hamiltonian HXXX are obtained by applying the
operator S− = S1 − iS2 to the highest weight vectors.

The spectrum of HXXX in the limit N → ∞ under the antiferromagnetic con-
dition J > 0 was also studied in [44] and [45]. When J > 0, the vector Ω gener-
ating the Bethe ansatz is not a physical vacuum (that is, an eigenvector of HXXX

with the minimum eigenvalue). To construct the physical vacuum and excitations,
one needs a procedure for ‘filling the pseudovacuum’ similar to that described for
the SG equation in § 5.5. An accurate study of the algebraic Bethe ansatz equations
for elementary excitations (spin waves) over the physical vacuum in [44] and [45]
revealed a surprising fact: the spin of a spin wave turned out to be not equal to 1 (as
physicists had erroneously assumed) but to 1/2 instead. This discovery attracted
the attention of experts in solid state physics, and the papers [44] and [45] were
often cited subsequently.

Many of Faddeev’s colleagues in theoretical physics were puzzled by his interest
in integrable models: their applicability seemed to be confined to two-dimensional
space-time. However, knowing the history of the development of physics and mathe-
matics, he was fully aware of the universal importance of the exact solutions, and his
intuition again proved to be infallible! The interest of theoretical physicists working
on realistic models of QFT in integrable models began with Lipatov’s well-known
paper [115] on high-energy scattering of hadrons in special kinematics. It was shown
there that an essential part of the hadron scattering amplitude is described by
a quantum integrable chain. Remarkably, it was shown in the joint paper [71] by
Faddeev and G. P. Korchemsky that this chain coincides with an integrable ver-
sion of the isotropic Heisenberg magnet of spin s = 0 for the non-compact group
SL(2,C). This made it possible to apply the full power of QISM to Lipatov’s prob-
lem and related issues. And this was only the beginning of modern applications of
the theory of integrable models to problems of QFT in four-dimensional space-time.
For example, integrable models are now used to study the correspondence (dis-
covered by Maldacena) between string theory in Lobachevskii’s five-dimensional
space and conformal theory on its boundary (more precisely, the absolute), and
it was recently discovered by Nekrasov and S. L. Shatashvili that a description
of the vacuum sector in supersymmetric quantum field theories (in particular, in
four-dimensional space-time) directly gives rise to quantum integrable systems.
These and other applications of the theory of quantum integrable systems along
with their brief history were presented in Faddeev’s last survey [79] in 2013.

6. Quantum groups

6.1. Quantization of Lie groups and algebras. The classical inverse scatter-
ing method served as a basis for new mathematical structures and notions. For
example, the notion of classical r-matrix (introduced by Sklyanin) led Drinfeld to
the creation of the theory of Poisson–Lie groups (Lie groups endowed with Poisson
structures compatible with the group operation). In a similar way, quantum Lie
groups and algebras were introduced as abstractions of concrete algebraic construc-
tions arising within the quantum inverse problem method. We give two illustrative
examples.
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1. In [53], Faddeev and Takhtajan introduced the C-algebra Aq with generators
a, b, c, and d and relations

ab = qba, ac = qca, bc = cb, bd = qdb, cd = qdc,

ad− da = (q − q−1)bc,
(6.1)

where q ∈ C \ {0}. These relations possess the following remarkable property.
Consider the matrices

T ′ =
(
a′ b′

c′ d′

)
and T ′′ =

(
a′′ b′′

c′′ d′′

)
,

where a′, b′, c′, d′ and a′′, b′′, c′′, d′′ are commuting sets of elements satisfying (6.1).
Then the set a, b, c, d such that

T =
(
a b
c d

)
= T ′T ′′

also satisfies these relations. In other words, the basic relations (6.1) are preserved
by matrix multiplication, that is, Aq is a bialgebra with coproduct ∆ given on the
generators a, b, c, and d by

∆(T ) = T
.
⊗ T,

where the symbol
.
⊗ means the tensor product of algebras and the ordinary product

of matrices. Since the generators a, b, c, d commute as q → 1, the algebra Aq may
be regarded as a deformation (quantization) of the commutative algebra C[a, b, c, d]
of polynomial functions on the algebra M2(C) of 2× 2 matrices.

2. Kulish and Reshetikhin [107] and Sklyanin [122] considered the C-algebra U~
with generators H and X± and relations

[H,X±] = ±2X± and [X+, X−] =
sinh(~H)

sinh ~
, (6.2)

where ~ ∈ C plays the role of the Planck constant and formal power series in ~ of
type e±~H/2 are allowed in the algebra U~. Sklyanin [123] showed that U~ is also
a bialgebra with coproduct

∆(H) = H ⊗ 1 + 1⊗H, ∆(X±) = X± ⊗ e−~H/2 + e~H/2 ⊗X±.

As ~ → 0, the relations (6.2) tend to commutation relations for the generators of the
Lie algebra sl(2). Therefore, U~ may be regarded as a deformation (quantization) of
the universal enveloping algebra Usl(2) of the Lie algebra sl(2). U~ is also commonly
defined to be the C-algebra with generators E, F , K, and K−1 and relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, and [E,F ] =
K −K−1

q − q−1
,

where q = e~. Here one has

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F, ∆(K) = K ⊗K,
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and the formulae

E = iX+e~H/2, F = −ie−~H/2X−, K±1 = e±~H (6.3)

establish an equivalence of the two definitions.
The second example was a model for the general definition (given by Jimbo

and Drinfeld) of the quantum universal enveloping algebra U~g of a simple Lie
algebra g. Namely, Drinfeld observed that the theory of Hopf algebras gives the
most appropriate description of the main relations for the monodromy matrices in
the quantum inverse scattering method. Accordingly, he defined quantum groups
as special Hopf algebras.

The main algebraic formulae of the quantum inverse problem method, which in
particular give rise to the examples above, are of the form

R12R13R23 = R23R13R12 (6.4)

and
RT1T2 = T2T1R. (6.5)

They are obtained from (5.12) and (5.17) by taking the appropriate limit

λ, µ, λ− µ→∞,

where we omit the subscript N of TN and put T1 = T ⊗ I and T2 = I ⊗ T
(see § 5.3). However, these relations were not used to full extent in the papers on
quantum groups mentioned above. Therefore, these formulae were taken as a basis
for the systematic definition of quantum Lie groups and algebras in the joint papers
[56] and [59] with Reshetikhin and Takhtajan. This approach, also known as the
Reshetikhin–Takhtajan–Faddeev (FRT in English) formalism, is widely used in
the theory of quantum groups and its applications.

This approach is based on the following simple construction [56], [59]. For every
non-singular n2×n2 matrix R there is a naturally related bialgebra AR, the algebra
of functions on the quantum matrix algebra of rank n associated with R. Namely,
let C⟨tij⟩ be a free associative C-algebra with identity 1 and generators tij , i, j =
1, . . . , n, and let IR be the two-sided ideal in C⟨tij⟩ generated by the relations (6.5).
One defines AR as the quotient algebra

AR = C⟨tij⟩/IR.

It is a bialgebra with coproduct ∆ and co-unit ε which are defined on the genera-
tors tij by the formulae

∆(tij) =
n∑

k=1

tik ⊗ tkj , ε(tij) = δij , i, j = 1, . . . , n,

that is,
∆(T ) = T

.
⊗ T and ε(T ) = I.

Furthermore, let C⟨x1, . . . , xn⟩ be the algebra of non-commutative polynomials in
the variables x1, . . . , xn and let P be the permutation matrix in Cn ⊗ Cn:

P (u⊗ v) = v ⊗ u, u, v ∈ Cn.
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For every polynomial f(t) ∈ C[t] we define Cn
f,R, the algebra of functions on the

quantum n-dimensional vector space associated with the polynomial f(t) and
the matrix R to be the quotient algebra

Cn
f,R = C⟨x1, . . . , xn⟩/If,R,

where If,R is the two-sided ideal in C⟨x1, . . . , xn⟩ generated by the relations

f(R̂)(x⊗ x) = 0, R̂ = PR,

and x is the column vector of the generators x1, . . . , xn. Defining an algebra homo-
morphism

δ : Cn
f,R → AR ⊗ Cn

f,R

on the generators by

δ(xi) =
n∑

k=1

tik ⊗ xk,

so that δ(x) = T
.
⊗ x, we easily see that the map δ determines a coaction of

the bialgebra AR on the algebra Cn
f,R, endowing it with the structure of a left

AR-comodule.
In the case when the matrix R satisfies the Yang–Baxter equation (6.4), a general

method for constructing a Hopf algebra from the bialgebra AR was given in [59].
Remarkably, the Yang–Baxter equation has a series of solutions55 Rq parametrized
by the simple Lie algebra g and a parameter q ∈ C∗ = C\{0}. The non-commutative
Hopf algebra corresponding to the bialgebra ARq

is the desired algebra of functions
Fun(Gq) on the quantum group Gq, where G is the Lie group with Lie algebra g. In
the ‘classical limit’ as q → 1 the Hopf algebra Fun(Gq) becomes a commutative Hopf
algebra: the algebra of polynomial functions on the simple Lie group G endowed
with the additional structure of a Poisson–Lie group.

This procedure of defining the quantum groups Gq is similar to defining the
classical Lie groups as algebraic groups (algebraic subvarieties in the space Mn(C)
of n × n matrices). In contrast to the case q = 1, when all simple Lie groups
are embedded in ‘Her All-embracing Majesty’ Mn(C) (as expressed by Herman
Weyl), the algebras AR corresponding to distinct series of simple Lie algebras are
non-isomorphic for q ̸= 1. This illustrates once again Faddeev’s favourite principle:
‘quantization removes degeneracy’. Hence, the case q ̸= 1 is more fundamental in
a certain sense.

For example, the matrix R = Rq corresponding to the series An−1 is of the form

Rq = q

n∑
i=1

eii ⊗ eii +
∑

i,j=1,...,n
i ̸=j

eii ⊗ ejj + (q − q−1)
∑

i,j=1,...,n
i>j

eij ⊗ eji, q ∈ C∗,

where the eij are the matrix units, and it satisfies the Hecke condition

R̂2
q = (q − q−1)R̂q + I, R̂q = PRq.

55The solutions Rq are obtained by a special limiting procedure as λ → ∞ from the
R-matrices R(λ) corresponding to quantum integrable models. They play an important role
in the construction of invariants of knots and links.
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The bialgebra Aq = ARq
(the algebra of functions on the matrix algebra of rank n)

coacts on the algebra of functions on quantum n-dimensional Euclidean space, the
algebra Cn

q with generators x1, . . . , xn and relations

xixj = qxjxi, 1 6 i < j 6 n,

as well as on the q-exterior algebra of the quantum vector space Cn
q , the finite-

dimensional algebra
∧• Cn

q with generators x1, . . . , xn and relations

x2
i = 0, xixj = −q−1xjxi, 1 6 i < j 6 n.

These algebras are obtained from Cn
f,Rq

by specifying

f(t) = t− q and f(t) = t+ q−1,

respectively (in the latter case, for q2 ̸= −1).
In general position (when q is not a root of unity), the centre of the corresponding

algebra Aq is generated by the quantum determinant

detq T =
∑

σ∈Sym(n)

(−q)l(σ)t1σ1 · · · tnσn
,

where l(σ) is the length (number of transpositions) of the permutation σ. We have

∆(detq T ) = detq T ⊗ detq T.

The quotient algebra of Aq by the relation detq T = 1 is called the algebra of func-
tions on the quantum group SLq(n) and is denoted by Fun(SLq(n)). The bialgebra
Fun(SLq(n)) is a Hopf algebra with the antipode S,

S(tij) = (−q)i−j t̃ji, i, j = 1, . . . , n,

where the t̃ij are the so-called quantum cofactors,

t̃ij =
∑

σ∈Sym(n−1)

(−q)l(σ)t1σ1 · · · ti−1σi−1ti+1σi+1 · · · tnσn
,

and
σ = (σ1, . . . , σi−1, σi+1, . . . , σn) = σ(1, . . . , j − 1, j + 1, . . . , n).

The Hopf algebra Fun(GLq(n)) is similarly defined as the quotient algebra of Aq⟨t⟩
by the relations

ttij = tijt, t detq T = detq T t, i, j = 1, . . . , n,

and we have
S(t) = detq T, S(tij) = t(−q)i−j t̃ji.

In the simplest case when n = 2 the matrix Rq is of the form

Rq =


q 0 0 0
0 1 0 0
0 q − q−1 1 0
0 0 0 q

 . (6.6)
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It was used in [53]. Putting

T =
(
a b
c d

)
,

we obtain (6.1), where detq T = ad− qbc and if detq T = 1, then

S(T ) =
(

d −q−1b
−qc a

)
.

