III.5. Spectral theorem

III.5.1 Four forms of the spectral theorem

Let $A \in \mathcal{L}(\mathcal{H})$, $A = A^*$.

Theorem (continuous functional calculus)

There exists a *-homomorphism

$$\varphi : C(\sigma(A)) \to \mathcal{L}(\mathcal{H})$$

such that

(a) $\|\varphi(f)\| = \|f\|_{\infty}$.

(b) If $f(\lambda) = \lambda$, then $\varphi(f) = A$.

(c) If $Ax = \lambda x$, $x \in \mathcal{H}$, then $\varphi(f)x = f(\lambda)x$.

(d) If $f \geq 0$, then $\varphi(f) \geq 0$.

(e) $\sigma(\varphi(f)) = f(\sigma(A))$

$$= \{ f(\lambda), \lambda \in \sigma(A) \} .$$

Notation: $\varphi(f) = f(A)$.

In a nutshell: $C(\sigma(A)) \approx$ the C^*-algebra generated by A.

Let $B(\mathbb{K})$ be the algebra of bounded Borel functions on \mathbb{K} (see Section I.3).
Thm 2 (measurable functional calculus)

\[\exists ! \, \ast - \text{homomorphism} \]
\[\hat{\varphi} : \mathcal{B}(\mathcal{R}) \to L(\mathcal{H}) \]

s.t.
(a) \[\| \hat{\varphi}(\varphi) \| = \| \varphi \| \] (need to be explained what \(a.e. \) means: to the spectral measures determined by \(A \))
(b) - (d) as in Thm 1
(c) If \(f_n \to f \) pointwise and \(\| f_n \|_\infty \) are bounded, then \(\hat{\varphi}(f_n) \to \varphi(f) \) strongly.
(d) If \(AB = BA, \ B \in L(\mathcal{H}) \), then \(\varphi(f)B = B\varphi(f) \).

Thm 3 (multiplication operator form)

Let \(\mathcal{H} \) be separable. Then \(\exists \) measures \(\mu_n \) on \(\sigma(A) \), \(n = 1, 2, \ldots, N \quad (N \in \mathbb{N} \cup \{\infty\}) \) and a unitary operator
\[U : \mathcal{H} \to \bigoplus_{i=1}^{\infty} L^2(\sigma(A), d\mu_i) \]
such that
\[(U A U^{-1} f)_i(\lambda) = \lambda f_i(\lambda), \ i = 1, \ldots, N \]
\[\varphi = \bigoplus_{i=1}^{N} f_i \]
(spectral representation of \(A \)).
Def A family \(\{ P_\Omega \} \) is a bounded projective-valued measure on Borel sets \(\mathcal{B} \) if

(i) each \(P_\Omega \in \mathcal{L}(\mathcal{H}) \) is an orthogonal projector

(ii) \(P_\emptyset = 0 \), \(P_{(-a,a)} = I \) for some \(a > 0 \).

(iii) If \(\Omega = \bigcup_{n=1}^N \Omega_n \) (disjoint), then

\[
P_\Omega = \lim_{N \to \infty} \sum_{n=1}^N P_{\Omega_n}
\]

(iv) \(P_{\Omega_1} P_{\Omega_2} = P_{\Omega_1 \cap \Omega_2} \).

(Actually, (iv) follows from (i) and (iii):

\[
\Omega_1 \cup \Omega_2 = \Omega_1' \cup \Omega_1 \cap \Omega_2' \cup \Omega_2
\]

and \(P_1 + P_2 \) is projector \(\iff P_1 P_2 + P_2 P_1 = 0 \),

so \(P_{\Omega_1} \) anti-commutes with \(P_{\Omega_1 \cap \Omega_2} \).
but if $P_1P_2 + P_2P_1 = 0$, then $P_1P_2 = 0$.
Indeed,
\[P_1P_2 = -P_2P_1, \]
so
\[P_2P_1P_2 = -P_2P_1 = P_1P_2, \]
or
\[(I - P_2)P_1P_2 = 0. \]
but
\[P_2P_1P_2 = -P_2P_1P_2, \]
so also
\[P_2P_1P_2 = 0; \]
Thus
\[(P_{\Omega_1} + P_{\Omega_1 \cap \Omega_2})(P_{\Omega_2} + P_{\Omega_1 \cap \Omega_2}) = P_{\Omega_1 \cap \Omega_2}, \]
Set $P_\lambda = P_{(-\infty, \lambda]}$.

Every projection-valued measure defines a family of ordinary measures on \mathbb{R}:
\[M_x(\Omega) = (P(\Omega)x, x). \]

5.2. Integration theory

For every bounded Borel f and $x \in H$
\[f \in B(\mathbb{R}) \]
set
\[\int f(\lambda) \, d\mu_x(\lambda). \]
By polarization, we get
\[\int f(\lambda) \, d(\mathcal{P}_\lambda x, y) \]
as Lebesgue–Stieltjes integral. By Riesz lemma, \(\exists T \) s.t.
\[(Tx, y) = \int f(\lambda) \, d(\mathcal{P}_\lambda x, y) \]
and
\[\| T \| \leq \sup |f| = \| f \|_\infty . \]

We set
\[T = \int f(\lambda) \, d\mathcal{P}_\lambda \]

If \(f \in \text{BC}(\mathbb{R}) \), this integral converges uniformly.

