PRACTICE FINAL EXAM FOR MAT 312 AND AMS 351

(1)

- (a) Use the Euclidean algorithm to compute gcd(a, b) for the integers a = 124 and b = 38.
- (b) Find integers c, d such that gcd(a, b) = ca + db.
- (b) Is 38 invertible in Z_{124} ?
- (c) Is the ring Z_{124} a field?

(2)

- (a) Use the Euclidean algorithm to compute gcd(a(x), b(x)) for the polynomials $a(x) = x^5 + 4x^2 x + 4$ and $b(x) = x^6 x^2$ in the polynomial ring $\mathbb{R}[x]$ where \mathbb{R} =real numbers.
- (b) Is a(x) invertible in the quotient ring $\mathbb{R}[x]/b(x)$?
- (c) Is the quotient ring $\mathbb{R}[x]/b(x)$ a field?

(3) Solve the equation $[20]_n[x]_n = [1]_n$, for n = 263. (This is a congruence problem mod n.)

(4) Let G denote a group satisfying |G| = 23, i.e. G contains 23 members. Explain why G must be an abelian group.

(5) Let G denote a group satisfying |G| = 24, and let $g \in G$. Explain why $g^{73} = g$.

(6) State Lagrange's Theorem. State Burnside's Theorem.

(7) Consider the permutations $\sigma = (1, 3, 5)$ and $\tau = (4, 2)$ in the symmetric group on 5 letters S_5 ; and let G denote the smallest subgroup of S_5 which contains both σ and τ .

- (a) Verify that G is isomorphic to the cyclic group Z_6 .
- (b) How many left cosets of G are there in S_5 .
- (c) List any 2 of the left cosets of G in S_5 .

(8)

- (a) Find a third degree polynomial p(x) in $Z_5[x]$ such that the quotient ring $Z_5[x]/p(x)$ is a field. (In what follows we denote this quotient ring by K.)
- (b) Explain how Z_5 may regarded as a subset of K; thus $p(x) \in K[x]$.
- (c) Verify that p(x) is not a prime polynomial in K[x].

(9) Let $G \subset S_8$ be any subgroup of the symmetric group on 8 letters S_8 . Define a relation \sim on the set $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ by setting $x \sim y$ iff there is $g \in G$ such that g(x) = y.

- (a) Verify that \sim is an equivalence relation on X (called *G*-equivalence on X).
- (b) For each $x \in X$ and $g \in G$ define G_x (the stabilizer of x) and X_g (the fixed point set of g). Show that G_x is a subgroup of G.
- (c) Show that $x \in X_g$ iff $g \in G_x$.
- (d) Let g denote the permutation represented by the 2×8 matrix

and let $G = \langle g \rangle$. Then list all the distinct G-equivalences classes [x]. Also for each $x \in X$ compute G_x and for each $g \in G$ compute X_q .

(e) Let F denote the set of all functions $X \longrightarrow Z_2$ from X to the binary numbers Z_2 . Explain how any subgroup $G \subset S_8$ is also a subgroup of the permutation group of the set F. For the specific G given in part (d) compute how many G-equivalences classes there are in F.

(10) Let Q[x] denote the ring of polynomials over the rational numbers Q, and consider the polynomials $p(x) = x^3 - x^2 + 3x - 1$, $a(x) = x^5 - x^3 + 2x$, $b(x) = -x^7 + x^6 - 2$ in Q[x].

- (a) Do a(x) and b(x) represent the same element in the quotient ring Q[x]/p(x)?
- (b) Find polynomials $\alpha(x)$ and $\beta(x)$ in Q[x], both having degree ≤ 2 , such that $\alpha(x)$ and a(x) represent the same element in the quotient ring Q[x]/p(x); and such that $\beta(x)$ and b(x) also represent the same element in Q[x]/p(x).