Moreover, C2
q is given by Weyl’s commutation relations

uv = qvu

and the corresponding q-exterior algebra is given by the relations

ζ2 = η2 = 0 and ζη = −q−1ηζ.

Real forms of the quantum group SLq(n) arise when |q| = 1 and q ∈ R. We
obtain the quantum group SLq(n,R) in the first case and SUq(n) in the second.
Quantum groups of the classical series Bn, Cn, Dn and their real forms were studied
in detail in [59].

Let g be the Lie algebra of a Lie group G, and Ug its universal enveloping algebra.
Schwartz’s classical relation realizes Ug in the form

Ug ∼= C−∞e (G), (6.7)

where C−∞e (G) is the algebra of distributions on G supported at the identity ele-
ment e. The following general construction of quantization of simple Lie alge-
bras, which was proposed in [56] and [59], takes (6.7) for a starting point. Con-
sider the bialgebra AR, where R satisfies the Yang–Baxter equation and let A∗R =
Hom(AR,C) be the dual space to AR. The coproduct ∆ in AR induces a product
in A∗R by the formula

(l1l2, a) = (l1 ⊗ l2,∆(a)), l1, l2 ∈ A∗R, a ∈ AR,

and endows A∗R with the structure of a C-algebra. Putting

R(+) = PRP, R(−) = R−1,

we let UR denote the subalgebra of A∗R generated by the elements l(ε)ij , ε = ±,
i, j = 1, . . . , n, which are defined as follows in terms of the matrix-valued functionals
L(ε) = {l(ε)ij } ∈Mn(A∗R):

(L(ε), T1 · · ·Tk) = R
(ε)
1 · · ·R(ε)

k , ε = ±, (6.8)

where
Ti = I ⊗ · · · ⊗ T︸︷︷︸

i

⊗ · · · ⊗ I ∈Mn(AR)

and the matrices R(±)
i act non-trivially only on the 0th and ith factors in the tensor

product Cn ⊗ · · · ⊗ Cn (k + 1 times) and coincide there with the matrices R(±).
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By (6.4), the formula (6.8) is compatible with the relations in AR. The algebra UR

is a bialgebra with coproduct

∆(L(ε)) = L(ε)⊗̇L(ε) (6.9)

and relations

R(+)L
(ε)
1 L

(ε)
2 = L

(ε)
2 L

(ε)
1 R(+), (6.10)

R(+)L
(+)
1 L

(−)
2 = L

(−)
2 L

(+)
1 R(+), (6.11)

where
L

(ε)
1 = L(ε) ⊗ I, L

(ε)
2 = I ⊗ L(ε) ∈Mn2(UR), and ε = ±.

When the R-matrix is associated56 with a simple Lie algebra g, the bialgebra UR

is a Hopf algebra with the antipode

S(L(ε)) = Sq−1(L(ε)),

where Sq is the antipode in the Hopf algebra Fun(Gq). Remarkably, the Hopf alge-
bra UR is the required completion of the quantum universal enveloping algebra Uqg.
The matrices L(+) and L(−) are upper-triangular and lower-triangular respectively,
and their non-zero entries are generators of the quantum Cartan–Weyl basis for Uqg.
The complicated relations and formulae for the coproducts of the generators of the
quantum Chevalley basis in the Drinfeld–Jimbo approach follow from the simple
formulae (6.9)–(6.11).

When n = 2, we have

L(+) =
(
e~H/2 (q − q−1)X+

0 e−~H/2

)
and L(−) =

(
e−~H/2 0

−(q − q−1)X− e~H/2

)
,

where q = e~ and H and X± are the generators of the Kulish–Reshetikhin alge-
bra (6.2). When |q| = 1, we obtain a real form Uqsl(2,R), the algebra Uqsl(2) with
anti-involution ∗ acting by the formulae

H∗ = H and X∗
± = −X±,

which is equivalent by (6.3) to the formulae

E∗ = E, F ∗ = F, and K∗ = K.

The infinite-dimensional case of loop groups and algebras was also considered
in [56]. These particular examples first appeared in the framework of the inverse
problem method and served as a basis for developing the notion of quantum group.
In the semiclassical limit as q → 1 (~ → 0) the construction presented in [56]
and [59] gives rise to Poisson structures on Lie groups and algebras, and these
structures are naturally described in terms of the classical r-matrix. In particular,
they give rise to Lie–Poisson groups and Lie bialgebras, which play an important

56Thus, R = cRq , where c = q−1/n for the series An−1 and c = 1 for the series Bn, Cn

and Dn.
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role in the Hamiltonian interpretation of the classical inverse scattering method
presented in the monograph [52].

Faddeev liked the main relation (6.5) and often returned to it in his subsequent
papers. He used it in [60] for the exchange algebra in the Wess–Zumino–Novikov–
Witten model, to describe the quantum cotangent bundles of Lie groups in the
joint paper [62] with A. Yu. Alekseev, as well as to construct lattice analogues of
Kac–Moody algebras in [63] jointly with Alekseev and Semenov-Tian-Shansky. This
relation was a basis for a series of joint papers [64], [65], and [67] with A. Yu. Volkov
and [74] and [75] with R. M. Kashaev, which are devoted to the lattice Liouville
model introduced in [53] and the general properties of quantum lattice models.

6.2. Quantum dilogarithm and modular double. Drinfeld showed that the
R-matrices Rq in the previous subsection can be obtained as

Rq = (ρ⊗ ρ)(R),

whereR∈Uqg⊗Uqg is the universalR-matrix he introduced, and ρ is a finite-dimen-
sional representation of the algebra Uqg. Faddeev noted in his paper [73] (which
became classical) that in the simplest case when g = sl(2) Drinfeld’s formula can
be written as

R = q(H⊗H)/2sq

{
−(q − q−1)(E ⊗ F )

}
, (6.12)

where we use the generators E and F , and the well-known classical q-product

sq(x) =
∞∏

k=1

(1 + q2k+1x)

is absolutely convergent for |q| < 1. Euler’s identities of 1748,

sq(x) = 1 +
∞∑

n=1

qn(n−1)/2xn

(q−1 − q) · · · (q−n − qn)

= exp
{ ∞∑

n=1

(−1)nxn

n(qn − q−n)

}
, where |x|, |q| < 1,

show that the function sq(x) may be regarded as both the q-exponential function
and Euler’s q-dilogarithm!

Let U , V be a Weyl pair, that is, a pair of operators in a Hilbert space H
satisfying

UV = q2V U.

The famous Schützenberger formula

sq(U)sq(V ) = sq(U + V )

confirms the interpretation of sq(U) as a non-commutative exponential function.
The remarkable pentagonal relation

sq(V )sq(U) = sq(U)sq(q−1UV )sq(V ),
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which was derived by Faddeev and Volkov in [65], is a non-commutative analogue
of the five-term relation for the Rogers dilogarithm (see the joint paper [66] with
Kashaev).

The function sq(x) is defined only for |q| < 1. This makes it inapplicable to the
case when |q| = 1 which corresponds to the quantum group SLq(2,R) (see § 6.1).
Faddeev [70] suggested considering the ratio

sq(x)
sq̃(x̃)

, where q = eiπτ , q̃ = e−πi/τ , and x̃ = x1/τ ,

instead of sq(x). Thus, we put57 τ = b2 and, following [70] and [73], consider the
function

Φb(z) =
sq(e2πbz)
sq̃(e2πb−1z)

(6.13)

for Im b > 0 and Re b > 0. Remarkably, Φb(z) as a function of b extends analytically
to the domain b ∈ C \ iR and determines a meromorphic function of z. Indeed,
when

Im b > 0, Re b > 0, and | Im z| < |Re(b+ b−1)|
2

,

(6.13) may be rewritten as

Φb(z) = exp
{
−1

4

∫ ∞

−∞

e−2itz

sinh(bt) sinh(b−1t)
dt

t

}
, (6.14)

where the contour of integration circumvents the singularity at t = 0 from above
(see [70]). It follows from (6.14) that Φb(z) determines a meromorphic function of z
for all b satisfying Re b ̸= 0. The function Φb(z) is the ‘Faddeev quantum diloga-
rithm’ or the quantum modular dilogarithm. It possesses the symmetry property

Φb(z) = Φ−b(z) = Φb−1(z)

and satisfies the functional equations

Φb(z + ib) = (1 + qe2πz)Φb(z),

Φb(z − ib) = (1 + q−1e2πz)−1Φb(z).

The function Φb(z) has an interesting history. Under the name of ‘double sine’
it appears in Shintani’s paper on the Kronecker limit formula for real quadratic
number fields and Kurokawa’s paper on the theory of the Selberg zeta function.
In Ruijsenaars’ paper on quantum chains of Calogero–Moser type it is called the
‘hyperbolic gamma function’ and is expressed as a ratio of double gamma functions,
which were introduced by V. P. Alekseevskii in 1889 and E. V. Barnes in 1899.
Surprisingly, the Alekseevskii–Barnes function also occurs in the expressions for the
S-matrix (obtained by Zamolodchikov) and the form-factors (obtained by Smirnov)
of the quantum SG model.

57In his papers on this subject Faddeev liked to use Weierstrass’ old normalization ωω′ = −1/4
for the periods 2ω, 2ω′ of elliptic functions. In our notation, ω′ = ib/2, ω = i/(2b), and τ = b2.
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Faddeev’s remarkable discovery is his invention of the modular double of the
quantum algebra Uqsl(2) and his explanation of the fundamental role of the func-
tion Φq.

Namely, for all z ∈ C the map

K 7→ q−1uv, E 7→ i
v + u−1z

q − q−1
, F 7→ i

u+ v−1z−1

q − q−1

determines an algebra homomorphism rq,z : Uqsl(2) → C2
q2 , where C2

q2 is also
extended by adding the elements u−1 and v−1. We have

rq,z(C) = −(z + z−1),

where
C = qK + q−1K−1 + (q − q−1)2FE

is the quantum Casimir element, which generates the centre of Uqsl(2) if q is not
a root of unity. When |q| = 1, that is, q = eπiτ for some τ ∈ R, the algebra C2

q2

admits a representation in the Hilbert space H = L2(R) which sends the generators
u and v to the following unitary operators U and V :

(Uf)(x) = e−2πixf(x) and (V f)(x) = f(x+ τ), f ∈ H .

If τ /∈ Q, then the centralizer of the subalgebra ρ(C2
q2) in the algebra L(H ) of all

bounded operators is the image of the dual subalgebra C2
q̃2 with q̃ = e−πi/τ and

with generators ũ and ṽ under the representation ũ 7→ Ũ and ṽ 7→ Ṽ , where

(Ũf)(x) = e2πix/τf(x) and (Ṽ f)(x) = f(x+ 1), f ∈ H .

The corresponding homomorphism rq̃,z̃ of the dual Hopf algebra Uq̃sl(2) with gen-
erators Ẽ, F̃ , and K̃ to the dual algebra C2

q̃2 is given by the same formulae as above,
where z̃ = z1/τ . It is convenient to put z = e2πbλ, so that

z̃ = e2πλ/b, λ ∈ C.

An important fact (see [70]) is that the representation of the tensor product C2
q2 ⊗

C2
q̃2 in L2(R) is already irreducible.
This basic observation led Faddeev to the notion of the modular double of the

Hopf algebra Uqsl(2). This is the Hopf algebra

Dmod = Uqsl(2)⊗ Uq̃sl(2), where q = eπiτ and q̃ = e−πi/τ , τ ∈ C. (6.15)

Similarly to the q-dilogarithm, Faddeev’s quantum dilogarithm satisfies a pentag-
onal relation, and as was shown in [73], the Hopf algebra Dmod also admits a uni-
versal R-matrix, which is given by the analogue of (6.12) with sq now replaced by
the modular-invariant function Φq! The universal R-matrix is now defined for all
q ∈ C∗, including the case |q| = 1, which is interesting for applications.

In the case |q| = 1 the composition of rq,z ⊗ rq̃,z̃ with the unitary representa-
tions considered above of the algebras C2

q2 and C2
q̃2 realizes a representation of the



1042 L.A. Takhtajan, A .Yu. Alekseev, I. Ya. Aref’eva et al.

modular double Dmod in L2(R). However, this representation does not satisfy the
condition that Uqsl(2,R) must be a real form, that is, the generators E, F , K and
Ẽ, F̃ , K̃ of the modular double must be represented by self-adjoint operators acting
in L2(R). To avoid this difficulty and construct the modular double representation
for Uqsl(2,R), Faddeev [73] proposed the use of representations of the algebras C2

q2

and C2
q̃2 by unbounded operators! Thus, let the generators u, v and ũ, ṽ be rep-

resented by the unbounded positive-definite self-adjoint operators U , V and Ũ , Ṽ
given by the following formulae58 on appropriate domains in L2(R):

(Uf)(x) = f(x+ ib), (V f)(x) = e2πbxf(x), (6.16)

(Ũf)(x) = f

(
x− i

b

)
, (Ṽ f)(x) = e2πx/bf(x). (6.17)

On the common invariant domain consisting of linear combinations of the func-
tions P (x)e−x2+cx, where P (x) is a polynomial and c ∈ C is arbitrary, the oper-
ators U and V commute59 with Ũ and Ṽ and, for λ ∈ R, determine a unitary
modular-double representation of Uqsl(2,R). Such representations correspond to
principal series representations of the Lie algebra sl(2,R) and are parametrized
by the real number λ. In [78], Faddeev constructed analogues of discrete series
representations of the modular double Dmod in another interesting case |τ | = 1.

