
MAT 303 Calculus IV Fall 2003
Midterm II — Solutions

1. (a) (5 points) Show that the one-parameter family of the straight
lines

y(x) = Cx + g(C)

satisfies the differential equation

xy′ + g(y′) = y.

Solution. Trivial: y′ = C so that xy′+g(y′) = xC+g(C) =
y.

(b) (5 points) Suppose that a body moves through a resisting
medium with resistance proportional to its velocity v,

dv

dt
= −kv, k > 0.

Given that v(0) = v0 and x(0) = x0, find the velocity v(t)
and the displacement x(t).

Solution. Clearly, v(t) = v0e
−kt and x(t) = C − v0

k
e−kt.

From x(0) = x0 we get C = x0 + v0

k
, so that

x(t) = x0 +
v0

k

(
1− e−kt

)
(c) (10 points) Suppose that a body is dropped (v0 = 0) from

a distance r0 > R from the earth’s center (R is the radius
of the earth), so that its acceleration is

dv

dt
= −GM

r2
.

Find the time when a body reaches the height r < r0.
Hint : Use that dv/dt = v(dv/dr) and use the substitution

r = r0 cos2 θ to evaluate the integral
∫ √

r/(r0 − r)dr.
Solution. We have v = dr/dt, where r is the distance from
the earth’s center. Since

dv

dt
=

dv

dr

dr

dt
= v

dv

dr
,

(as it was suggested in the hint) we get from Newton’s law
of gravitation

v
dv

dr
= −GM

r2
.
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Integrating this from r to r0 and using v0 = 0 we get

v2

2
=

GM

r
− GM

r0

(this is the conservation of energy: kinetic energy + po-
tential energy = constant). Since the body is falling, v is
negative, and we get, after some simple algebra,

v =
dr

dt
= −

√
2GM

√
r0 − r

r0r
.

From this equation we get

dt

dr
= −

√
r0

2GM

√
r

r0 − r

Integrating from r to r0 we obtain

t =

√
r0

2GM

∫ r0

r

√
r

r0 − r
dr.

To compute the integral, we use the substitution r = r0 cos2 θ,
as suggested. Since

dr = −2r0 cos θ sin θdθ and

√
r

r0 − r
=

cos θ

sin θ
,

∫ √
r

r0 − r
dr = −r0

∫
2 cos2 θ dθ

= −r0(θ + 1
2
sin 2θ) = −r0(θ + sin θ cos θ).

Finally, using θ = cos−1
√

r/r0, we get after simple algebra,

t =

√
r0

2GM

(
cos−1

√
r

r0

+
√

rr0 − r2

)
(which is the answer to the problem 28(a) in Section 2.3).

2. (20 points) Using the substitution v = ln x for the independent
variable x > 0, transform the differential equation

(1) x2y′′ − 6xy′ + 6y = 0

into the constant coefficient linear differential equation with the
independent variable v. Using this method, find the general
solution of the differential equation (??).

Solution. We get but the chain rule,

dy

dx
=

dy

dv

dv

dx
=

1

x

dy

dv
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and

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
1

x

dy

dv

)
= − 1

x2

dy

dv
+

1

x

d

dx

(
dy

dv

)
= − 1

x2

dy

dv
+

1

x

d2y

dv2

dv

dx
= − 1

x2

dy

dv
+

1

x2

d2y

dv2
.

Substituting these expressions into the differential equation (??),
we get

x2y′′ − 6xy′ + 6y =
d2y

dv2
− 7

dy

dv
+ 6y = 0,

where now v is an independent variable. The characteristic
equation is

r2 − 7r + 6 = 0

and its roots are r1 = 1, r2 = 6. Thus

y(v) = c1e
v + c2e

6v

and

y(x) = c1x + c2x
6

3. (a) (10 points) Find the general solution of the differential
equation

y(4) + y(3) − y′′ + y′ − 2y = 0.

Solution. The characteristic equation is

r4 + r3 − r2 + r − 2 = 0

and, by inspection, has a root r1 = 1. Factoring, we rewrite
the characteristic equation as

(r − 1)(r3 + 2r2 + r + 2) = (r − 1)(r + 2)(r2 + 1) = 0.

The roots are 1,−2, i,−i and the general solution is

y(x) = c1e
x + c2e

−2x + c3 cos x + c4 sin x

(b) (10 points) For the differential equation in part (a), solve
the initial value problem

y(0) = y′(0) = y′′(0) = 0, y′′′(0) = 30.
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Solution. We have the following system of linear algebraic
equations for the constants c1, c2, c3 and c4:

c1 + c2 + c3 = 0

c1 − 2c2 + c4 = 0

c1 + 4c2 − c3 = 0

c1 − 8c2 − c4 = 30

Solving this system, we get c1 = 5, c2 = −2, c3 = −3, c4 =
−9, so that

y(x) = 5ex − 2e−2 − 3 cos x− 9 sin x

4. Consider the mass-spring-dashpot system with the displace-
ment x(t)

(2) ẍ + 2pẋ + ω2
0x = 0,

where p = c/(2m) and ω2
0 = k/m, and suppose that the system

is underdamped.
(a) (10 points) For the differential equation (2), solve the initial

value problem

x(0) = x0, v(0) = v0.