Thm 4 (projection-valued measure form
- von Neumann)
\(\exists ! \) bounded projection-valued measure \(\mathcal{P}_\lambda \) s.t.
\[A = \int \lambda \, d\mathcal{P}_\lambda , \]
\[f(A) = \int f(\lambda) \, d\mathcal{P}_\lambda , \]
\(f \in \mathcal{B}(\mathbb{R}) \) (bounded Borel)
linear by polarization:

\[(x, y) = \frac{1}{4} \left[(x+y, x+y) - (x-y, x-y) + i(x+iy, x+iy) - i(x-iy, x-iy) \right]. \]

\[\|Tx\|^2 = \int f(t) d\left(P_t x, Tx \right), \]

but

\[(P_t x, Tx) = \overline{(Tx, P_t x)} \]

\[= \int \overline{f(t)} \overline{d(\bar{P}_t x, P_t x)} \]

\[= \int \overline{f(t')} d(P_{t'}, x, x), \]

thus

\[\|Tx\|^2 = \int |f(t)|^2 d(P_t x, x) \]

\[\leq \sup |f(t)| \|x\|^2. \]

Also,

\[(T^* x, y) = \int \overline{f(t)} \overline{d(\bar{P}_t x, y)}. \]
1) \[l(y) = \int f(t) d(P_t x, y) \]

is bounded anti-linear functional (\(x \in H \) is fixed).

Indeed, it is sufficient to prove for \(f = a x \omega \), but

\[l(y) = a (P_\omega x, y) \]

\[\| l \| \leq |a| \| x \| \]

so that in general,

\[\| l \| \leq \| f \| \infty \| x \| . \]

2) If \(f \in C([-a,a]) \), then

\[T = \int f(t) dP_t \text{ uniformly.} \]

Proof

Since \(f \) is uniformly continuous, \(\forall \varepsilon > 0 \)
\(\exists \ n \ s.t. \) for \(\| x \| = 1 \),

\[\left| \left(T - \sum_{i=1}^{n} f(t_{i-1}) P_{\Delta_i} \right) x, x \right| \]

\(\left(\Delta_i = [t_{i-1}, t_i] \right) \)

\[\leq \left| \left(\sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} (f(t) - f(t_i)) dP_t \cdot x, x \right) \right| \]
\[\varepsilon \parallel x \parallel^2 = \varepsilon. \text{ But it follows from the polarization identity that} \]

\[|(Ax, x)| \leq C \quad \forall \parallel x \parallel = 1 \]

\[\Rightarrow \parallel A \parallel \leq 2C. \]

(Indeed, for \(\parallel y \parallel = 1 \), polarization identity gives:

\[|(Ax, y)| \leq 2C, \text{ take } y = \frac{Ax}{\parallel Ax \parallel} \]

if \(Ax \neq 0 \), so that

\[\parallel Ax \parallel \leq 2C \]

3) If

\[T_1 = \int f(t) \, dP_t \]

\[T_2 = \int g(t) \, dP_t \]

then

\[T_1 T_2 = \int f(t) g(t) \, dP_t. \]

Proof 1. Sufficient to verify for

\(f = \chi_{\Omega_1}, \ g = \chi_{\Omega_2} \), then it is obvious.

Proof 2.
\[(T_1 T_2 x, y) = (T_2 x, T_1^* y) \]
\[= \int f(t) d (P_t x, T_1^* y) . \]

But, as before,
\[(P_t x, T_1^* y) = (T_1^* y, P_t x) \]
\[= \int g(t') d (P_{t'} y, P_t x) \]
\[= \int g(t') d (x, P_{t'} y) \]
\[= \int g(t') d (P_{t'} x, y) , \]

so that
\[(T_1 T_2 x, y) = \int f(t) g(t) d (P_t x, y) . \]

4) This refers to Problem 14 in Ch. VII
\[\text{If } A_n \geq 0, A_n \uparrow A \Rightarrow \sqrt{A_n} \uparrow \sqrt{A} \]
(Could be stated for any fractional power).

Will use Problem 1 in Ch. VII:
\[f(A) = \frac{1}{2\pi i} \int f(z) R_z(A) dz, \]
\[C \]
where C contains $\sigma(A)$ inside.

Can assume $\|I-A\| = q' < q < 1$, so that

$$\|I-A_n\| < q, \ n \geq N.$$

Then $\sigma(A), \sigma(A_n) \subseteq (1-q, 1-q)$

and we use Cauchy integral formula with $f(z) = \sqrt{z}$.

Now

$$R_z(A_n) - R_z(A) = (A - A_n) R_z(A) R_z(A_n),$$

so that on C

$$\|R_z(A_n) - R_z(A)\| \leq C^2 \|A - A_n\|,$$

$$C = \max_{z \in C} \|R_z(A_n)\| < \infty.$$

$\mathbf{III.5.3. \ Spectral \ theorem \ for \ unitary}$

operators

U - unitary, $UU^* = U^*U = I$.