Faddeev’s papers on these topics became widely known and useful both in pure
mathematics and applications to conformal field theory, including his favourite
quantum lattice Liouville model. In this model one naturally encounters the
functional-difference operator U + U−1 + V acting in L2(R), where U and V are
given by (6.16). In their recent joint paper [81], Faddeev and Takhtajan considered
the spectral theory of this operator and proved an eigenfunction expansion
theorem, which is a q-analogue of the well-known Kontorovich–Lebedev transform
in the theory of special functions. An analogue of the modified Bessel functions in
this case is Kashaev’s wave function, the Fourier transform of the product of two
of Faddeev’s quantum dilogarithms.

7. Quantum field theory. Gauge fields

7.1. Yang–Mills theory. Faddeev’s papers on the theory of Yang–Mills fields
are perhaps the best known and most important of all his papers of the 1960s.
They are also related to a very dramatic story, which Faddeev himself described
vividly in his address to the General Meeting of the Russian Academy of Sciences
of March 27, 2014, on the occasion of receiving the M.V. Lomonosov Medal, the
highest award of the Academy of Sciences. He entitled this address “My life amid
quantum fields” [80].

Faddeev’s interest in quantum field theory was already aroused in his student
years when Ladyzhenskaya organized a special seminar for students on the math-
ematical aspects of quantum field theory, where Faddeev was the main speaker.
However, quantum field theory had difficulties in mid 1950s and even went out

58Here we use the same notation as in [81].
59We stress that these operators commute only on a common invariant domain. Their resolu-

tions of the identity do not commute!



Scientific heritage of L.D. Faddeev 1043

of fashion for a long time. The striking successes of quantum electrodynamics
(QED) were followed by a decade of failed attempts to use field theory to calculate
intranuclear forces. The final coup was the discovery of the so-called ‘zero-charge
paradox’ by Landau and Pomeranchuk. This paradox, also known as the Landau
pole problem (which is closer to the point), concerns QED, which worked perfectly
(in contrast to the meson theory of nuclear forces) and enabled one to calculate
subtle effects with unparalleled precision. Nevertheless, the result of an intricate
(and correct!) calculation by Landau and Pomeranchuk seemed to reveal a direct
logical contradiction in its foundations.60

In § 1.3 we discussed the joint paper [11] by Faddeev and Berezin. This was their
contribution to the explanation of the zero-charge paradox. They constructed an
example which, on the one hand, showed that this problem is not an artifact of per-
turbation theory and, on the other hand, left the hope of constructing non-trivial
models of field theory that are free from the difficulties related to the Landau pole,61
that is, models with β(g) < 0. However, the consensus of theorists on the eve of
the 1960s was completely to the opposite. In his last short paper “Fundamental
problems” [108] in 1960, written just before the tragic car accident that cut short
his scientific career, Landau wrote that “the Hamiltonian method for strong inter-
action is dead and must be buried, although of course with all deserved honours”.
“The brevity of life”, concluded Landau, “does not allow us the luxury of spending
time on problems which will lead to no new results”. In the early 1960s Landau’s
followers treated these words of his as the Master’s testament, and when Faddeev
and Popov made a decisive step forward (on the basis of functional integration
in the Lagrangian approach) in quantum Yang–Mills theory in 1966, no leading
physics journal in the USSR would publish their paper —nor could it be published
abroad (this required permission from the Department of Nuclear Physics of the
USSR Academy of Sciences). As a result, Faddeev and Popov were only able to
publish the preprint62 [20] in the Kiev Theoretical Physics Institute of the Academy
of Sciences of the Ukrainian SSR and to send a short two-page text [21] to the new
European journal Physics Letters.

The geometric beauty of Yang–Mills theory was not immediately recognized.
Faddeev originally wanted to study quantum gravitation, regarding Yang–Mills
fields as a simpler model example. We know now that this example proved to
be exceptionally successful. It made it possible to generalize QED, unify it with

60From the modern point of view, it says that the Gell-Mann–Low β-function is positive,
whence the QED perturbation series becomes inapplicable at small distances starting with some
finite value of energy/distance (such that the effective expansion constant is infinite); quantum
theory is incomplete and needs redefinition. Theories with β < 0 (asymptotically free theories),
where the Landau pole problem does not occur, were unknown at that time and perhaps conceived
to be non-existent at all, otherwise quantum field theory would not have been ‘forbidden’ by
Landau and his school. In the beginning of the 1970s Gross, Wilczek, and Politzer showed that
the Yang–Mills theory is asymptotically free and the ‘zero-charge paradox’ does not occur.

61In his lectures in the Faculty of Physics Faddeev described this example and its relation
to the Landau pole problem in detail. However, this was not included in the Doklady note, where
the authors only presented their exact results on self-adjoint extensions of the Laplace operator.
Certainly, this reflects the lack of communication between mathematical and theoretical physics,
which was typical at that time: the results of theorists were supposedly beyond mathematical
discourse while the results of mathematicians were often neglected by theorists.

62Translated into English only in 1972.
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weak interactions, and construct the first systematic theory of strong interactions.
Geometrically, Yang–Mills theory is nothing but a ‘general theory of relativity in
the charge space’, and in this sense it is very close in spirit to Einstein’s theory of
gravitation. The idea that the general covariance principle (underlying the general
theory of relativity) is related to gauge invariance in electrodynamics goes back
to Hermann Weyl. The very term ‘gauge transformation’ has to do with Weyl’s
instructive mistake: in 1918 he suggested a geometric treatment of electromag-
netic fields as connections with a one-dimensional Abelian structure group. But
since quantum mechanics with its complex-valued wave functions had not yet been
created, scaling transformations seemed to be the only possible group. Weyl conjec-
tured that parallel translations in an electromagnetic field change lengths, and this
was the origin of the artillery term ‘Eichinvarianz’ extending the existing artillery
metaphor that started with the introduction of ‘charges’ (this artillery terminol-
ogy was preserved in English and French, but Fock preferred to speak of ‘gradient
invariance’). Although Weyl’s conjecture about scale changes in electromagnetic
fields was completely wrong, he corrected it immediately after quantum mechanics
came into being: the ‘correct’ structure group is the rotation group acting on the
phases of wave functions. In 1928, Weyl and Fock, working independently, deduced
Dirac’s equation describing a charged electron in an electromagnetic field against
the background of an arbitrary pseudo-Riemannian metric on space-time. Their for-
mulae actually contained many elements of the future non-Abelian gauge theory.
The next important step was taken by Heisenberg, who endowed field theory with
the non-Abelian group of isotopic transformations that mix the wave functions of
protons and neutrons. The idea of generalizing the global isotopic transformations
and thus passing to a non-Abelian gauge theory was contained in an unpublished
talk of Klein delivered some weeks before the beginning of World War II. However,
non-Abelian gauge theory in the form used today was first formulated after the
war, in the famous paper [128] (1954) by Yang and Mills. This theory was immedi-
ately subjected to almost devastating criticism from Pauli since, in its näıve form,
it predicted the existence of a multiplet of massless charged particles which are not
observed in nature. Thus, in the 1950s the Yang–Mills theory was little known and
poorly understood despite its geometrical nature and beauty, and the problem of
its quantization was not solved.

The first (not fully successful) attempt to construct a quantum Yang–Mills the-
ory was made by Feynman in the early 1960s. Like Faddeev several years later,
Feynman wanted to use the technique of quantum field theory in the general the-
ory of relativity, but because of cumbersome calculations he decided, based on
a suggestion by Gell-Mann, to start with the technically simpler Yang–Mills theory.
Applying the ordinary methods of perturbation theory known from QED, Feynman
realized that the näıve diagrammatic approach gives a non-unitary answer in the
one-loop approximation. The unitarity-restoring correction could be interpreted as
the contribution of an additional scalar particle. This fictitious particle behaved
like a fermion (thus breaking the usual connection between spin and statistics).

Faddeev learned about Feynman’s results from the script of his talk at the 1962
Warsaw conference on gravitation (published in Acta Physica Polonica in 1963).
A problem was to explain these results outside perturbation theory and to calculate
the corrections to the näıve theory beyond the one-loop approximation. To solve
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this problem, Faddeev and Popov [20], [21] used the technique of functional integra-
tion once proposed by Feynman himself.63 Besides Feynman, these problems were
studied by DeWitt in the mid-1960s, who was able to construct a correct quanti-
zation method for Yang–Mills fields and Einstein’s gravitation theory, but did not
introduce ‘Faddeev–Popov ghosts’ (see § 7.3). The introduction of ghosts (as well
as the deep understanding, due to Faddeev’s work, of the structure of quantum
Yang–Mills theory) has continued to influence the subsequent development of this
important topic until now. Faddeev used to say that the main contribution was
due to Feynman, DeWitt, and Popov and himself.

Of course, as in QED, obtaining the diagram expansion is only the first step in
the construction of a correct theory. The second, no less important step (already
mentioned above) is the proof of renormalizability of the theory, and the con-
struction of renormalized coupling constants and renormalized perturbation series.
Renormalizability of the theory depends crucially on an explicit use of its gauge
invariance. One can combine the renormalization problem with the mechanism of
spontaneous symmetry breaking (the ‘Higgs mechanism’ proposed by Higgs and
independently by Brout and Englert in 1964), by means of which some quanta of
the Yang–Mills theory acquire mass. The gauge model of electromagnetic and weak
interactions based on the Higgs mechanism was proposed by Weinberg in 1967 and
changed the theorists’ attitude towards gauge theories completely. As a result, the
paper of Faddeev and Popov, published in the same year (after a year-long delay),
immediately formed the focus of an explosive growth of gauge theory and became
foundational for its further development. It was verified by ’t Hooft and Veltman
that the Yang–Mills theory with spontaneous gauge symmetry breaking remains
renormalizable.64 A key discovery of Gross, Wilczek, and Politzer in the early
1970s showed that this theory is free from Landau poles: the beta function is neg-
ative and interaction becomes weak at small distances. This made it possible to
extend gauge theory to strong interactions. The result of this unparalleled devel-
opment was the construction of the Standard Model of particle physics, marked by
several Nobel Prizes. Unfortunately, Faddeev was not among the laureates. We,
his students, are not alone in feeling that this is an evident injustice. An old friend
of Faddeev’s and the creator of the Yang–Mills theory, the great physicist Yang
Chen-Ning wrote in this connection [80]:

Many people, including myself, felt that Faddeev should have shared the
Nobel Prize of 1999 with ’t Hooft and Veltman. There is a strange cultural
phenomenon among theoretical physicists in the 20th century: downplaying
the importance of mathematics. In the 19th century, the papers and letters
of Maxwell, Boltzmann, Gibbs, Kelvin, Helmholtz and Lorentz showed, if
anything, the opposite value judgement about mathematics and physics.
It seems that with the exuberance of the youthful Heisenberg and Pauli,
there began the idea that mathematics is at best detrimental to originality
in physics. Witness the sufferings and bitterness of Max Born or Wigner.
Although the mature Heisenberg in his old age changed his views about
mathematics, American hubris seemed to have taken over, to perpetuate

63In his famous paper of 1950, Feynman used path integrals to deduce diagram expansions in
QED, but paradoxically he did not use this technique in later papers.

64Renormalizablility of the massless Yang–Mills theory was proved by A.A. Slavnov slightly
earlier.
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the cultural phenomenon of downplaying the importance of mathematics.
I speculate that may have been part of the reason that Faddeev was not
included in the 1999 Prize.

It should be noted that mentioning Pauli in this context is not without personal
bitterness: at Oppenheimer’s seminar in 1954 it was Pauli who ‘killed’ the work of
Yang, who talked about his theory. Only the youth of Yang and benevolence
of Oppenheimer saved the day, and so the paper of Yang and Mills, which was to
change fundamental physics, was published.

