REVIEW FOR FINAL EXAM (MAT 132, SPRING 2010)

- (1) Find the general solution to the differential equation $\frac{dy}{dx} = \frac{xy^4 + y^4}{x^2 + 2x 8}$.
- (2) Consider the differential equation y' = y + x.
 - (a) Show that $y = 1 + x + x^2 + \sum_{n=3}^{\infty} \frac{2x^n}{n!}$ is a solution to the given differential equation.
 - (b) Find the radius of convergence for the power series in part (a)?
 - (c) What elementary function does the power series of part (a) converge to?

(3) Find the orthonal trajectories of the family of curves $y^2 = kx^5$, where k is an arbitrary constant.

(4) Which of the following sequences $a_1, a_2, a_3, ...$ converges, and to what values do the convergent sequences converge?

(a) $a_n = (-1)^n 3^{\frac{1}{n}}$ (b) $a_n = \frac{n^3 + n^2 - 1}{8n^3 - n + 2}$ (c) $a_n = \frac{(ln(n))^2}{n}$

(5) Which of the following series converge?

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$$

(b) $\sum_{n=1}^{\infty} (-1)^n 3^{1/n^2}$
(c) $\sum_{n=1}^{\infty} \frac{n+1}{n^2-n+3}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
(e) $\sum_{n=1}^{\infty} \frac{e^n}{n!}$

(6) problem (11) on page 548.

(7) problem (12) on page 548.

(8) problem (14) on page 549.

(9) Let R denote the region in the plane between the graph of $y = 3 + sin(x^2)$ and the x-axis, from x = 0 to x = 2.

- (a) Find an infinite series which converges to the area of R.
- (b) Let S denote the 3-dimensional solid obtained by rotating R about the line x = -1 in 3-space. Find an infinite series which converges to the volume of S.
- (10) Find the interval of convergence for each of the following power series.
 - (a) $\sum_{n=2}^{\infty} \frac{(x-4)^n}{n^{\frac{2}{3}}}$ (b) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

(c)
$$\sum_{n=3}^{\infty} \frac{(x+1)^n}{3^n}$$

(11) Verify that each of the following infinite series converges. For each of the series determine how large n must be in order that the n'th partial sum s_n and the infinite sum s are equal to 3 decimal places.

(a) $\sum_{n=1}^{\infty} \frac{3}{(n+2)^3}$ (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3}{n+1}$

(12) Compute the Taylor series for each of the following functions at a. Find the radius of convergence for each Taylor series.

- (a) $(1+x)^{\frac{1}{3}}$ at a = 0. (b) $(x-3)^3 + x^2 2$ at a = -2.
- (c) ln(x+3) at a = -1.
- (d) e^{2x^5} at a = 0. (e) $\frac{2x-1}{x^2-2x-8}$ at a = 0. (Hint: first use partial fractions to find another expression for this function.)