First, for every trigonometric polynomial

$$P(e^{i ht}) = \sum_{k=\text{-m}}^{\text{m}} c_k e^{ikt},$$

set
\[P(U) = \sum_{k=-m}^{n-1} c_k U^k. \]

Clearly, \(P(U)^* = \overline{P(U^{-1})} \). Also if \(P(e^{it}) \geq 0 \), then \(P(U) \geq 0 \).

Indeed, if "polynomial" \(P(z) \) is real on \(|z| = 1 \), then

\[\overline{P(z)} = P \left(\frac{1}{\overline{z}} \right) \]

Since \(P(z) = \frac{1}{z^m} F(z) \), all roots of the polynomial \(F(z) \) are symmetric with respect to \(|z| = 1 \) and \(\exists \ Q(z) \) — a polynomial in \(z \), s.t.

\[P(z) = \overline{Q} \left(\frac{1}{z} \right) Q(z), \]

so that \(P(e^{it}) = \left| Q(e^{it}) \right|^2 \), and

\[P(U) = T^* T \geq 0, \]

\[T = Q(U) \]

Def: Let \(\mathcal{H} = C(S^1, \mathbb{R}) \) \(U \) \(\overline{\text{PCMC}}(S^1, \mathbb{R}), \)

where \(\text{PCMC}(S^1, \mathbb{R}) \) are real-valued piece-wise continuous functions which are point-wise limits of monotone functions in \(C(S^1, \mathbb{R}) \). \(\overline{\text{Sequences of}} \)
Lemma 1 \(\psi(e^{it}) \in \mathcal{H} \Rightarrow \exists \) monotone system of quasipolynomials \[
\{ P_n(e^{it}) \} \quad \text{s.t.} \quad \lim_{n \to \infty} P_n(e^{it}) = \psi(e^{it}) \quad \text{everywhere on } S^1.
\]

Proof. By definition, \(\psi(e^{it}) \) is a point-wise limit of monotone continuous functions \(\{ \varphi_n(e^{it}) \} \),

\[
\varphi_1(e^{it}) > \varphi_2(e^{it}) \geq \ldots \geq \varphi_n(e^{it}) \geq \ldots \to \psi(e^{it}).
\]

By Weierstrass theorem, \(\forall n \exists P_n \) s.t. everywhere on \(S^1 \),

\[
|P_n(e^{it}) - (\varphi_n(e^{it}) + \frac{3}{2^{n+2}})| \leq \frac{1}{2^{n+2}},
\]

i.e.

\[
\frac{1}{2^{n+1}} \leq P_n(e^{it}) - \varphi_n(e^{it}) \leq \frac{1}{2^n}
\]

everywhere on \(S^1 \), so that

\[
\lim_{n \to \infty} P_n(e^{it}) = \psi(e^{it}).
\]

Also,

\[
P_{n+1}(t) \leq \varphi_{n+1}(t) + \frac{1}{2^{n+1}} \leq \varphi_n(t) + \frac{1}{2^{n+1}}
\]

\[
\leq P_n(t).
\]

Want to define \(\psi^*(U) \) as \(\text{s-lim}_{n \to \infty} P_n(U) \).
Lemma 2. Let $A_1 \geq A_2 \geq \ldots \geq 0$. Then $\exists A \in L(H)$ s.t.

$$s\text{-lim}_{n \to \infty} A_n = A.$$

Proof. $A_m - A_n \geq 0$ for $m \geq n$, so

$$\sqrt{((A_m - A_n) x, y)} \leq \sqrt{((A_m - A_n) x, x)}.$$

Because (b, y), $b \geq 0$, satisfies Cauchy-Schwarz inequality! Setting $y = (A_m - A_n) x$, we get

$$\sqrt{(A_m - A_n) x, y) \leq \sqrt{\|A_1\| \|y\| \sqrt{((A_m - A_n) x, x)}}.$$

Since $(A_m x, x) \downarrow$,

$$\lim_{n \to \infty} \sqrt{(A_m x, x) - (A_n x, x)} = 0,$$

that $\{A_n x\}$ is Cauchy sequence, i.e.

$$\lim_{n \to \infty} A_n x = y := A x.$$

Clearly, $A \in L(H)$.

Now, since $P_n (e^{it}) - \inf \psi (e^{it}) > 0$, by Lemma 2 we have

$$\psi (U) = s\text{-lim}_{n \to \infty} P_n(U).$$
Lemma 3 \(\Psi^*(U) \) does not depend on the choice of the sequence \(\{P_n(e^{it})\} \).

Proof. Let \(\{Q_n(e^{it})\} \) be s.t.
\[
\lim_{n \to \infty} Q_n(e^{it}) = \Psi(e^{it}) \quad \text{pointwise.}
\]

\(\forall m \) and given \(t \exists N \) s.t.
\[
Q_N(e^{it}) < P_m(e^{it}) + \frac{1}{m}
\]
- true on same interval, but \(S^1 \) is compact, so that \(\exists N \) s.t. for all \(n \geq N \) and everywhere on \(S^1 \),
\[
Q_n(e^{it}) < P_m(e^{it}) + \frac{1}{m}
\]
Setting \(S = \lim_{n \to \infty} Q_n(e^{it}) \), we get
\[
S \leq P_m(U) + \frac{1}{m}.
\]
Setting \(T = \lim_{n \to \infty} P_n(e^{it}) \), we get
\[
S \leq T.
\]
By symmetry, \(T \leq S \), so \(S = T \).