7.2. Some general facts and notation. Faddeev dreamt of doing quantum field
theory from his student years.65 After solving the quantum three-body problem,
he decided to look at the difficult problem of quantizing gravitation, which greatly
interested Dirac. As a model problem, Faddeev considered the theory of Yang–Mills
fields, which has a simpler formulation. Apparently, he was the first to understand
the geometric structure66 of the Yang–Mills theory and use the appropriate math-
ematical tools.

Faddeev liked to start his lectures with the geometric formulation of Yang–Mills
theory.67 Let M4 be the space-time with coordinates

x = (x0, x1, x2, x3)

and the Minkowski metric

ds2 = ηµν dx
µ dxν , ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(here and in what follows we use summation over repeated indices). Let G be a com-
pact Lie group, g its Lie algebra, and P →M4 a principal G-bundle over M4.68 We
write A for the infinite-dimensional affine space of connections in the adjoint bundle
adP = P ×G g, and G = Map(M4, G) for the infinite-dimensional group of gauge
transformations. The gauge group G acts as follows on the space of connections A:69

(g,A) 7→ Ag = gAg−1 + dgg−1, where A ∈ A, g ∈ G. (7.1)

The curvature of a connection A is defined by

F = (d−A)2 = −dA+A ∧A
65We assume that the reader is familiar with the basics of quantum field theory. See, for

example, the monograph [57] by Slavnov and Faddeev and the textbook [90] by Bogolyubov and
Shirkov.

66It should be noted that in the 1970s Simons and Yang launched a seminar on physics and
mathematics devoted to the mathematical statement of gauge theories at Stony Brook University.

67He liked to reminisce that A. Lichnerowicz’s book Global theory of connections and holonomy
groups [114], whose Russian translation he purchased for 46 kopeks in 1964 in a second-hand
bookstore on Nevsky prospect, was a helpful tool in his understanding of the geometric formulation
of Yang–Mills theory.

68When the Yang–Mills field interacts with ‘matter’, one also uses the complex vector bundle
E →M4 associated with a given finite-dimensional representation ρ : G→ EndV of G. In physical
applications to the Weinberg–Salam–Glashow Standard Model, G is equal to SU(3)×SU(2)×U(1).

69As accepted by the physicists and in [57], we denote the covariant derivative of a section s
of E by (d−A)s instead of the more commonly used notation (d+A)s.
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and is a 2-form on M4 with values in the bundle adP . In a local frame

A = Aµ dx
µ and F =

1
2
Fµν dx

µ ∧ dxν ,

where
Fµν = ∂νAµ − ∂µAν + [Aµ, Aν ], ∂µ =

∂

∂xµ
.

The Lagrangian of the Yang–Mills theory is of the form

L (A)(x) =
1

8g2
TrFµνF

µν , where Fµν = ηµαηνβFαβ . (7.2)

Here Tr: End g → R is the matrix trace (the Killing form) and g plays the role of
a coupling constant. Redefining A → gA, one can remove the coupling constant g
from (7.2), but then it occurs before the non-linear term in the definition of curva-
ture. Thus, the interaction is determined by the quadratic term of the curvature
form and we can put g = 1 without loss of generality. The Yang–Mills equations
arise as the Euler–Lagrange equations for the action functional70

S(A) =
∫

M4

L (A) d4x (7.3)

and have form
∂µF

µν − [Aµ, F
µν ] = 0.

The Yang–Mills theory differs significantly by its gauge invariance from the other
models of quantum field theory. The history of its applications to high-energy
physics is instructive. Feynman, on the advice of Weisskopf, decided to explore
the quantum Einstein gravitation theory, and Gell-Mann proposed concentrating
first on the more convenient Yang–Mills model. Using the standard approach of
perturbation theory, Feynman found that this approach gives a non-unitary answer
in the so-called one-loop approximation. Surprisingly, in his approach to Yang–Mills
theory, Feynman did not use the method of functional integration, which he had
himself formulated and which was used as a starting point in the Faddeev–Popov
approach [20], [21] to be presented below.

7.3. Quantization of Yang–Mills fields: Lagrangian approach. According
to Feynman, the matrix entries of the scattering matrix in quantum field theory
are given by a path integral

⟨in|S|out⟩ =
∫
eiS(A) dµ(A), (7.4)

where the ‘integration’ is over all connections A satisfying certain asymptotic con-
ditions as t = x0 → ±∞. These conditions characterize the ‘in/out’ scattering
states.71 Since the action S(A) and the ‘integration measure’

dµ(A) =
∏

x∈M4

dA(x) (7.5)

70Under appropriate conditions of decay of Aµ(x) as |x| → ∞.
71Feynman did not indicate how to choose these asymptotic conditions. A correct definition of

the asymptotic conditions in the path integral for the S-matrix was given in Faddeev’s lectures [34]
at the famous physics school in Les Houches, France. Several generations of theoretical physicists
grew up on these lectures. See the monograph [57] for their detailed exposition.
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are invariant under gauge transformations, the path integral (7.4) has to be made
well-defined not as an ‘integral’ over the whole space of connections A (which is
certainly divergent because of the infinite volume of the gauge group G), but as
a path integral over the orbit space A/G. This problem was solved in [20] and [21]
using a remarkable approach known as the ‘Faddeev–Popov trick’.

The main idea of the Faddeev–Popov trick can be easily explained based on
a finite-dimensional example. Consider an n-dimensional Riemannian manifold X
with a measure dµ introduced by the volume form of the Riemannian metric.
Assume that we are given a free action of a compact Lie group G by isometries
on X:

X ×G ∋ (g, x) 7→ Tx(g) = g · x ∈ X.
The Faddeev–Popov approach consists in reducing the integral∫

X

f(x) dµ(x)

of a G-invariant function f(x) on X to an integral over the quotient space X/G
(the space of orbits Ox = G · x of the group G).

Namely, suppose that X/G can be realized by means of a submanifold Y of X
that intersects each orbit exactly once and is given by the equations F (x) = 0,
where F : X → Rk is a smooth map whose differential has rank k for all x ∈ X.
Let dg be the Haar measure on G normalized by∫

G

dg = 1.

We define a G-invariant function AF (x) on X by

AF (x)
∫

G

δ(F (g · x)) dg = 1. (7.6)

Remarkably, ∫
X

f(x) dµ(x) =
∫

X

f(x)AF (x)δ(F (x)) dµ(x) (7.7)

=
∫

Y

f(y) det(FyTy) dν(y), (7.8)

where dν is the measure on Y associated with the induced volume form, Fy is the
differential of F at a point y ∈ Y , and Ty is the differential of the map g 7→ Ty(g)
at the identity e of the group G.

Indeed, using the Faddeev–Popov trick (‘insertion of the unity’ via (7.6)), we get
by Fubini’s theorem that∫

X

f(x) dµ(x) =
∫

G

(∫
X

f(x)AF (x)δ(F (g · x)) dµ(x)
)
dg

=
∫

G

(∫
X

f(x)AF (x)δ(F (x)) dµ(x)
)
dg

=
∫

X

f(x)AF (x)δ(F (x)) dµ(x).
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In the second equation we made a change of variables x 7→ g · x and used the
G-invariance of the functions f(x) andAF (x) and the measure dµ. This proves (7.7),
and (7.8) follows since AF (y) = det(FyTy), which is obtained from the familiar
formula for a change of variable in the δ-function.72

Faddeev and Popov [20], [21] applied this trick to the path integral for the
S-matrix in the Yang–Mills theory.73 Instead of the manifold X acted on by a Lie
group G, we now consider the infinite-dimensional affine space A of connections on
a principal bundle P , acted on by the infinite-dimensional gauge group G. As in
the finite-dimensional case, we assume that the quotient space A/G can be realized
as a submanifold of A by means of a gauge-fixing condition, for example, using the
Lorentz gauge,74

χL(A)(x) = ∂µA
µ(x) = 0, Aµ = ηµνAν .

Applying the equalities (7.7) and (7.8) formally, we have

⟨in|S|out⟩ =
∫
eiS(A) detML(A)

∏
x∈M4

δ(∂µA
µ(x)) dµ(A), (7.9)

where
ML(A) = ∂µ∂

µ − [Aµ, ∂µ], ∂µ = ηµν∂ν ,

is a differential operator acting on the elements u in the adjoint representation of the
Lie algebra G of the gauge group G, that is, on functions u(x) on M4 with values in
the adjoint representation of the Lie algebra g of the groupG. The regularized deter-
minant detML(A) of the differential operator ML(A) (the famous Faddeev–Popov
determinant) is defined, for example, using the method of the ζ-function.

Faddeev was familiar with F. A.Berezin’s papers75 about integration with respect
to Grassmann (anticommuting) variables (see [87]). Remarkably, the analogue of
the Gaussian integral in this approach contains the determinant of the correspond-
ing quadratic form in the numerator instead of the denominator. Faddeev and
Popov realized that the determinant detML(A) appearing in (7.9) can be rewrit-
ten as an integral with respect to anticommuting variables if we introduce fictitious
anticommuting variables c(x) and c(x) with values in the adjoint representation of
the Lie algebra g. These are the famous Faddeev–Popov ghosts! 76 Thus,

detML(A) =
∫

exp
{
i

∫
M4

⟨c(x),ML(A)c(x)⟩ d4x

} ∏
x∈M4

dc(x) dc(x), (7.10)

72See, for example, the monograph Generalized functions and operations over them [98] by
Gelfand and Shilov.

73We refer the reader to the monograph [57] for the main definitions and concepts of quantum
field theory.

74It must be verified that the manifold given by the gauge-fixing condition intersects each
orbit of the gauge group exactly once, so that in the Lorentz gauge the operator ML(A) must
always have trivial kernel. In 1978 Gribov showed that this condition does not hold on a sub-
manifold of Yang–Mills fields of codimension zero, and then Singer proved that there is no unique
choice of gauge on S4 and ‘Gribov ambiguities’ always exist. However, these ambiguities do not
influence the correctness of perturbation theory.

75Faddeev met Berezin in 1958, at Gelfand’s famous seminar, and they were associated from
that time by a professional friendship.

76Note that the Faddeev–Popov ghosts do not occur in the asymptotic states and are not
subject to any boundary conditions as t→ ±∞.
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where ⟨ · , · ⟩ is the Killing form in the adjoint representation of the Lie algebra g.
Thus we obtain

⟨in|S|out⟩ =
∫

exp
{
iS(A) + i

∫
M4

⟨c(x),ML(A)c(x)⟩ d4x

}
dµL(A, c, c), (7.11)

where
dµL(A, c, c) =

∏
x∈M4

δ(∂µA
µ(x)) dc(x) dc(x) dµ(A). (7.12)

Note that when the gauge group is Abelian (as in Maxwell’s theory and QED),
the operator ML is independent of A, and therefore ghosts do not interact with the
gauge field and are not needed for constructing perturbation theory. In non-Abelian
theories, the Faddeev–Popov ghosts play a key role.

The formulae (7.11) and (7.12) underlie the Feynman rules for perturbation
theory in the Yang–Mills theory and are now explained in all textbooks of quantum
field theory. The corresponding diagram technique for perturbation theory, along
with propagators of gauge fields and ghosts and all interaction vertices, was first
formulated in the Kiev preprint [20] by Faddeev and Popov. The use of these
Faddeev–Popov rules underlies the remarkable achievements in high-energy physics
that in the 1970s led to the formulation of the Standard Model of particle physics.
For example, using the Faddeev–Popov formalism, ’t Hooft and Veltman proved
the renormalizability of the quantum Yang–Mills theory and the Weinberg–Salam
model, while Gross, Wilczek, and Politzer showed that the quantum Yang–Mills
theory is asymptotically free.77

7.4. Feynman integral for constrained systems. After the famous paper [21]
of Faddeev and Popov on quantization of gauge fields in the formalism of functional
integration, theoretical physicists naturally asked whether the proposed formalism
was unitary. Faddeev was well aware that using the Hamiltonian formalism instead
of the Lagrangian approach to functional integration guarantees unitarity. But
this was difficult because in the Hamiltonian approach the classical dynamics of
Yang–Mills fields as well as Einstein’s gravitation theory are generalized Hamil-
tonian systems with constraints. Although Dirac proposed (see [94]) a general
formalism for a classical description of constrained systems and their quantization
in the operator formalism, the problem of quantization of Hamiltonian systems
with first-class constraints in the Feynman integral formalism in the Hamiltonian
approach remained open.

In his paper [22], which became classical, Faddeev gave an elegant mathematical
interpretation of Dirac’s formalism for first-class constraints and used it to solve the
quantization problem for such systems in the formalism of functional integration.
In the context of Yang–Mills theory, this proves the unitarity of the formalism
proposed in [21] and [20].