Solution. General solution is x(t) = e−pt(A cos ω1t+B sin ω1t).
Using x(0) = x0 we get A = x0 and

ẋ(0) = −pA + Bω1 = v0, B =
v0 + px0

ω1

.

Thus

x(t) = e−pt

(
x0 cos ω1t +

v0 + px0

ω1

sin ω1t

)
(b) (5 points) Write the solution x(t) to the part (b) in the

form
x(t) = Ce−ptcos(ω1t− α),

where ω2
1 = ω2

0 − p2, and determine C and α.
Solution.

C =

√
x2

0 +

(
v0 + px0

ω1

)2

and

cos α =
x0

C
, sin α =

v0 + px0

ω1C
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(c) (5 points) Using part (b), prove that local maxima and
minima of the solution x(t) occur when

tan(ω1t− α) = − p

ω1

,

and find the difference between two consecutive local max-
ima of x(t).
Solution. Critical points are solutions of ẋ(t) = 0 and from
part (b),

ẋ(t) = −pCe−pt cos(ω1t− α)− Ce−ptω1 sin(ω1t− α) = 0,

so

tan(ω1t− α) = − p

ω1

Either from the graph in the textbook (Figure 3.4.9), or using
second derivative test, we see that critical points alternate be-
tween local maxima and minima, so the difference between two
consecutive local maxima is

2π

ω1

(compare with problems 30,32 in Section 3.4).
5. (a) (10 points) Find a particular solution yp of the differential

equation

y′′′ + y′ = 2− cos x.

Solution. Characteristic equation is r3+r = 0, so the roots
are 0, i,−i and complementary solution is

yc(x) = c1 + c2 cos x + c3 sin x.

In this case, both 2 and − cos x appear in yc, so the Rule
2 applies and the trial form of a particular solution is

yp(x) = Ax + x(B cos x + C sin x).

Computing y′p, y
′′
p , y

′′′
p and substituting them into the dif-

ferential equation, we get

y′′′p + y′p = A− 2B cos x− 2C sin x = 2− cos x.

Thus A = 2, B = 1/2, C = 0 and

yp(x) = 2 + 1
2
x cos x
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(b) (5 points) Set up the appropriate form of a particular so-
lution yp of the differential equation

D2(D − 1)3(D + 2)2(D2 + 4)y = e−x + e3x cos x.

Do not determine the values of the coefficients!
Solution. Roots of the characteristic equation are

−2,−2, 0, 0, 1, 1, 1, 2i,−2i

and we see that neither f(x) = e−x + e3x cos x, nor its
derivatives appear in the complementary solution. Thus
the Rule 1 applies and the trial form of a particular solution
is

yp(x) = Ae−x + e3x(B cos x + C sin x)

(c) (5 points) Set up the appropriate form of a particular so-
lution yp of the differential equation

D2(D − 1)3(D + 2)2(D2 + 4)y = x2 + ex + e3x cos 2x.

Do not determine the values of the coefficients!
Solution. The roots are the same as in part (b), but now
derivative of the first term in f(x) and the second term
appear in a complementary solution. The latter is

yc(x) = c1 + c2x + e−2x(c3 + c4x)

+ ex(c5 + c6x + c7x
2) + c8 cos 2x + c9 sin x.

Thus, according to Rule 2, the trial form of a particular
solution is

yp(x) = x2(Ax2 + Bx + C) + Dx3ex + e3x(E cos 2x + F sin 2x)

Extra Credit Consider the second order linear differential equation with con-
stant coefficients

(3) ay′′ + by′ + cy = 0.

The independent variable x is missing, so that it can be solved
by the method described in the end of Section 1.6.
(a) (5 points) Show that this method reduces differential equa-

tion (3) to the first order homogeneous differential equa-
tion with respect to the variable y, and write down a first
order separable differential equation corresponding to the
homogeneous equation.
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Solution. Using the substitution p = y′ and treating p as
a function of y, we get y′′ = p dp/dy and the differential
equation (3) becomes

dp

dy
= − b

a
− y

p

c

a

(substituting and dividing by ap). This is a homogeneous
first order differential equation, and the substitution v(y) =
p(y)/y reduces it to the separable differential equation

y
dv

dy
= −av2 + bv + c

av

(b) (5 points) Suppose that the roots r1, r2 of the characteristic
equation

ar2 + br + c = 0

are distinct. Show that equilibrium solutions of the sep-
arable equation in part (a) correspond to the solutions
y1(x) = er1x and y2(x) = er2x of the differential equation
(3).
Solution. The equilibrium solutions of the separable equa-
tion in part (a) are roots of the equation av2 + bv + c = 0,
i.e., v = r1 and v = r2. But if v = r, then p = ry or,
equivalently, y′ = ry, which gives y(x) = Cerx, as wanted.