Let \(\hat{K} \) be \(C \)-span of \(K \); set for
\[
\Psi = \sum_{k=1}^{m'} c_k \Psi_k \in \hat{K}
\]
\[
\Psi^*(U) = \sum_{k=1}^{m'} c_k \Psi_k(U).
\]
Claim \(\Psi(U) \) is well-defined. Indeed, if
\[\Psi_1 - \Psi_2 = \Psi_3 - \Psi_4, \quad \Psi_i \in \mathcal{H}, \]
then
\[\Psi_1 + \Psi_4 = \Psi_2 + \Psi_3, \]
so
\[\Psi_1(U) + \Psi_4(U) = \Psi_2(U) + \Psi_3(U). \]

Also, \(U \Psi(U) = \Psi(U) U \)
\(\forall \Psi \in \mathcal{H} \) — a corollary of \(Z \Psi(z) = \Psi(z) Z \).

Theorem (spectral decomposition of unitary operator) Let \(U \in \mathcal{L}(\mathcal{H}) \) be a unitary operator. Then \(\exists \) projection-valued measure \(P_\Omega \) s.t.

\[U^\lambda = \int_0^{2\pi} e^{ikt} dP_t, \quad \lambda \in \mathbb{Z}, \]

in a uniform topology (as a limit of Riemann sums). In general, for \(\Psi \in \mathcal{B}(S^1), \]
\[\Psi(U) = \int \Psi(e^{ikt}) dP_t \]
(in a weak-sense) — operator Lebesgue-Stieltjes integral.

Proof Set
\[\psi_\lambda(e^{it}) = \begin{cases} 1, & 0 \leq t < \lambda \\ 0, & \lambda \leq t < 2\pi \\ 1, & t = 2\pi \end{cases}, \quad \psi_\lambda(0) = 0 \]

and \[P_\lambda = \psi_\lambda(\mathcal{U}), \quad \lambda \in [0, 2\pi] \]

Then

(i) \[P_0 = 0, \quad P = I \]

(ii) \[P_\lambda = P_\lambda^*, \quad P_\lambda^2 = P_\lambda \]

(iii) \[P_\lambda \leq P_\mu \quad \text{for} \quad 0 \leq \lambda < \mu \leq 2\pi \]

(iv) \[s-lim_{\lambda' \rightarrow \lambda-0} P_{\lambda'} = P_\lambda \]

This is because

\[\lim_{\epsilon \rightarrow 0^+} \psi_{\lambda-\epsilon}(e^{it}) = \psi_{\lambda}(e^{it}) \quad \forall t. \]

This properties define projection-value measure through

\[P_\Omega = \int \chi_\Omega(e^{it}) \, dP_t. \]

To prove the spectral decomposition, let \(0 = t_0 < t_1 < \ldots < t_n = 2\pi \).

Using the inequality

\[|e^{ikt} - e^{ikt'}| \leq |k| |t-t'|, \]

we get
\[e^{-ikt} - \sum_{j=1}^{n} e^{ikt_{j-1}} (w_{t_{j}}(e^{it}) - w_{t_{j-1}}(e^{it})) \leq |k| \Delta t, \]

\[\Delta t = \max_{j} \{|t_{j} - t_{j-1}|\} = \frac{\varepsilon}{|k|}. \]

Then

\[0 \leq \left[(U^{K} - \sum_{j=1}^{n} e^{ikt_{j-1}} P_{\Delta j})^* \right] \cdot \left[(U^{K} - \sum_{j=1}^{n} e^{ikt_{j-1}} P_{\Delta j}) \right] \leq \varepsilon^{2} I, \]

i.e.,

\[\| U^{K} - \sum_{j=1}^{n} e^{ikt_{j-1}} P_{\Delta j} \| \leq \varepsilon. \]

Corollary Let \(s\text{-lim} U_{n} = U \) (\(U \) is obviously unitary), and \(\lambda = 1 \) is not an eigenvalue for \(U \). Then for every \(0 < t < 2\pi \) s.t. \(e^{it} \) is not an eigenvalue for \(U \),

