Homework 11 : §5.3 - 1*, 3, 4*, 5, 7*, 8*.

* - in the back of the book

Exercises 5.3

3. Let G be a group with the map $\phi: G \to G, g \mapsto aga^{-1}$. It is a homomorphism since

$$\phi(g_1g_2) = ag_1g_2a^{-1} = ag_1a^{-1}ag_2a^{-1} = \phi(g_1)\phi(g_2).$$

It is injective since $ag_1a^{-1} = ag_2a^{-1}$ implies $g_1 = g_2$. It is surjective since given $g \in G$, $\phi(a^{-1}ga) = g$. Thus, ϕ is an isomorphism.

5. $G \times H$ is abelian if and only if $(g_1, h_1) \cdot (g_2, h_2) = (g_2, h_2) \cdot (g_1, h_1)$ for any $g_1, g_2 \in G$ and $h_1, h_2 \in H$. But $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$ and $(g_2, h_2) \cdot (g_1, h_1) = (g_2g_1, h_2h_1)$. Thus, $(g_1g_2, h_1h_2) = (g_2g_1, h_2h_1)$ if and only if $g_1g_2 = g_2g_1, h_1h_2 = h_2h_1$, which is tantamount to G, H being abelian groups.