Following [22], we begin with a finite-dimensional phase space, that is, a sym-
plectic manifold Γ with symplectic form ω. For simplicity we consider the case
when Γ = R2n with coordinates

q = (q1, . . . , qn), p = (p1, . . . , pn),
77For these works, their authors were awarded the Nobel Prizes in physics in 1999 and 2004,

respectively.
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the canonical symplectic form

ω =
n∑

i=1

dpi ∧ dqi

and a real-valued function H(p, q) playing the role of the Hamiltonian of a clas-
sical system. Let H be the Hamiltonian of the corresponding quantum system.
This is a self-adjoint operator in L2(Rn) defined, for example, by means of Weyl
quantization. According to Feynman, the matrix entries of the unitary evolution
operator

exp
{
− i

~
(t′′ − t′)H

}
(the S-matrix is also expressible in terms of it) are given by the following path
integral in the phase space:〈

q′′
∣∣∣∣exp

{
− i

~
(t′′ − t′)H

}∣∣∣∣q′〉
=

∫
exp

{
− i

~

∫ t′′

t′

(
pq̇ −H(p, q)

)
dt

} ∏
t′6t6t′′

dp(t) dq(t), (7.13)

where

pq̇ =
n∑

i=1

piq̇
i, dp(t) dq(t) =

n∏
i=1

dpi(t) dqi(t)
2π~

and the exponent on the right-hand side contains the classical action evaluated on
a trajectory (p(t), q(t)), t′ 6 t 6 t′′, with conditions q(t′) = q′ and q(t′′) = q′′,
which determine special Lagrangian submanifolds of Γ (see Chap. 1 of the mono-
graph [57] by Slavnov and Faddeev).

We now consider the case when the canonical variables p and q do not vary in
the whole phase space but are subject to constraints

ϕa(p, q) = 0, a = 1, . . . ,m, (7.14)

which determine a smooth submanifold M of dimension 2n−m in the phase space.
Only first-class constraints are considered in [22]. They satisfy the relations78

{ϕq, ϕb}(p, q) =
m∑

c=1

hab
c (p, q)ϕc(p, q), a, b = 1, . . . ,m, (7.15)

for some functions hab
c (p, q), where { · , · } is the Poisson bracket corresponding to

the symplectic form ω. In other words, the Poisson brackets of first-class constraints
vanish when restricted to M . We also assume that

{H,ϕa}(p, q) =
m∑

c=1

ha
c (p, q)ϕc(p, q) (7.16)

78It follows from (7.15) that m 6 n.
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for some functions ha
c (p, q), that is, the Poisson brackets of first-class constraints

with the Hamiltonian H also vanish when restricted to M .
According to Dirac, the equations of motion for such a generalized Hamiltonian

system are obtained from the variational principle for the generalized action

S(p, q,λ) =
∫ t′′

t′

(
pq̇ −H(p, q)−

m∑
a=1

λa(t)ϕa(p, q)
)
dt.

Besides the canonical variables p and q, it also involves independent functions

λ(t) = (λ1(t), . . . , λm(t)),

which play the role of Lagrange multipliers. The corresponding equations of motion
consist of the canonical equations

ṗi = −∂H
∂qi

−
m∑

a=1

λa
∂ϕa

∂qi
, q̇i =

∂H

∂pi
+

m∑
a=1

λa
∂ϕa

∂pi
, i = 1, . . . , n, (7.17)

and the conditions (7.14). It follows from (7.15) and (7.16) that a trajectory begin-
ning on M never leaves this submanifold. Thus, (7.17) determines a transforma-
tion law for coordinates on M , and the description of this law involves not only
the Hamiltonian H but also m arbitrary functions λa(t). Therefore, not all the
functions on M should be regarded as observables, but only those whose smooth
extension f to the whole of the phase space Γ satisfies

{f, ϕa}(p, q) =
m∑

b=1

ga
b (p, q)ϕb(p, q) (7.18)

for some functions ga
b (p, q). By (7.15), the conditions (7.18) are independent of the

way in which we extend a given function from M to Γ. The equations of motion
for such functions are of the form

ḟ = {H, f}+
m∑

a=1

λa{ϕa, f},

so that λa-dependent terms disappear on M .
The functions on M whose extensions to Γ satisfy (7.18) may be regarded as

arbitrary functions on some reduced phase space Γ∗ of dimension 2n − 2m. Dirac
showed that one can take for Γ∗ the intersection of M with the submanifold of Γ
determined by the equations

χa(p, q) = 0, a = 1, . . . ,m,

which are called additional conditions. The functions χa must satisfy the condition

det ∥{ϕa, χb}∥(p, q) ̸= 0. (7.19)

Faddeev [22] suggested the following elegant mathematical interpretation of
Dirac’s formalism.79 Let ω̃ be a restriction of the symplectic form ω to M , and let

79This was aided by Faddeev’s conversations with his old friend V. I. Arnold.
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Xf be a Hamiltonian vector field corresponding to the function f on Γ. The con-
dition (7.15) is equivalent to saying that all vectors Xϕa(m), m ∈ M , are tangent
to M and are zero-vectors of the 2-form ω̃. The condition dω̃ = 0 means that these
vectors form an involutive distribution P on M . By the Frobenius theorem, this
distribution determines a foliation on M whose leaves are integral manifolds of P .
The relations (7.18) mean that f is constant along these leaves. The additional
conditions determine a submanifold Γ∗ of M , and the condition (7.19) means that
Γ∗ is transversal to the integral manifolds of P and the restriction of ω̃ to Γ∗ is
non-degenerate. In the case when each integral manifold intersects Γ∗ at a single
point, this foliation is a fibration and the reduced phase space Γ∗ is its base.

An important particular case of this construction is the method of Hamiltonian
reduction, which is widely used in modern mathematics. Thus, consider a Hamil-
tonian action ρ of a compact Lie group G on a symplectic manifold Γ. In other
words, the action of G preserves the symplectic form ω, and the corresponding
action of the Lie algebra g is given by Hamiltonian vector fields. For every ξ ∈ g
we have a vector field

XHξ
= {Hξ, · } on Γ, where dHξ = iρ(ξ)ω.

We assume the functions Hξ to be chosen so that the resulting map g → C∞(Γ) is
a homomorphism of Lie algebras:

H[ξ,η] = {Hξ, Hη} for all ξ, η ∈ g. (7.20)

In this situation the moment map µ : Γ → g∗ is defined by

µ(ξ) = Hξ, ξ ∈ g,

where g∗ is the dual space to the Lie algebra g. Suppose that 0 is a regular value
of the map µ. Then µ−1(0) is a smooth submanifold of Γ. If the action of G
on µ−1(0) is free, then the quotient space µ−1(0)/G is a smooth manifold endowed
with a natural symplectic form, whose pull-back on µ−1(0) under the projection
map is equal to the restriction of ω to µ−1(0). The symplectic manifold µ−1(0)/G
is denoted by Γ//G and is called the symplectic quotient or Marsden–Weinstein
quotient (see [117]). The procedure itself is referred to as Hamiltonian reduction.
Hamiltonian reduction is a particular case of Dirac’s formalism when the constraints
ϕa are the Hamiltonians Hξa

of the vector fields ρ(ξa), where the ξa are generators
of the Lie algebra g. Then µ−1(0) = M , and the additional conditions characterize
an embedding of M/G in M that determines the reduced phase space Γ∗.

In the case when

{χa, χb}(p, q) = 0, a, b = 1, . . . ,m, (7.21)

canonical variables on Γ∗ can be introduced in the following simple way. By (7.21),
one can choose new coordinates on Γ in which the additional conditions take the
form

χa(p, q) = pa,

where pa now stands for certain canonical momenta of the new system of variables.
Let qa be the coordinates conjugate to them, and let

p∗ = (p∗1, . . . , p
∗
2n−2m), q∗ = (q∗1, . . . , q∗2n−2m)
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be the other canonical variables. Then (7.19) is written in the new variables as

det
∥∥∥∥∂ϕa

∂qb

∥∥∥∥(p, q) ̸= 0.

Hence the equations (7.14) can be solved with respect to qa. As a result, the
submanifold Γ∗ is given by the equations

pa = 0, qa = qa(p∗, q∗), a = 1, . . . ,m,

and p∗, q∗ are canonical coordinates for the restriction of the symplectic form ω
to Γ∗:

ω
∣∣
Γ∗

=
2n−2m∑

i=1

dp∗i ∧ dq∗i.

Thus, the generalized Hamiltonian system on the phase space Γ with the canon-
ical coordinates p, q, constraints (7.14), and Hamiltonian H(p, q) is reduced to
a Hamiltonian system on the reduced phase space Γ∗ with the canonical coordi-
nates p∗, q∗ and Hamiltonian

H∗(p∗, q∗) = H(p, q)
∣∣
Γ∗
.

According to Feynman, its quantization is given by the path integral (7.13):∫
exp

{
− i

~

∫ t′′

t′

(
p∗q̇∗ −H∗(p∗, q∗)

)
dt

} ∏
t′6t6t′′

dp∗(t) dq∗(t). (7.22)

However, finding the canonical variables on the reduced phase space is a very diffi-
cult problem, which can rarely be solved exactly.

Remarkably, Faddeev proved that the expression (7.22) can be rewritten exactly
in terms of the generalized constrained Hamiltonian system on Γ by the following
formula:∫

exp
{
− i

~

∫ t′′

t′

(
pq̇ −H(p, q)−

m∑
a=1

λa(t)ϕa(p, q)
)
dt

} ∏
t′6t6t′′

dλ(t) dµ(p(t), q(t))

=
∫

exp
{
− i

~

∫ t′′

t′

(
pq̇ −H(p, q)

)
dt

} ∏
t′6t6t′′

dµ̃(p(t), q(t)), (7.23)

where

dλ =
m∏

a=1

dλa

2π
, dµ(p, q) = (2π)m

m∏
a=1

δ(χa) det ∥{ϕa, χb}∥(p, q) dp dq,

dµ̃(p, q) = dµ(p, q)
m∏

a=1

δ(ϕa),

and δ(F ) is the δ-function of the hypersurface F = 0 in Γ (for example, see [98]).
The formula (7.23) is the desired generalization of Feynman’s path integral for
constrained systems. An important result proved in [22] says that the expression
(7.23) is independent of the choice of the additional conditions χa(p, q) = 0.
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7.5. Quantization of Yang–Mills fields: Hamiltonian approach. The for-
mula (7.23) can be generalized to the infinite-dimensional case and enables one to
write the path integral for Yang–Mills fields in the Hamiltonian approach. Follow-
ing [22], we suppose that G is a simple compact Lie group of dimension n and the
ta are generators of its Lie algebra g in the adjoint representation such that

Tr tatb = −2δab, a, b = 1, . . . , n. (7.24)

It follows from (7.24) that the structure constants fabc of the Lie algebra g,

[ta, tb] =
n∑

c=1

fab
c tc,

form a totally antisymmetric tensor. So they can be written as fabc = fab
c = fa

bc.
We put

Aµ(x) =
n∑

a=1

Aa
µ(x)ta and Fµν(x) =

n∑
a=1

F a
µν(x)ta.

The action (7.2)–(7.3) of the Yang–Mills theory can be rewritten in the form

S(A) = −1
2

3∑
k=1

∫
M4

Tr
(
Ek∂0Ak −

1
2
(E2

k +B2
k) +A0G

)
d4x, (7.25)

where

Ek = Fk0, Bk = −1
2

3∑
i,j=1

εijkFij , G =
3∑

k=1

(∂kEk − [Ak, Ek]), k = 1, 2, 3,

and εijk is the totally antisymmetric tensor with ε123 = 1. Taking the Legen-
dre transform of (7.25), we obtain an infinite-dimensional generalized Hamiltonian
system with first-class constraints. Thus, its phase space is the Fréchet space

X = S (R3,Rn)×S (R3,Rn)

with canonical coordinates Ea
k(x), Aa

k(x), x ∈ R3, and symplectic form

Ω =
3∑

k=1

n∑
a=1

∫
R3

dEa
k(x) ∧ dAa

k(x) d3x.

The Hamiltonian H and the constraints Ga(x) = 0 (referred to as the Gauss law
in the physics literature) are given by

H =
1
2

3∑
k=1

∫
Tr

(
E2

k(x) +B2
k(x)

)
d3x (7.26)

and

Ga(x) =
3∑

k=1

(
∂kE

a
k(x)− fa

bcA
b
k(x)Ec

k(x)
)
, a = 1, . . . , n. (7.27)
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The variables Aa
0(x) play the role of Lagrange multipliers. Making careful use of

the canonical Poisson brackets

{Ea
k(x), Ab

l (y)} = δklδ
abδ(x− y), (7.28)

one can show that the Poisson brackets of the Hamiltonian and the constraints take
the form (7.15)–(7.16):

{H,Ga(x)} = 0 and {Ga(x), Gb(y)} =
n∑

c=1

fab
c Gc(x)δ(x− y), a, b = 1, . . . , n.