\[s\text{-lim} P_{t}^{(n)} = P_{t}. \]
Proof let
\[\psi(e^{i\xi}) = \psi_t(e^{i\xi})(e^{i\xi} - e^{it})(e^{i\xi} - 1), \]
\[\psi \in C(S^1). \]
Set
\[B_n = (U_n - e^{it}I)(U_n - I), \]
\[B = (U - e^{it}I)(U - I). \]
Since \(\psi \in C(S^1), \) \(\psi(U_n) \rightarrow \psi(U), \)
\[B_n \rightarrow B. \]
But
\[\psi(U_n) = P_t^{(n)} B_n \rightarrow P_t B. \]
But for all \(x \in \mathcal{H}, \)
\[\| (P_t^{(n)} - P_t) B x \| \leq \| P_t^{(n)} (B - B_n) x \| \]
\[+ \| P_t^{(n)} B_n x - P_t B x \| \rightarrow 0, \]
so
\[s-lim_{n \rightarrow \infty} P_t^{(n)} B \rightarrow P_t B. \]
By assumption, \(\text{Ker} B = 0 \) and \(\overline{\text{Im} B} = \mathcal{H}, \)
so for \(x \in \text{Im} B, \)
\[\lim_{n \rightarrow \infty} P_t^{(n)} x = \lim_{n \rightarrow \infty} P_t^{(n)} B y \]
\[= P_t B y = P_t x. \]
Cayley Transform

Let $A \in L(\mathcal{H})$, $A = A^*$. Set

$$U = (A - iI)(A + iI)^{-1} \in L(\mathcal{H}).$$

(Note that $\text{Im}(A \pm iI) = \mathcal{H}$.)

Claim U is unitary and $1 \notin \sigma(U)$.

Proof $U^* = (A - iI)^{-1}(A + iI)

= (A + iI)(A - iI)^{-1} = U^{-1}.$

Also, $Ux = x \iff (A - iI)x = (A + iI)x$,
i.e. $x = 0$; and $\text{Im}(U - I) = \text{Im}(A - iI)^{-1}\mathcal{H}$
since $\text{D}(A) = \mathcal{H}$!

U is called Cayley transform of A.

Theorem 1 (Spectral decomposition of bounded self-adjoint operator).

Let $A \in L(\mathcal{H})$, $A = A^*$ and let

$$P_s, \ 0 \leq s \leq 2\pi,$$

be the projection-valued measure for $U = \frac{A - iI}{A + iI}$.

Then

$$A = \int t \, dE_t,$$

where $E_t = P_s, \ t = -\cot \frac{s}{2}$.

Proof
Lemma 1 \(e^{it} \in \sigma(U) \iff \forall \varepsilon > 0 \text{ s.t.} \ P(t-\varepsilon, t+\varepsilon)(U) \neq 0 \).

Proof (a) Suppose that \(\exists \varepsilon > 0 \text{ s.t.} \ P(t-\varepsilon, t+\varepsilon) = 0 \). Since for \(\forall x \in X \),

\[
\| (U - e^{it}I)x \|^2 \\
= \int_{0}^{2\pi} |e^{ix} - e^{it}|^2 \, d(P_{\frac{x}{2}}x, x) \\
= 4 \int_{0}^{2\pi} \sin^2 \frac{x-t}{2} \, d(P_{\frac{x}{2}}x, x) \\
\geq 4 \int_{t-\varepsilon}^{t+\varepsilon} + 4 \int_{0}^{t-\varepsilon} \geq \varepsilon^2 \|x\|^2.
\]

Thus \(e^{it} \in \sigma(U) \) (see next page).

(b) Let \(e^{it} \in \sigma(U) \). Then \(\exists \varepsilon > 0 \) s.t.

\[
\| (U - e^{it})x \|^2 \geq \varepsilon^2 \|x\|^2, \forall x \in X
\]

Suppose that \(\exists \eta > 0 \text{ s.t.} \ P(t-\eta, t+\eta)(U) \neq 0; \ \eta < \varepsilon. \)
Remark. Indeed, if $\forall x \in \mathcal{H}$

$$\| (U - e^{it} I) x \| \geq c \| x \|, \quad (\ast)$$

then $e^{it} \in \sigma(U)$. First, $\text{Im} (U - e^{it} I) = \mathcal{H}_0$ is closed, since if $\mathcal{H}_0 \ni y_n = (U - e^{it} I) x_n \to y \in \mathcal{H}$, then \{ y_n \} is Cauchy and by (\ast) \{ x_n \} is also Cauchy. Thus $\exists x \in \mathcal{H}$ s.t. $x_n \to x$ and $y \in \mathcal{H}_0$.

$$(U - e^{it} I) x$$

Second, suppose $y \perp \mathcal{H}_0$, i.e.

$$(y, (U - e^{it} I) x) = 0 \quad \forall x \in \mathcal{H},$$

$$(U^{-1} - e^{-it} I) y, x = 0 \quad \| \to$$

so that

$$(U^{-1} - e^{-it}) y = 0,$$

i.e.

$$U y = e^{it} y,$$

which contradicts $\text{Ker} (U - e^{it} I) = \{ 0 \}$, as follows from (\ast).
so that \(\exists y \in \mathcal{Y} \) s.t.
\[
(P_{t+\eta} - P_{t-\eta}) y = x \neq 0.
\]

For this \(x \) we get
\[
\| (U - e^{it}) x \|_2^2
\]
\[
= \int_0^{2\pi} 4 \sin^2 \frac{\xi - t}{2} d \left(P_{\xi} (P_{t+\eta} - P_{t-\eta}) y, y \right)
\]
\[
= \int_{t-\eta}^{t+\eta} 4 \sin^2 \frac{\xi - t}{2} d (P_{\xi} y, y)
\]
\[
\geq \varepsilon^2 \| x \|_2^2 = \varepsilon^2 \int_{t-\eta}^{t+\eta} d (P_{\xi} y, y).
\]

But
\[
\int_{t-\eta}^{t+\eta} 4 \sin^2 \frac{\xi - t}{2} d (P_{\xi} y, y)
\]
\[
\leq \eta^2 \int_{t-\eta}^{t+\eta} d (P_{\xi} y, y), \eta < \varepsilon - \text{ contradiction}.
\]
$A = i \frac{I+U}{I-U}$ and $1 \notin \sigma(U)$, so P_S is supported on $[a, b] \subseteq [0, 2\pi]$.

