SKETCH OF SOLUTIONS (HOMEWORK VI)

1. \(H, \alpha_5 H, \alpha_3 H \) Notice that there must be 3 cosets, and different cosets are disjoint.

7. \(|U(30)| = 8\) and \(|H| = 2\) therefore there must be \(4\) cosets, by inspection we get \(H, 7H, 13H\) and \(19H\)

15. Let \(H \) be a proper subgroup of \(G \) then \(|H| < |G| = pq\) and by Lagrange’s theorem \(|H| \mid pq\), so \(|H|\) equals either 1, \(p \) or \(q \) and by corollary 3 this implies \(H \) is cyclic.

3. \[
5^{2^7+1} \equiv (5^7)^2 \cdot 5 \equiv 5^2 \cdot 5 \equiv 4 \cdot 5 \equiv 6 \mod 7
\]

\[
7^{11+2} \equiv 7 \cdot 7^2 \equiv 7 \cdot 5 \equiv 2 \mod 11
\]

19. \(g^m = e \) therefore \(|g|\) divides \(m \) but since \((m,n) = 1\) if \(|g| \mid n\), then \(|g| = 1\). Using Lagrange’s theorem we get that \(|g| = 1\) therefore \(g = e \)

25. \(1, 3, 11, 33 \). The number of elements of order 11 must be a multiple of 10 why? Therefore since \(33 \equiv 3 \mod 10\) there must be at least two elements \(g \) and \(h \) of order not equal to 11 or 1. If the order of one of these elements (say \(g \)) is \(33\) then \(|g^{11}| = 3\) and we are done.

31. \[
\begin{align*}
stab(1) &= \{(1), (24)(56)\} \quad \text{orb}(1) = \{1, 2, 3, 4\} \\
stab(3) &= \{(1), (24)(56)\} \quad \text{orb}(3) = \{1, 2, 3, 4\} \\
stab(1) &= \{(1), (12)(34), (13)(24), (14)(23)\} \quad \text{orb}(5) = \{5, 6\}
\end{align*}
\]

42. Label the points in the diagrams in the following way:

\[
\begin{array}{ccc}
a & b & c \\
d & e & f
\end{array}
\]

\[
\begin{align*}
\text{stab}(a) &= \{R_0, H\} \quad \text{stab}(d) = \{R_0\} \\
\text{stab}(b) &= \{R_0, D^f\} \quad \text{stab}(e) = \{R_0\} \\
\text{stab}(c) &= \{R_0, H\} \quad \text{stab}(f) = \{R_0\}
\end{align*}
\]

45. 50. By Lagrange’s theorem \(10 \mid |G|\), \(25 \mid |G|\), therefore \(\text{lcm}(10, 25) \mid |G| \)

therefore \(50 \mid |G|\). Since \(|G| < 100\) we get \(50 = |G|\)