PRACTICE MIDTERM I, FOR MAT 127

(1) For what values of k is the function e^{kx} a solution to the differential equation

 $y^{(2)} - 4y' + 3y = 0 \quad .$

(2) Consider the differential equation $y' = x^2 + xy$.

(a) Find the slope of the direction field for given differential equation at the point (2,3) in the (x,y)-plane.

(b) Let y_c denote the solution to the given differential equation whose graph contains the point (2,-1) in the (x,y)-plane. Find the value of the derivative of y_c at x=2.

(3) Let y_2 denote the solution to the initial value problem

$$y' = x^2 + y^2$$
, $y(0) = 2$.

Use Euler's method, with step size equal to 1, to estimate the value $y_2(3) = ?$.

(4) Indicate which of the following differential equations are seperable; and find all solutions for each seperable equation.

1

- (a) y' = x + y.
- (b) $y' = \sqrt{x^3 y}$.
- (c) $y' = e^x y$.
- (d) y' = sin(xy).
- (e) $y^{(3)} = xy$.

(5) problem 36 on page 529.

(6) problem 8 on page 538.