Thus,

$$A = \int_{\sigma(U)} i \frac{1+e^{is}}{1-e^{is}} \, dP_S$$

Using Lemma 1, integration goes over $\sigma(U)$ only.

$$= \int_{\sigma(U)} -\cot \frac{s}{2} \, dP_S,$$

$$\cot \frac{s}{2} \in C(\sigma(U)).$$

Setting $t = -\cot \frac{s}{2}$, $E_t = P_S$, we get

$$A = \int t \, dE_t.$$

Corollary: Let $s\lim A_n = A$, where all A_n are bounded & self-adjoint. Then for every $t \in \mathbb{R}$ s.t. t is not an eigenvalue for A,

$$s\lim E_t^{(n)} = E_t.$$

$n \to \infty$ $t \in \mathbb{R}$.

Follows from similar fact about unitary operators.

Theorem 2: $SA = AS$ if and only if $SE_t = E_t S$ for all $t \in \mathbb{R}$.
Direct proof of spectral decomposition
for \(A \) (i.e. without
\[
A = i \frac{I + U}{I - U} \Rightarrow A = \psi(U)\]

\(Ax = i (I + U)y \), where
\[y = (I - U^{-1})x. \]
We have
\[
Ax = i \int_0^{2\pi} (1 + e^{is}) \, dP_s \, y
\]
and for \(x = (I - U)y \),
\[
P_s x = (I - U)P_s y
\]
\[
= \int_0^{2\pi} (1 - e^{i\tau}) \, dP_{\tau} \, P_s y
\]
\[
= \int_0^{2\pi} (1 - e^{i\tau}) \, dP_{\tau} \, y, \text{ so that}
\]
\[
dP_s x = (1 - e^{is}) \, dP_s \, y
\]
and
\[
Ax = \int_0^{2\pi} i \frac{1 + e^{is}}{1 - e^{is}} \, dP_s \, x.
\]
Ex. \(A = A^* \), \(A \) compact \(\Rightarrow \)
\[
A = \sum_{n=1}^{l} \lambda_n P_n
\]
\(\lambda_n \neq 0 \)

\(\lambda_n \to 0 \); \(\lambda = 0 \to P_0 \) - projector on \(\text{Ker} A \). Set
\[
E_\lambda = \sum_{n=1}^{l} P_n \quad (\text{always convergent})
\]

\(\lambda_n < \lambda \)

\[
E_{\lambda-\epsilon} = E_\lambda \quad \text{and}
E_{\lambda_n+\epsilon} - E_{\lambda_n} = P_n,
\]
so that
\[
A = \int \lambda \, dE_\lambda.
\]
Proof. $SE_t = E_t S$ for all $t \in \mathbb{R}$

\Rightarrow $SA = AS$ - trivial.

Converse follows that $SA = AS \Rightarrow SU = US \Rightarrow \psi_\lambda^\prime(U) S = S \psi_\lambda(U)$.

Lemma 1' $\lambda \in \sigma(A) \iff$

$\forall \varepsilon > 0 \quad E_{(\lambda - \varepsilon, \lambda + \varepsilon)}(A) \neq 0$.

Proof. As for lemma 1, replacing $4 \sin^2 \frac{\pi - t}{2}$ by $(\lambda - t)^2$.

Lemma 2

(a) $\lambda \in \sigma(A)$ is an eigenvalue \iff

$E_{\lambda+0} \neq E_{\lambda}$.

(b) $e^{it} \in \sigma(U)$ is an eigenvalue \iff

$P_{t + 0} \neq P_t$.

Proof. It is sufficient to prove (a).

Let $A x = \lambda x$. Then

$0 = \| (A - \lambda) x \|^2 = \int (t - \lambda)^2 d(E_t x, x)$

$\Rightarrow d(E_t x, x)$ is supported at $t = \lambda$.

Since \(\|x\|^2 = \int d(E_t x, x) \),

\((E_t x, x) \) has a jump at \(t = \lambda \) and is constant everywhere else. Thus

\[(E_{\lambda+0} x, x) \neq (E_\lambda x, x), \]

so \(E_{\lambda+0} \neq E_\lambda \).

