Homework 2: 1.2: 3, 7, 8, 10; 1.3: 2, 6, 7, 8

Exercises 1.2

3. The Fibonacci sequence is defined recursively (inductively) by $a_k = a_{k-1} + a_{k-2}$. Let $P(n)$ be the assertion: a_n and a_{n-1} are relatively prime. Then we see that $a_2 = a_1 = 1$, and so the base case $P(2)$ holds. Now suppose $P(k)$ holds. Using the inductive definition $a_{k+1} = a_k + a_{k-1}$, we see by Lemma 1.1.4 in section 1.1 that $(a_{k+1}, a_k) = (a_k + a_{k-1}, a_k) = (a_{k-1}, a_k)$. But by assumption, $(a_{k-1}, a_k) = 1$, so a_{k+1} and a_k are relatively prime. Thus $P(k) \Rightarrow P(k+1)$, and so by the principle of induction $P(n)$ holds for all $n \in \mathbb{C}$.

7. Let $P(n)$ be the assertion

$$1 + x + x^2 + \cdots + x^n = \frac{1 - x^{n+1}}{1 - x}$$

Then as $\frac{1 - x^2}{1 - x} = \frac{(1+x)(1-x)}{1-x} = 1 + x$, $P(1)$ holds. Now assume $P(k)$. Then

$$1 + x + x^2 + \cdots + x^n + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + x^{n+1} = \frac{1 - x^{n+1} + x^{n+1}(1 - x)}{1 - x} = \frac{1 - x^{n+2}}{1 - x}$$

Which is the assertion $P(k+1)$. Thus $P(n)$ holds for all n by induction.

8. (i) Proof by induction. $P(n) : 5|n^5 - n$. As $1^5 - 1 = 0 = 5 \cdot 0$, $P(1)$ holds. Now assume $P(k)$. Specifically, say $k^5 - k = 5q$. Then $(k+1)^5 - (k + 1) = k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 - k - 1 = (k^5 - k) + 5(k^4 + 2k^3 + 2k^2 + k) = 5q + 5(k^4 + 2k^3 + 2k^2 + k)$, which is divisible by 5. Thus $P(k+1)$ holds, and so $P(n)$ holds for all n by induction.

(ii) $P(n) : 8|3^{2^n} - 1$. Clearly $P(1)$ holds. Now assume $P(k)$. Write $3^{2k} - 1 = 8q$. Then $3^{2k} = 8q + 1$, and so $3^{2(k+1)} - 1 = 3^{2k} \cdot 3^2 - 1 = (8q + 1) \cdot 9 - 1 = 8(9q + 1)$. Thus $8|3^{2(k+1)} - 1$, and so $P(k+1)$ holds. Therefore $P(n)$ holds for all n by induction.

10. We will prove that there cannot be any nonempty set with no least element, which is a restatement of the well-ordering principle. As suggested, let X be an arbitrary set of positive integers with no least element, and define L to be the set of all positive integers n such that n is not greater than or
equal to any element in \(X \). Let \(P(n) \) be the assertion \(n \in L \). As \(1 \leq n \) for every positive integer \(n \), \(1 \in L \), and so \(P(1) \) holds. Now assume \(P(k) \), so \(k < x \) for each \(x \in X \). But then if \(k + 1 \notin L \), we must have \(k + 1 \in X \): there would exist an \(x \in X \) such that \(x \leq k + 1 \), but then \(k < x \leq k + 1 \), and so \(x = k + 1 \). Furthermore, \(k < x \) for every \(x \in X \) implies \(k + 1 \leq x \) for every \(x \in X \), so that \(k + 1 \) would be a least element. As \(X \) has no least element this is a contradiction, so we must have \(k + 1 \in L \). Thus \(P(k) \Rightarrow P(k + 1) \), and so by induction \(P(n) \) holds for all \(n \). But then every \(n \) is not in \(X \). In other words, \(X \) is empty, and we have proved the well-ordering principle.

Exercises 1.3

2. If \(n \) is composite, that is \(n = pq \), then we have either \(p \leq \sqrt{n} \) or \(q \leq \sqrt{n} \) (or both if \(n = p^2 \)). But then using the sieve method \(n \) would have been eliminated as a multiple of the smallest prime in the decomposition of \(n \), once primes less than or equal to \(\sqrt{n} \) had been accounted for.

6. If \(n \) were not prime, say \(n = pq \), with \(p, q > 1 \), then \(2^n - 1 = (2^p - 1)(1 + 2^p + 2^{2p} + \cdots + 2^{(q-1)p}) \), by polynomial long division (Observe \(x = 1 \) is a root of \(x^q - 1 \)). But then \(2^n - 1 \) would be composite. Thus if \(2^n - 1 \) is not composite, \(n \) must be prime.

7. Similarly, if \(n = pm \) where \(p, m > 0 \) and \(p \) is an odd prime, then \(2^n + 1 = (2^m + 1)(\cdots + 2^{(m-1)p}) \), so \(2^n + 1 \) would be composite.

8. Suppose for contradiction that there were only finitely many primes of the form \(4k + 3 \). Call them \(p_1, p_2, \ldots p_n \). Since \(3 = 4 \cdot 0 + 3 \) is prime, we may assume \(p_1 = 3 \). As suggested, let \(N = 4(p_2p_3 \ldots p_n) + 3 \). First note that none of the \(p_i \) divide \(N \). If \(N \) is prime, then we have immediately a contradiction because \(N \) is distinct from all of the \(p_i \). Thus, we investigate the case when \(N \) is not prime. If this were the case, then as \(N \) is not divisible by any of the finitely many primes of the form \(4k + 3 \), \(N \) must be a product of primes not of the form \(4k + 3 \). Since \(2 \) does not divide \(N \), we may assume \(N = q_1q_2q_3 \ldots q_m \) as a product of (not necessarily distinct) primes of the form \(4k + 1 \). But then we note that for each \(i \), \(q_i \equiv 1(\text{mod} \ 4) \). Thus \(N \equiv q_1 \cdots q_m \equiv 1 \cdots 1 \equiv 1(\text{mod} \ 4) \). Which is a contradiction, as \(N \equiv 3(\text{mod} \ 4) \) by definition. Thus if our list \(p_1, \ldots p_n \) were complete, we would be able to construct a number \(N \) which is neither prime nor composite, which is of course a contradiction, so our list cannot be complete.