PRACTICE MIDTERM FOR MAT 312

(1) Let $C \subset Z_2^{20}$ denote a set of code words. Suppose that d = 7 for this code.

- (a) How many transmission errors can be detected by this code? Explain why.
- (b) How many transmission errors can be corrected by this code? Explain why.
- (c) Give a simple example of a code C with d = 7.

(2) Let *H* denote a 4×6 binary matrix, and let $C \subset Z_2^6$ denote all the binary 6-tuples **c** such that $H\mathbf{c}^t = \mathbf{0}$.

(a) Explain why C is a group code.

In (b)-(e) below assume that H is equal to

Try do (b)-(d) without listing the code words in C.

- (b) Show that C is single error detecting and single error correcting.
- (c) Compute d for this code.
- (d) A code word **c** is transmitted and a binary 6-tuple **r** is received. If $\mathbf{r} = 110000$ then compute the syndrome of **r**; if at most one transmission error has been made, then find **c**.
- (e) List all the code words in C.

(3) Let G denote a group having the just the 4 elements $G = \{a, b, c, d\}$. Suppose that ab = a and $a^3 = c$.

- (a) Which element of G is the identity.
- (b) Fill in the multiplication table for G.
- (c) Is G isomorphic to Z_4 ? Is G isomorphic to $Z_2 \times Z_2$?

(4) Explain why each of the following pairs of groups are (or are not) isomorphic.

- (a) Z_6 and $Z_2 \times Z_3$.
- (b) S_3 and Z_6 .
- (c) S_4 and S_3 .
- (d) S_2 and Z_2 .

- (5) Consider the permutation $\sigma \in S_8$ defined by $\sigma = (126)(8241)(5368)$.
 - (a) Write σ as a 2 × 8 matrix having

$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

for first row.

- (b) Write σ^{-1} as a 2 × 8 matrix (as in part (a)).
- (c) Compute $order(\sigma)$.
- (d) Write σ as a product of disjoint cycles.

 $\mathbf{2}$