Conversely, let \(E_{\lambda+0} \neq E_\lambda \):

\[\exists y \in \mathcal{H} \text{ s.t.} \]

\[x = (E_{\lambda+0} - E_\lambda)y \neq 0. \]

Now

\[\| (A - \lambda I)x \|^2 = \int (t - \lambda)^2 d(E_t x, x) \]

But

\[(E_t x, x) = (E_t (E_{\lambda+0} - E_\lambda)y, y) \]

\[= \begin{cases} 0, & t < \lambda \\ \text{const}, & t > \lambda \end{cases}, \]

so \(d(E_t x, x) \) is supported at \(t = \lambda \) and

\[\| (A - \lambda) x \| = 0. \]

Corollary: \(P_\lambda = E_{\lambda+0} - E_\lambda \)

is the projector on the corresponding eigenspace.
Another proof of the spectral theorem (a sketch)

\[A = A^*, \quad R_z = R_z^*(A) = (A - zI)^{-1}, \quad \text{Im} \, z \neq 0. \]

Fix \(f \in H \) & put

\[\varphi(z) = (R_z f, f). \]

• Hilbert identity \(\Rightarrow \varphi(z) \) is holomorphic for \(\text{Im} \, z > 0 \)

• \(R_z^* = R_z \Rightarrow \text{Im} \, \varphi(z) = y \| R_z f \|^2 > 0 \)
 for \(y = \text{Im} \, z > 0. \)

• \(\| R_z f \| \leq \frac{1}{y} \| f \| \Rightarrow \sup \ y \left| \varphi(iy) \right| < \infty \)
 for \(y > 0 \)

Key fact: \(\exists \) 1 function of bounded variation \(\omega(t) = \omega(t; f) \),

\[\omega(-\infty) = 0, \quad \omega(t - 0) = \omega(t) \quad \forall \, t \]

s.t.

\[\varphi(z) = \frac{d}{dt} \omega(t), \quad \text{Im} \, z > 0 \]

Defining \(\omega(t; f, g) \) by polarization...
we get \((R_{z} f, g) = \int_{-\infty}^{\infty} \frac{d\omega(t; f, g)}{t-z} \)

\(\omega(t; f, g) = \omega(t; g, f) \) and is linear in \(f \); \(\omega(t; f, f) \leq \|f\|^2 \)

By Riesz representation theorem, \(\exists E_{t} \) s.t.

\(\omega(t; f, g) = \langle E_{t} f, g \rangle \),

\((R_{z} f, g) = \int_{-\infty}^{\infty} \frac{d\langle E_{t} f, g \rangle}{t-z} \)

Hilbert identity \(\Rightarrow E_{t}, \ t \in \mathbb{R} \), is the distribution function for projection-valued measure associated with \(A \)!
III.5.4. Simple spectrum

(Multiplicity-free operators)

Def. A is multiplicity-free (or ω(A) is simple) if ∃ x ∈ H s.t.

(*) C(E(Δ)x) = H.

(Similar for unitary operators)

Lemma. U has simple spectrum

⇔ ∃ x ∈ H s.t. C{U^nx} = H.

Proof. Suppose U has simple spectrum, and suppose that ∃ y ∈ H s.t.

(y, U^n x) = 0 ∀ n ∈ Z,

i.e.

\[\int e^{i \lambda t} d(P_t x, y) = 0 \]

(+) ⇒ (P_t x, y) = 0 ⇒ y \perp P(Δ)x

-contradicting (*). Hence, \{U^n x\} = H, then clearly (*) holds.

(+) Uniqueness of Fourier series.
Example: let $\sigma(t)$ be a distribution function: non-decreasing and satisfying $\sigma(t-0) = \sigma(t) \; \forall \; t \in \mathbb{R}$.

$$H = L^2_0(\mathbb{R}) = L^2(\mathbb{R}, d\mu),$$

$$\mu(E) = \int E \, d\sigma \quad \text{(Lebesgue-Stieltjes integral)}$$

μ has compact Q-multiplication by t operator; support finite, $\mu(R) < \infty$; then $Q \in L(H)$.

$$E(\Delta)f(t) = \chi_{\Delta}(t)f(t)$$

$g(t) = \begin{cases} \alpha_k, & k-1 \leq t \leq k \\ \end{cases}$

s.t. $\sum_{n \in \mathbb{Z}} |\alpha_n|^2 \left(\sigma(n) - \sigma(n-1) \right) < \infty$

g is a cyclic vector, since $C\{E(\Delta)g\}$ finite piece-wise constant functions - dense in H.

Exercise: any $g \neq 0$ except σ-measure 0 set is a cyclic vector.
\[dE_t f = \delta(x-t) \delta(\lambda) \]
so that
\[\int dE_t f = f \]
and \[(\int t dE_t f)(\lambda) = \lambda f(\lambda); \]
\[d(E_t f, f) = |f(t)|^2 \int d\sigma(t). \]
(Here \(f \in L^2_0(\mathbb{R}) \))

- We'll use these formulas on next three pages.
Theorem 1 Let \(A \) be multiplicity-free, \(x \in \mathcal{H} \) a cyclic vector,
\(\sigma(t) = (E_t x, x) \). Then

\[L^2_\sigma(\mathbb{R}) \ni f(t) \mapsto f = \int f(t) dE_t x \in \mathcal{H} \]

is an isometry s.t.

\[A f \leftrightarrow t f(t). \]

Proof

Let \(G = \left\{ f \in \mathcal{H} \mid \exists f(t) \in L^2_\sigma(\mathbb{R}), f = \int f(t) dE_t x \right\} \).