The phase space X is acted on by the gauge group G = Map(R3, G):

Ag = gAg−1 + dgg−1, Eg = gEg−1, g ∈ G, (7.29)

where

A(x) =
n∑

a=1

Aa
k(x)ta dxk, E(x) =

n∑
a=1

Ea
k(x)ta dxk.

The action of G on X is Hamiltonian. The Hamiltonians corresponding to the
elements u =

∑n
a=1 u

a(x)ta of the Lie algebra G of G are the functionals

Hu =
n∑

a=1

∫
R3
Ga(x)ua(x) d3x, (7.30)

which satisfy the Poisson brackets (7.20):

{Hu, Hv} = H[u,v].

Thus, the Dirac formalism presented above is completely applicable to the Yang–
Mills theory if the additional condition is chosen to be the so-called Coulomb gauge

χC
a (x) =

3∑
k=1

∂kA
a
k(x) = 0.

It follows from (7.28) that the distribution {Ga(x), χb(y)} is the kernel MC(x,y)a
b

of the differential operator

MC(A)a
b = −δa

b ∆ +
n∑

c=1

3∑
k=1

fa
bcA

c
k(x)∂k, (7.31)

where
∆ = ∂2

1 + ∂2
2 + ∂2

3

is the Laplace operator in R3. Thus, the regularized determinant detMC(A) of the
operator MC(A) is an analogue of det ∥{ϕa, χb}∥ in the finite-dimensional case.

The path integral for the S-matrix in the Hamiltonian approach finally takes the
form ∫

exp
{
− i

2

3∑
k=1

∫
Tr

(
Ek∂0Ak −

1
2
(E2

k +B2
k) +A0G

)
d4x

}
dµ(A,E),
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where

dµ(A,E) = dµ(A) detMC(A)
∏

x∈M4

n∏
a=1

3∏
i=1

δ(χC
a (x)) dEa

i (x)

and the ‘measure’ dµ(A) was introduced in (7.5). Performing the Gaussian inte-
gration with respect to the variables Ea

i (x), we obtain

⟨in|S|out⟩ =
∫

exp{iS(A)} detMC(A)
∏

x∈M4

n∏
a=1

δ(χC
a (x)) dµ(A)

=
∫

exp
{
iS(A) + i

∫
M4

⟨c(x),MC(A)c(x)⟩ d4x

}
dµC(A, c, c), (7.32)

where we have introduced the Faddeev–Popov ghosts and put

dµC(A, c, c) =
∏

x∈M4

n∏
a=1

δ(χC
a (x)) dc(x) dc(x) dµ(A). (7.33)

The path integral (7.32)–(7.33) generates Feynman’s diagrams of perturbation
theory for the S-matrix, which satisfies the unitarity condition by construction.
Although the Coulomb gauge is not explicitly Lorentz-invariant, Faddeev proved
in [22] that

⟨in|S|out⟩ =
∫
eiS(A) detML(A)

∏
x∈M4

δ(∂µA
µ(x)) dµ(A)

=
∫
eiS(A) detMC(A)

∏
x∈M4

n∏
a=1

δ(χC
a (x)) dµ(A),

so that the resulting perturbation theory is Lorentz-invariant.
In other words, Faddeev [22] deduced Faddeev–Popov quantization [21] using

the manifestly unitary Hamiltonian approach. The paper [22], which opened the
first issue of the new journal Theoretical and Mathematical Physics, founded by
Bogolyubov in 1969, immediately became classical. It had a huge influence not only
on the development of the theory of gauge fields but also on theoretical physics as
a whole.

7.6. Quantum anomalies. Quantum anomalies in the four-dimensional quan-
tum field theory were discovered at the end of the 1960s80 by Adler, Bell, and
Jackiw. The presence of an anomaly means that the gauge symmetry of classical
theory is not preserved under quantization, being destroyed by quantum correc-
tions.81

More precisely, a quantum (gauge) anomaly arises in the following situation.
Consider a principal G-bundle P → M2n over a 2n-dimensional manifold M2n

80Before that, in 1949 Steinberger (a future Nobel laureate in experimental physics) studied
the neutral pion decay and made a calculation where he foresaw the existence of a quantum gauge
anomaly.

81A basic principle of internal self-consistency in quantum field theory (for example, in the
Standard Model) is the absence of anomalies.
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(this manifold plays the role of space-time), where G is again a compact Lie group.
Let E → M2n be the complex vector bundle associated with a finite-dimensional
representation of G. We write A for the infinite-dimensional affine space of connec-
tions on E. A quantum anomaly is the assertion that the partition function of the
theory of Weyl fermions in an external gauge field A ∈ A, which is formally given
by the path integral82

Z(A) =
∫

exp
{
i

∫
M2n

ψ†(x) /D(A)ψ(x) d2nx

} ∏
x∈M2n

Dψ(x) Dψ†(x), (7.34)

is not invariant under gauge transformations83

A 7→ Ag = g−1Ag + g−1 dg, where g ∈ G = Map(M2n, G).

Here /D(A) is the projection of the Dirac operator in the external field onto the Weyl
spinors. Physicists like to say that a quantum gauge anomaly is the assertion of the
non-invariance of the fermionic integration measure in (7.34), since the integrand
does not change under the gauge transformation

A 7→ Ag, ψ 7→ g−1ψ, ψ† 7→ ψ†g, g ∈ G.

Mathematically, (7.34) should be understood as a ‘regularized determinant’ of
the operator /D(A), where Z(A) is not a function but a section of the determinant
bundle over A. Thus, Z(A) is a ‘square root’ of the determinant of the Dirac oper-
ator in the external gauge field A. One easily sees that there is a regularization (for
example, using the ζ-function) under which the determinant of the Dirac operator
is gauge invariant. It follows that the partition function Z(A) is defined up to
a phase.

The presence of an anomaly may be expressed by the simple and beautiful for-
mula

Z(Ag) = exp{−iW (A, g)}Z(A), g ∈ G, (7.35)

where W (A, g) is the so-called Wess–Zumino action functional (it is defined only
modulo 2πZ). We note that the physicists derived an infinitesimal version of this
formula first. Thus, let G be the Lie algebra of the gauge group G acting on A by

A 7→ du+ [A, u], u ∈ G.

Putting g = etu in (7.35) and differentiating with respect to t at t = 0, we obtain∫
M2n

〈
∇A

δZ(A)
δA(x)

+ iA(x), u(x)
〉
d2nx = 0

for all u ∈ G. Here δ/δA(x) is the Fréchet derivative, ⟨ · , · ⟩ is the Killing form in
the given representation of G, and

d

dt

∣∣∣∣
t=0

W (A, etu) =
∫

M2n

⟨A(x), u(x)⟩ d2nx.

82In the Euclidean path integral one should replace ψ† by χ†, a ψ-independent Weyl fermion
of opposite chirality.

83Here, in contrast to § 7.3 and 7.5, we follow [48] and write connections in the form d + A
while Ag stands for the right action of the gauge group G.
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Using the generators ta of the Lie algebra g and the coefficients of the connec-
tion Aa

µ(x), we can rewrite the resulting relation as

(T a(x) + iAa(x))Z(A) = 0, (7.36)

where the polynomial Aa(x) in the connection coefficients Aa
µ and their first deriva-

tives at x ∈M2n is the gauge anomaly, and

T a(x) = −(∇A)µ
δ

δAa
µ(x)

= −∂µ
δ

δAa
µ

−
n∑

c=1

fab
c Ac

µ

δ

δAb
µ

(7.37)

is the generator of gauge transformation in the space of functionals on A. The
generators T a(x) are the Gauss law operators in the (2n+1)-dimensional Yang–Mills
theory.

The presence of divergences in quantum field theory inevitably gives rise to
various regularization schemes. Changing the regularization scheme is expressed
by the change

Z(A) 7→ exp {iβ(A)}Z(A),

where the ‘counterterm’ β(A) is a local functional (given by the integral over M2n

of some density which is locally determined by the coefficients of the connection A).
Then we have

W (A, g) →W (A, g) + δβ(A, g), where δβ(A, g) = β(Ag)− β(A). (7.38)

If W (A, g) can be cancelled out by the redefinition (7.38), then the section Z(A) is
well defined and invariant. Such a cancellation is possible for some representations
of G, but not in the general situation. Thus, there is generally no regularization
scheme that would preserve the gauge symmetry in the path integral (7.34) over
Weyl fermions.

The formula (7.36) attracted the attention of Faddeev and his young student
Shatashvili. In the mid-1980s they began to study the mathematical aspects of
anomalies in gauge theories. Their first paper [48] on this subject already contained
the key observation that the Wess–Zumino action is a 1-cocycle on the gauge trans-
formation group G (and the anomaly is a 1-cocycle on the Lie algebra G) which
acts on the functionals on the space A of Yang–Mills fields! This discovery was
very influential in the development of this important theme, which is of current
interest because of the need to study gauge and gravitation anomalies in quantum
field theories with space-time of dimension greater than 4 and in superstring the-
ory. The so-called ‘descent method’ for calculating cocycles in the gauge group
was proposed in [48] and became popular.84 The authors of [48] also found the
2-cocycle corresponding to the Abelian extension of the infinite-dimensional Lie
algebra (the so-called ‘three-dimensional current algebra’) of equal-time commuta-
tion relations for the quantum Gauss law in four-dimensional space-time. Faddeev
was very proud of having applied to quantum field theory results of his father,
Dmitry Konstantinovich Faddeev, who discovered group cohomology in the 1940s!

84This descent procedure, combined with a result of Álvarez-Gaumé and Witten on gravitation
anomalies (1983), was used in the famous paper by Green and Schwarz to prove the existence of
mathematically self-consistent models of superstring theory.
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Namely, let G be an abstract group and M a right G-module. Consider the
complex C•(G,M) with cochains Cn(G,M), the spaces of functions on M × Gn,
n = 0, 1, 2, . . . , and with the differential

δn : Cn(G,M) → Cn+1(G,M)

defined by the formula

(δnαn)(m, g1, . . . , gn+1) = αn(m · g1, g2, . . . , gn+1)

+
n∑

i=1

(−1)iαn(m, g1, . . . , gi−1, gigi+1, gi+2 . . . , gn+1)

+ (−1)n+1αn(m; g1, . . . , gn), (7.39)

so that δn+1 ◦ δn = 0. This complex was used in [48] in the case when G is the
group G of gauge transformations acting on the space M = A of Yang–Mills fields
(connections on a bundle E → M2n) and the cochains αn(A, g1, . . . , gn) are local
functionals of A and g. Comparing these formulae with (7.35), we arrive at the
key observation made in [48]: the Wess–Zumino action W (A, g) is a 1-cocycle with
non-zero cohomology class on the gauge group G, and its infinitesimal version Aa(A)
is a 1-cocycle on the corresponding Lie algebra G. In the context of the action of G
on functionals of A, which is given by

U(g)Ψ(A) = eiW (A,g)Ψ(Ag),

the gauge invariance is restored:

U(g)Z(A) = Z(A).

It was conjectured in [48] (and discussed in detail in [49]) that the corresponding
2-cocycle should arise in the Hamiltonian approach to the full quantum theory,
where the gauge field A is not external but dynamical. The corresponding genera-
tors of gauge transformations occurring in the Gauss law can be obtained from the
generators T a(x) in (7.37) by means of a shift by a generator of gauge transforma-
tions in the fermionic Fock space, that is, by the fermionic current Ja(x):

Ga(x) = T a(x) + Ja(x), where Ja(x) = ψ†(x)taψ(x),

and they realize a projective representation of the Lie algebra G.
To construct the Wess–Zumino action (that is, the 1-cocycle) and the 2-cocycle

related to the Gauss law, the paper [48] suggested a completely general and beautiful
method using the bicomplex with operators δ and d (d is the exterior differentiation
operator arising in the theory of Chern–Simons secondary characteristic classes85).

85This approach was partially motivated by works about three-dimensional Abelian gauge
theories with additional Chern–Simons terms by Deser, Jackiw, and Templeton in the early 1980s.
The subject of [48] is the physical non-Abelian Yang–Mills theory in odd-dimensional spaces with
an additional Chern–Simons action, and it was analysed in the framework of the Hamiltonian
approach. The method of [48] is used in modern investigations in solid state physics, high-energy
physics, and string theory.
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Namely, we begin with a manifold M2n+2 of dimension 2n + 2 and consider an
invariant polynomial86 w2n+2(F ) of degree n+ 1 in the curvature form

F = dA+A2

of a connection A. Since the form ω2n+2 = w2n+2(F ) satisfies

dω2n+2(F ) = 0 and δω2n+2(F ) = 0, (7.40)

locally on M2n+2, we can find a differential form ω2n+1 of degree 2n+ 1 such that

dω2n+1 = ω2n+2.

