REVIEW FOR MIDTERM I; MAT 312 (SPRING, 08)

(1) Let $a_1, a_2, ..., a_n$ denote postive integers and let $(a_1, a_2, ..., a_n)$ denote the greatest common divisor of these n integers. In the text book $(a_1, a_2, ..., a_n)$ was constructed inductively by

$$(a_1, a_2, ..., a_2) = ((a_1, a_2, ..., a_{n-1}), a_n).$$

Prove that $(a_1, a_2, ..., a_n)$ is equal to the smallest positive integer in the set $X = \{\sum_{i=1}^n a_i m_i \mid m_i \in \mathbb{Z}\}.$

(2)

- (a) Use the Euclidean algorithm to compute (198,210).
- (a) Find integers m, n such that 198m+210n=(198,210).

(3)

- (a) Compute (198,210,231).
- (a) Compute lcm(198,210,231).

(4) Let $p_1, p_2, p_3, ..., p_n, ...$ denote a list of all the prime positive integers. Let a, b denote two positive integers. By Theorem 1.3.3 we may write $a = \prod_{i=1}^{r} p_i^{m_i}$ and $b = \prod_{i=1}^{r} p_i^{n_i}$, for some positive integer r and for natural numbers m_i, n_i .

Show that $a \mid b$ iff $m_i \leq n_i$ for all $1 \leq i \leq r$.

(5) Show that if $[a]_n$ is not a zero divisor (mod n) then it must be invertible (mod n).

(6)

- (a) Which of the following are invertible? $[18]_{23}$, $[15]_{25}$, $[36]_{73}$.
- (b) For those congruence classes in part (a) which are invertible find their inverses.

(7) Let $a, b \in \mathbb{P}$ set $X = \{am + bn \mid m, n \in \mathbb{Z}, am + bn > 0\}$. Show that $X = \{(a, b)k \mid k \in \mathbb{P}\}$, where (a, b) denotes the greatest common divisor of a, b.

(8) Explain why the simultaneous congruence equations

$$x \equiv 4 \mod 11$$

$$3x \equiv 5 \mod 9$$

do not have a solution. Does this contradict the Chinese remainder theorem?

(9) Solve the simultaneous congruence equations

$$x \equiv 4 \mod ll$$

$$3x \equiv 6 \mod 9$$

$$10x \equiv 15 \mod 20$$

(10) Solve the congruence equation $60x \equiv 40 \mod 110$.

(11) Let m, n denote positive integers greater than 1, and let $f:\mathbb{Z}_m \times \mathbb{Z}_n \longrightarrow \mathbb{Z}_{mn}$ be the map defined by $f([a]_m, [b]_n) = [x]_{mn}$ where x is a solution to the simultaneous congruence equations

$$x \equiv a \mod m$$
$$x \equiv b \mod n$$

Then show that f is a well defined map which is an "isomorphism" of sets (i.e. f is one-one and onto).

(12) Prove or give a counter example: either some power of $[a]_n$ is equal to $[1]_n$ or some power of $[a]_n$ is equal to $[0]_n$.

(13) Compute the following powers: $([3]_{11})^{288} = ?; ([3]_{21})^{99} = ?$

(14)

(a) List all of the elements in G_{20} .

(b) How many elements are in the set G_{1080} ?

(15) Show that $([25]_{1080})^{-1}$ exists; and write $([25]_{1080})^{-1}$ in the form $([25]_{1080})^k$ for some positive integer k.