First, for \(f(t) = \chi_\Delta(t) \),

\[f = E(\Delta) x, \text{ so that} \]

\(G = \mathcal{H} \).

Moreover,

\[(E_t x, f) = \int_t \overline{f(s)} d_s (E_t x, E_s x) = \int_t \overline{f(s)} d (E_s x, x), \]
so that
\[
(f, f) = \int f(t) \, d(E_t x, f)
\]
\[
= \int |f(t)|^2 \, d\sigma(t),
\]
so the map
\[
L^2_\sigma(\mathbb{R}) \to G
\]
is an isometry. Thus \(G = \mathcal{H} \).

Next,
\[
Af = \int \lambda \, dE_\lambda f
\]
and
\[
(Af, h) = \int \lambda \, d(E_\lambda f, h)
\]
\[
= \int \lambda \, d(f, E_\lambda h)
\]
\[
= \int \lambda \, d \left\{ \int f(t) \, d(E_t x, E_\lambda h) \right\}
\]
\[
= \int \lambda \, \int f(t) \, d(E_t x, h)
\]
\[
= \int \lambda \, f(\lambda) \, d(E_\lambda x, h)
\]
so that
\[Af = \int \lambda f(\lambda) \, dE \lambda \, x \]
for
\[f = \int f(\lambda) \, dE \lambda \, x, \]
which is a canonical form of multiplicity-free operator.

Theorem 2. \(A = A^* \), bounded is multiplicity-free \(\iff \exists \ h \in \mathcal{H} \) s.t.
\[C \left\{ A^n h \right\} = \mathcal{H}. \]
This \(h \) is also a cyclic vector for \(A \).

Proof. If part is easy. Suppose that such \(h \) exists and that \(\exists \ y \) s.t.
\[y \perp C \left\{ E(\lambda) h \right\}, \quad \text{so} \]
y \perp E_t h \ for \(\forall \ t. \) Then
\[(A^n h, y) = \int t^n d \left(E_t h, y \right) = 0 \]
\(\forall n \geq 0 \) - contradictory.

For only if part, set
\[h = \int e^{-t^2} \, dE_t \, x, \]
so that
\[A^n h = \int t^n e^{-t^2} dE_t x. \]

If \(\exists f \in \mathcal{H} \) s.t. \((A^n h, f) = 0, \forall n > 0 \), then
\[0 = (A^n h, f) = \int e^{-t^2} t^n f(t) d\sigma(t), \]

where \(f \leftrightarrow f(t) \) and
\[||f||^2 = \int |f(t)|^2 d\sigma(t) \neq 0. \]

Set
\[w(t) = \int_0^t f(s) d\sigma(s) + C, \]

\[|w(t)| \leq \sqrt{1 + a}, \quad t \to \infty. \]

Integrating by parts,
\[0 = \int_{-\infty}^{\infty} e^{-t^2} t^{n+1} w(t) dt \]
\[= \int_{-\infty}^{\infty} e^{-t^2} t^{n-1} w(t) dt, \quad n = 0, 1, 2, \ldots \]
implies
\[\int_{-\infty}^{\infty} e^{-t^2} t^n w(t) dt = 0 \]
for \(n > 0 \) (\(n = 0 \) - choice of \(C \)).

By completeness of Hermite polynomials,
\[w(t) = 0, \]
and we get
\[0 \neq \int |f(t)|^2 \, d\sigma(t) = \int \overline{f(t)} \, d\omega(t) = 0 \]
- a contradiction.

Characterization of \(\sigma(A) \)

Pure point spectrum: \(\lambda \in \sigma_{pp}(A) \),
if \(\text{Im}(A - \lambda I) \neq \mathbb{N} \iff \lambda \) is an eigenvalue.

Continuous spectrum: \(\lambda \in \sigma_{cont}(A) \),
if \(\text{Im}(A - \lambda I) \) is not closed, or \(\lambda \) is an eigenvalue of infinite multiplicity.

Remark: It may happen that finite multiplicity eigenvalue \(\in \sigma_{pp}(A) \cap \sigma_{cont}(A) \).

Essential spectrum: \(\lambda \in \sigma_{ess}(A) \),
if \(\lambda \) is non-isolated point with the property that \(E^{\lambda+\varepsilon} - E^{\lambda-\varepsilon} \neq 0 \)
for some \(\varepsilon > 0 \), or \(\lambda \) is an eigenvalue of an infinite multiplicity.

Discrete spectrum: \(\lambda \in \sigma_{disc}(A) \),
if \(\lambda \) is an isolated point of \(\sigma(A) \)
but not an eigenvalue of infinite multiplicity.

\(\lambda \in \sigma_{ess}(A) \iff \text{Im} \ E_{(\lambda-\varepsilon, \lambda+\varepsilon)} \) is infinite-dimensional for all \(\varepsilon > 0 \).