According to Novikov, globally on M2n+2 it is a multivalued form

ω2n+1 = d−1ω2n+2.

Let M2n+1 = ∂B2n+2 be a (2n+1)-dimensional cycle in M2n+2 which is the bound-
ary of a (2n + 2)-dimensional submanifold B2n+2 of M2n+2. The Chern–Simons
functional ICS(A) for Yang–Mills fields on M2n+1 is defined by

ICS(A) = 2π
∫

B2n+2
ω2n+2(A′) = 2π

∫
M2n+1

ω2n+1(A), (7.41)

where one chooses any extension A′ of the connection A from M2n+1 to B2n+2.
For two such extensions, the difference∫

B2n+2
ω2n+2(A′)−

∫
B2n+2

ω2n+2(A′′)

is the integral of ω2n+2 over a top-dimensional cycle in M2n+2. Therefore, assuming
the integrality of the cohomology class

[ω2n+2] ∈ H2n+2(M2n+2,R),

we see that the functional eiICS(A) is well defined and depends only on the values
of the gauge field on M2n+1. It is easily verifiable that the (2n+ 1)-form

δω2n+1 = ω2n+1(Ag)− ω2n+1(A)

is closed:
dδω2n+1 = dδd−1ω2n+2 = δω2n+2 = 0. (7.42)

It follows that, in contrast to the Chern–Simons action (7.41), its gauge variation

α1(A, g) = ICS(Ag)− ICS(A)

is well defined (modulo Z) also in the case when M2n+1 is not a cycle but a chain
with boundary: ∂M2n+1 = M2n. Hence

α1(A, g) = 2π
∫

M2n+1
δω2n+1(A) = 2π

∫
M2n

d−1δω2n+1(A) (7.43)

86For example, Tr(iF/(2π))n+1.
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is the required 1-cocycle, δα1 = 0 mod Z. This means that α1 is a multivalued
functional in the sense of Novikov.

Remarkably, eiα1(A,g) depends only on the values of A and g onM2n and does not
depend on their extension to M2n+1. Indeed, it follows from an explicit calculation
that the dependence on A in (7.43) is polynomial and is a local functional of A
on M2n. However, the A-independent term α1(0, g) in (7.43) is non-local and
cannot be written only in terms of an element of the gauge group on M2n. This
term is the famous Wess–Zumino–Novikov–Witten action, which is proportional in
our notation to ∫

M2n

d−1 Tr(dgg−1)2n+1. (7.44)

Similarly to the Chern–Simons action, the multivaluedness of the action (7.44) dis-
appears under exponentiation: the difference of two extensions from M2n to M2n+1

is proportional to ∫
M2n+1

Tr(dgg−1)2n+1

and hence is an integer (the coefficient of proportionality is determined by the initial
normalization of ω2n+2).

The descent procedure just described can be continued. At the (k+1)st step we
obtain a closed (2n+ 1− k)-form

δd−1δ · · · d−1δd−1ω2n+2,

and its integral over a cycle of appropriate dimension is a k-cocycle. Explicit
formulae for the group cocycles and Lie-algebraic cocycles were first obtained in [48].
For example, the formula for k = 2 and n = 2 is

A2(A;u, v) =
1

12π2

∫
M3

Tr(du ∧ dv ∧A), u, v ∈ G, (7.45)

where M3 is a three-dimensional manifold. The formulae discovered in [48] gave rise
to a new direction in the representation theory of infinite-dimensional Lie groups
and algebras. The corresponding 2-cocycle (7.45) and its group analogue are now
known as Mickelson–Faddeev–Shatashvili cocycles.

The following conjecture was stated in [48]:

[G(u), G(v)] = G([u, v]) + A2(A, u, v), G(u) =
∫

M3
ua(x)Ga(x) d3x. (7.46)

It is important to note that since the 2-cocycle depends on the gauge field, the ordi-
nary fermion current algebra (in the external field A) should be replaced by the
Gauss law with a dynamical gauge field. Moreover, in contrast to the case n = 1,
which corresponds to a one-dimensional central extension of the loop group LG
of G, for n = 2 we are dealing with a new mathematical object: an Abelian exten-
sion of the gauge group G (the group of maps from M3 to G). Although (7.46) was
not deduced in [51] in the operator approach to quantum field theory,87 the authors

87It is still unknown how to do this.
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of [51] developed an effective method for quantizing systems with second-class con-
straints, applicable to the quantization of anomalous gauge theories and now known
as the Faddeev–Shatashvili quantization. In the path integral formulation, the for-
mula (7.46) was proved in [55].

7.7. Orbit method and functional integration. The orbit method was devel-
oped by Kirillov to describe unitary representations of unipotent Lie groups. The
innovative idea of this method involves relating unitary representations (algebraic
objects) to coadjoint orbits (geometric objects). This approach to representation
theory proved to be very fruitful. It underlies geometric representation theory.

In greater detail, let G be a connected compact reductive Lie group, g its Lie
algebra, and g∗ the dual space. The orbits of the coadjoint action of G on g∗ are
parametrized by the positive Weyl chamber W+. To every point λ ∈ W+ there
corresponds an orbit Oλ. For example, when G = U(n), the positive Weyl chamber
is parametrized by ordered tuples of real numbers

λ = {λ1 > λ2 > · · · > λn}.

The space g∗ may be identified with Hermitian n× n matrices, and the orbits Oλ

consist of the matrices with given eigenvalues λ.
Coadjoint orbits carry a canonical symplectic form (the Kirillov form). For

simplicity of notation we assume that G is a matrix group and its Lie algebra g is
a matrix algebra. Then every element x ∈ Oλ of an orbit can be represented in the
form

x = g−1λg,

and the Kirillov form can be written as

ω =
1
2
⟨λ, [dgg−1, dgg−1]⟩ =

1
2
⟨x, [g−1dg, g−1dg]⟩.

When λ is a weight of G, the form ω belongs to an integer cohomology class and
determines a positive line bundle Lλ over the orbit. By the Borel–Weil–Bott theo-
rem, the orbit Oλ induces an irreducible representation Vλ, which can be realized
in the cohomology of Lλ. Kirillov proposed a universal formula for characters
of the irreducible representation Vλ in terms of integrals of exponential functions
over the coadjoint orbit endowed with the Liouville measure of the canonical sym-
plectic form.

Faddeev and his students Shatashvili and Alekseev posed the problem of obtain-
ing the character formula for the representation Vλ in terms of functional integra-
tion. This is important for several reasons. On the one hand, quantum-mechanical
description of characters by means of functional integration gives a fresh view on
the representation theory (and answers a question posed by Kirillov). On the other
hand, such a formalism enables one to consider particles with spin and holonomies
of connections (Wilson loops) in non-Abelian gauge theories in the framework of
classical field theory.

Here is the answer obtained in [58]:

Z(A) =
∫
Dg exp

{
i

∫
γ

⟨λ, dgg−1 + gAg−1⟩
}
, (7.47)
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where γ is a one-dimensional manifold (an interval or a circle) and A ∈ Ω1(γ, g) is
a gauge field. The formula (7.47) admits several interesting interpretations.

First, when γ is a circle, the action functional

S(g,A) =
∫

γ

⟨λ, dgg−1 + gAg−1⟩

can be written, using the Stokes theorem, as a two-dimensional integral of the form

S(g,A) =
∫

Σ

⟨λ, F ⟩,

where Σ is a two-dimensional surface with boundary γ and F = da is the curvature
of the connection a for the group Gλ preserving λ. We note that F/(2πi) is the
first Chern form. Thus, S(g,A) is the simplest example of a Chern–Simons action
obtained by the descent method!

Second, when γ is a circle, it is natural to conjecture that

Z(A) = χλ(Hol(A, γ)),

where χλ is the character of an irreducible representation ofG with highest weight λ,
and Hol(A, γ) ∈ G is the holonomy of A along γ. This conjecture was proved in [58]
in the cases when G = SU(n) and G = SO(n) using the Gelfand–Tsetlin integrable
systems88 on the orbits Oλ in order to introduce the ‘action-angle’ variables and
compute the path integral.

Third, it was later shown by Alekseev and Shatashvili that (7.47) can easily
be extended to more complicated examples of infinite-dimensional Lie algebras
and groups. In particular, the action functional for affine Lie algebras coincides
with the Wess–Zumino–Novikov–Witten chiral action, which is obtained from the
second Chern class by the descent method described in the previous subsection.
In the case of the Virasoro algebra one obtains the Polyakov action describing one
of the two-dimensional gravitation models which is currently used in probability
theory.

Fourth, (7.47) gives an interesting opportunity to study the nature of functional
integration. On the one hand, this is a simple quantum-mechanical system with
a compact phase space. On the other hand, for the partition function the answer is
given by the character of an irreducible representation of a reductive Lie algebra,
and this expression contains a very rich combinatorics. Finally, the third approach
enables one to interpret this system as a two-dimensional topological quantum field
theory.

Like other formulae due to Faddeev, the expression (7.47) is simple looking but
full of unexpected depth and never ceases to amaze.

8. Quantum field theory. Problems of scattering theory

8.1. Wave operators in quantum field theory. Throughout his scientific
activities, Faddeev thought about dealing with inevitable divergences in the ordi-
nary approach to quantum field theory. He cited Van Hove [125], [118], who argued

88These integrable systems were introduced by Guillemin and Sternberg.
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that renormalizations in field theory arise because of the use of eigenfunction expan-
sion of the free Hamiltonian. In [14], Faddeev proposed a method for eliminating
the eigenfunctions of the free Hamiltonian from calculations of the S-matrix. The
main idea of this method is as follows. Suppose that the Hamiltonian H is given
in the representation of second quantization as

H = H0 + V

and the interaction V is a Wick polynomial whose coefficient functions involve
a δ-function that guarantees conservation of momentum:

V =
∑
n,m

Vn,m,

Vn,m =
∫

Rn+m

vn,m(k1, . . . , kn; p1, . . . , pm)
n∏

i=1

a†(ki) dki

m∏
j=1

a(pj) dpj ,

vn,m(k1, . . . , kn; p1, . . . , pm) = δ

( n∑
i=1

ki −
m∑

j=1

pj

)
ṽn,m(k1, . . . , kn; p1, . . . , pm),

where a†(k) and a(k) are the creation and annihilation operators. The presence
of the δ-function enables one to consider the dynamics in a subspace with fixed
momentum, and if vn,1 ̸= 0 for n > 1, then there is an interaction between the dis-
crete and continuous spectra. On the other hand, the presence of the δ-function in
the terms vn,0, n > 1, makes it difficult to define V as an operator. By [14], when V
contains terms with fewer than two annihilation operators, the construction of scat-
tering theory first requires one to find a unitary operator W (which can naturally
be referred to as the dressing operator in the sense of Greenberg–Schweber [100])
such that

H ′ = W−1HW = H ′
0 + V ′ + cI,

where H ′
0 is the renormalized energy operator, c is a constant, and V ′ contains

only potential terms, that is, V ′ is represented by a Wick polynomial having no
terms with fewer than two annihilation operators. The eigenfunctions of H ′

0 can be
taken as asymptotic states. The paper [14] proposed considering the wave operators
for the pair of operators H ′

0 and H ′
0 +V ′. They are defined in the standard way by

the formula (1.4) as the strong limits

U ′± = lim
t→±∞

eit(H′
0+V ′0 )e−itH′

0 ,

and the S-matrix is defined as the operator

S = U ′∗+U
′
−.

In this approach, the scattering matrix is unitary from the very beginning (hence
there is no need to renormalize the wave functions) and has non-trivial matrix
entries only between states containing two or more particles. This programme was
realized for the Lee model [84]. The divergences related to charge renormalization
are of a different mathematical nature [11].
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8.2. Infrared divergences and asymptotic conditions in quantum elec-
trodynamics. The presence of infrared divergences (the infrared catastrophe)
was known in QED since the classical paper [89] by Bloch and Nordsieck (1937).
Textbooks on QED propose overcoming infrared divergences by summing the prob-
abilities of the transition from the given initial state to all final states containing
an arbitrary number of ‘soft’ photons in addition to detectable particles. But this
commonly accepted formal treatment of the infrared catastrophe is not completely
satisfying, because the initial and final states are not treated symmetrically, and the
scattering operator is not defined at all. In their joint paper [23], Kulish and Fad-
deev asked whether the absence of the scattering operator is unavoidable and fol-
lows from the physical essence of the problem, or whether there is an alternative
approach to infrared divergences enabling one to define the scattering operator. It
was shown in [23] that infrared divergences can be avoided by modifying simultane-
ously the space of asymptotic states and the definition of the scattering operator.
This is because the asymptotic dynamics should be taken properly into account
in order to have well-defined wave operators. The procedure proposed in [23] was
suggested by the theory of non-relativistic scattering for long-range potentials and
has a simple physical interpretation. Therefore, following [23], we begin with this
case.

8.2.1. Non-relativistic Coulomb scattering. We explain the main idea of the
approach in [23] using the example of scattering of a non-relativistic particle by
the long-range Coulomb potential with Hamiltonian

H = H0 + V = − 1
2m

∆ +
g

|r|
.

In the interaction representation, the potential

V (t) = e−iH0tV eiH0t

has the following asymptotics as |t| → ∞:

Vas(t) =
mg

p|t|
, where p =

√
−∆ .

Since Vas(t) is non-integrable with respect to t in a neighbourhood of∞, the asymp-
totic dynamics is described not by the free Hamiltonian H0, but by the explicitly
time-dependent operator

Has(t) = H0 + Vas.

The solutions ψ(t) of the asymptotic Schrödinger equation

i
∂ψ

∂t
= Has(t)ψ

with initial condition ψ(r, t)
∣∣
t=t0

= ψ(r) are represented in the form

ψ(t) = Uas(t)ψ, where Uas(t) = e−iH0(t−t0) exp
{
−img

p
(sign t) log

∣∣∣∣ tt0
∣∣∣∣}. (8.1)
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Dollard [95] showed that the following strong limits exist in L2(R3):

U± = lim
t→±∞

eiH tUas(t).

These are analogues of the wave operators (1.4) in the rapidly decaying case. The
scattering operator is accordingly defined by

S = U∗+U−.

It is independent of the choice of t0 and gives familiar expressions for the differential
cross sections of scattering by the Coulomb potential. It was stressed in [23] that
one should derive the Hamiltonian of the asymptotic dynamics from the physical
meaning of the problem89 rather than blindly copy the patterns of scattering the-
ory for rapidly decaying potentials (see § 1). These ideas were applied in [23] to
relativistic quantum electrodynamics.

8.2.2. Construction of Vas(t) and the S-matrix in quantum electrodynamics. To
be specific, the authors of [23] consider spinor electrodynamics [83] describing
a system of interacting electrons, positrons, and photons: ψ̄(x) and ψ(x) are the
electron-positron field operators, Aµ(x) is the electromagnetic field operator, and

b†i (p), bi(p), d†i (p), di(p), a†µ(k), aµ(k), i = 1, 2, µ = 0, 1, 2, 3,

are the creation and annihilation operators for electrons, positrons, and photons,
respectively. The field operators ψ̄, ψ, and Aµ are expressed in terms of the creation
and annihilation operators by

ψ(x) =
1

(2π)3/2

∫
R3

(
m

p0

)1/2 2∑
l=1

(bl(p)wl(p)ei(p,x) + d†l (p)vl(p)e−i(p,x)) d3p,

ψ̄(x) =
1

(2π)3/2

∫
R3

(
m

p0

)1/2 2∑
l=1

(b†l (p)wl(p)e−i(p,x) + dl(p)vl(p)ei(p,x)) d3p,

Aµ(x) =
1

(2π)3/2

∫
R3

(a†µ(k)e−i(k,x) + aµ(k)ei(k,x))
d3k√
2k0

,

where
p0 =

√
p2 +m2 , k0 = |k|,

and ( · , · ) is the standard scalar product in R3. The corresponding interaction
operator is of the form

V = −e
∫

R3
:ψ̄(x)γµψ(x):Aµ(x) d3x,

where e is the electron charge, the γµ are Dirac’s gamma matrices and : · : means
the normal ordering with respect to the creation and annihilation operators (see
§ 5.2). Remarkably, it turns out that

e−iH0tV (t)eiH0t = Vas(t) + o(1), t→ ±∞,

89In analysing the Dollard formula for Uas(t), Faddeev and Buslaev proposed a general scheme
for constructing wave operators for long-range potentials using the asymptotics of the classical
motion as |t| → ∞. This beautiful idea was implemented in [91].
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where Vas(t) can be represented in the form

Vas(t) =
1

(2π)3/2

∫
R3
Jµ

as(k, t)
(
a†µ(−k) + aµ(k)

) d3k√
2k0

with the current operator

Jµ
as(k, t) = −e

∫
R3
pµ ei(p,k)/p0ρ(p)

d3p

2p0

and the density

ρ(p) =
2∑

l=1

(b†l (p)bl(p)− d†l (p) dl(p)).

The states of charged particles with given momenta are eigenstates of the opera-
tor Jµ

as(k, t).
As in the case considered above, the asymptotic dynamics of the system is

described by the Hamiltonian

Has(t) = H0 + Vas(t)

and the evolution operator Uas(t),

i
dUas(t)
dt

= Has(t)Uas(t).

The general solution of this equation is shown in [23] to be

Uas(t) = e−iH0tZ(t),

where

Z(t) = exp
{
−i

∫ t

eiH0τVas(τ)e−iH0τ dτ − 1
2

∫ t(∫ τ

[V I
as(τ), V

I
as(s)] ds

)
dτ

}
and the lower limit of integration is chosen in such a way90 that∫ t

eisτ dτ =
1
is
eist.

The operator Z(t) can be rewritten as

Z(t) = exp{R(t)} exp{iΦ(t)},

where

R(t) =
e

(2π)3/2

∫
R3

∫
R3

pµ

k · p

(
a†µ(k) exp

{
i
k · p
p0

t

}
− aµ(k) exp

{
−ik · p

p0
t

})
ρ(p) d3p

d3k√
2k0

,

Φ(t) =
e2

8π

∫
R3

∫
R3

:ρ(p)ρ(q):
p · q

((p · q)2 −m4)1/2
(sign t) log

|t|
t0
d3p d3q,

90In particular, this corresponds to the condition that the integrals of Vas(t) over finite t make
no contribution to the expression for Uas(t).
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and
k · p = kµpµ, p · q = pµqµ, where q0 =

√
q2 +m2 .

The operator Φ is a natural analogue of the phase in (8.1).
The operators R(t) and Φ(t) commute, and the final expression for the evolution

operator of asymptotic dynamics takes the form

Uas(t) = exp{−iH0t} exp{R(t) + iΦ(t)}

while the Kulish–Faddeev scattering operator is defined by

S = lim
t1→∞

t2→−∞

S(t1, t2),

where
S(t1, t2) = U†as(t1) exp{−iH(t1 − t2)}Uas(t2).

The expression S(t1, t2) differs from Dyson’s S-matrix for finite times

SD(t1, t2) = exp{iH0t1} exp{−iH(t1 − t2)} exp{−iH0t2}

by the augmenting factors exp{R(t) + iΦ(t)}.
To construct a meaningful theory, one must find the Hilbert space in which the

operator S acts. A non-trivial fact is that it acts in the separable Hilbert space Has

of asymptotic states,91 which differs from the Fock space HF for charged particles
and photons. To explain this in greater detail, we consider the operator

W (t) = exp{R(t)}.

Since it preserves the number, momenta, and spins of charged particles, its action
on the vector

b†s1
(p1) · · · b†sn

(pn)d†i1(q1) · · · d
†
im

(qm)|0⟩ ⊗Ψγ

is determined by the action on Ψγ (the state vector of photons) and is given by the
operator

Wn,m(t) = exp
{

e

(2π)3/2

∫
R3

(fµ
n,m(. . . |k, t)a†µ(k)− f

µ

n,m(. . . |k, t)aµ(k))
d3k√
2k0

}
,

where the dots . . . stand for the dependence on p1, . . . ,pn, q1, . . . , qm and

fµ
n,m(p1, . . . ,pn, q1, . . . , qm | k, t) =

n∑
i=1

pµ
i

k · pi
exp

{
i
k · pi

pi0
t

}

−
m∑

i=1

qµ
i

k · qi
exp

{
i
k · qi
qi0

t

}
. (8.2)

91In 1969 Faddeev was presenting the definition of the space of asymptotic states in quantum
electrodynamics to Vladimir Aleksandrovich Fock. Their conversation took place in the Rector’s
quarters of Leningrad State University, then the location of the Department of Theoretical Physics
in the Faculty of Physics. “There are as many vectors in the space of asymptotic states as in yours”,
Faddeev explained to Fock!
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Thus, W (t) is an operator of the type ‘exponential of a linear form’ in the creation
and annihilation operators for photons. Its discrete analogue has the form

Wα = exp
{∑

i

(αiai − αia
†
i )

}
= exp

{
−1

2

∑
i

|αi|2
}

exp
{
−

∑
i

αia
†
i

}
exp

{ ∑
i

αiai

}

and is meaningless in the initial Fock space if∑
i

|αi|2 = ∞.

However, it can be defined as an operator acting from the Fock space to a new space.
This new space may naturally be regarded as the image Hα of the Fock space HF

under the action of Wα. The properties of Hα and its continual analogues were
studied in detail in [23] as a part of the definition of the space of asymptotic states in
quantum electrodynamics, and also by Aref’eva and Kulish [85] (in a more general
context). It was shown in [23] that Hα is naturally acted on by a representation
of the Poincaré group [23] and contains a Lorentz-invariant and gradient-invariant
subspace with non-negative metric, that is, the physical asymptotic subspace Has.
By [23],

Has = W (t)HF for all t.

The scattering operator can now be precisely characterized as an operator acting
in Has. Namely, writing S(t1, t2) in the form

S(t1, t2) = W †(t1)S̃D(t1, t2)W (t2),

where

S̃D(t1, t2) = exp{−iΦ(t)}SD(t1, t2) exp{iΦ(t)},

we obtain the following sequence of maps:

Has
W−→ HF

S̃−→ HF
W †

−−→ Has.

Since the definition of the operator S involves the operators W †(t1) and W (t2), we
must use the space Has of asymptotic states in the definition of the S-matrix. It
was noted in [23] that, along with charged particles, asymptotic states must contain
infinitely many photons, whose low-frequency spectrum is determined by the state
of the charges. Redefining the scattering operator amounts to distinguishing the
‘phase’ operator factors. The first circumstance is of a relativistic nature, and
the second is needed even in the case of non-relativistic scattering by a Coulomb
potential.
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The authors of [23] also compare their results with Chung’s [92], who deduced
the phase factors exp{±iΦ(t)} from an analysis of Feynman diagrams. This enabled
them to verify that the matrix entries ⟨Ψ|S|Ψ′⟩ of the scattering operator S between
arbitrary states |Ψ⟩ and |Ψ′⟩ contain no infrared divergences in all orders of expan-
sion with respect to the charge e2.

Kulish [106] considered in a similar way the scattering of soft gravitons and
obtained factors analogous to those found earlier by Weinberg [126]. The methods
of the paper [23] by Faddeev and Kulish are now used in various areas of theoretical
physics (see, for example, [102]). The formula (8.2) entails the appearance of a pole
at zero frequency k0 of radiated photons, which in turn gives rise to the ‘memory
effect’ in electromagnetism and gravitation (originally discovered for gravitation
by Zeldovich and Polnarev in 1973).

9. Conclusion

The mathematical heritage of Ludwig Dmitrievich Faddeev will determine the
development of mathematical and theoretical physics for many decades to come.
For all its enormous diversity, it is united by a deep faith in the unity of mathemat-
ics and physics, in their interpenetration, and in the capability of understanding
the fundamental laws of nature based on the criterion of mathematical beauty
and naturalness. Faddeev recognized the importance of deep ideas coming from
physics for the development of pure mathematics, and perhaps he is the first great
mathematician whose work was completely based on the ideas of quantum theory.
Faddeev liked to say that quantum mechanics is simpler than classical mechanics.
His papers in quantum field theory prepared a revolution of gauge theories in ele-
mentary particle physics. With the advent of the models of topological quantum
field theory, the same papers played a most important role in the development of
topology.

His technical arsenal included both the methods of functional analysis developed
in the first half of the 20th century and forming the mathematical toolbox of quan-
tum mechanics, and the more recent methods of symplectic geometry, algebraic
analysis, and quantum field theory. For example, using the method of holomorphic
representation with virtuosity, Faddeev gave a definitive formulation of the scatter-
ing matrix in the formalism of functional integration. Another fundamental idea of
Faddeev’s was related to the role of (infinite-dimensional) group theory as a source
of exact solutions in classical and quantum physics. This role of symmetry is still
somewhat mysterious, but his intuition, almost always infallible, has indicated the
deepest and most fruitful connections between various areas of mathematics and
physics also in this respect.

Faddeev’s ideas continue to play a definitive role in mathematical physics. They
live in the work of his students and will live further in the work of their students
and so forth, as long as mathematics and theoretical physics exist.
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