(1) Set \(f(x) = x^3 - 3x - 2 \).

(a) On which intervals is \(f(x) \) increasing and on which intervals is it decreasing?

Solution: \(f'(x) = 3x^2 - 3 = 3(x + 1)(x - 1) \).

\(f'(x) > 0 \) if both factors \((x + 1), (x - 1)\) are positive (i.e. \(x > 1 \)) or if both factors \((x + 1), (x - 1)\) are negative (i.e. \(x < -1 \)). Thus \(f(x) \) is increasing on the intervals \((-\infty, -1), (1, \infty)\).

\(f(x) < 0 \) if the two factors \((x + 1), (x - 1)\) have opposite signs (i.e. \(-1 < x < 1\)). Thus \(f(x) \) is decreasing on \((-1, 1)\).

(b) Over which interval is the graph of \(f(x) \) concave up and over which interval is it concave down?

Solution: \(f''(x) = 6x \). Thus \(f''(x) \) is positive (or negative) on the interval \((0, \infty)\) (or the interval \((-\infty, 0))\). So the graph of \(f(x) \) is concave up over the interval \((0, \infty)\) and is concave down over the interval \((-\infty, 0)\).

(c) Sketch the graph for \(f(x) \) clearly indicating its y-intercept, where it is increasing and decreasing, and where it is concave up and concave down.

Solution: The y-intercept is \((0, -2)\); the points \((-1, 0)\) and \((1, -4)\) are also on the graph.

(2) Let \(f(x), g(x) \) denote real valued functions which are defined and differentiable on the whole real number line; and set \(h(x) = f(g(x)) \). If \(f(3) = 5, f'(3) = -1 \) and \(g(8) = 3, g'(8) = -2 \), then find an equation for the tangent line to the graph of \(h(x) \) when \(x = 8 \).

Solution: Let \(T_8 \) denote the tangent line to the graph of \(h(x) \) at \(x = 8 \). Note that \(h(8) = f(g(8)) = f(3) = 5 \); thus the point \((8, 5)\) is on \(T_8 \). Note also that the slope of \(T_8 \) is equal to \(h'(8) \), and by the chain rule we have that \(h'(8) = f'(g(8))g'(8) = f'(3)(-2) = (-1)(-2) = 2 \); thus the slope of \(T_8 \) is equal to \(2 \).

Since \(T_8 \) contains \((8, 5)\) and has slope equal \(2 \), the (point slope) equation for \(T_8 \) is

\[
\frac{y - 5}{x - 8} = 2.
\]
(3) Compute the following limit:

\[
\lim_{x \to 0} \frac{e^x \tan(x)}{x} = ?
\]

Solution: Since \(\tan(0) = 0 \) the above limit is equal to

\[
\lim_{x \to 0} \frac{e^x \tan(x) - e^0 \tan(0)}{x - 0},
\]

and this last limit is (by definition of the derivative at \(x = 0 \)) equal to \(f''(0) \) where \(f(x) = e^x \tan(x) \). By the product rule for derivatives we have

\[
f'(x) = e^x \tan(x) + e^x \sec^2(x);
\]

thus \(f'(0) = e^0 \tan(0) + e^0 \sec^2(0) = 0 + 1 = 1 \).

Thus the original limit is equal to 1.

(4) Compute the \(n \)'th derivative of the function \(f(x) \) for each of the choices for \(n \) and for \(f(x) \) given below.

(a) \(n = 1 \) and \(f(x) = \frac{\sin^{-1}(x)}{\sin(x)} \).

Solution: Using the quotient rule for derivatives we have that

\[
f^{(1)}(x) = \frac{(\sin^{-1}(x))(\sin(x)) - \sin^{-1}(x)(\sin(x))}{\sin^2(x)} = \frac{\sin(x)}{\sqrt{1-x^2}} \frac{\sin^{-1}(x) \cos(x)}{\sin^2(x)}.
\]

(b) \(n = 22 \) and \(f(x) = \cos(x) + e^x \).

Solution: The for a positive integer \(k \) the \(k \)-th derivative \((\cos(x))^k \) is equal to \(-\sin(x), -\cos(x), \sin(x), \cos(x) \) depending on whether \(k \) is equal to 1, 2, 3, 0 mod 4 respectively. So \((\cos(x))^{(22)} = -\cos(x) \).

For any positive integer \(k \) the \(k \)-th derivative \((e^x)^k \) is equal to \(e^x \); so \((e^x)^{(22)} = e^x \).

Thus

\[(\cos(x) + e^x)^{(22)} = (\cos(x))^{(22)} + (e^x)^{(22)} = -\cos(x) + e^x\]

(5) Find an example of a polynomial \(f(x) \) of degree 3 which satisfies the following properties:

\[
\begin{align*}
f(0) &= 1 \\
f^{(1)}(0) &= 2 \\
f^{(2)}(0) &= 3 \\
f^{(3)}(0) &= 4
\end{align*}
\]

(Here \(f^{(n)}(x) \) denotes the \(n \)-th derivative of \(f(x) \).)

Solution: Note that if

\[
f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3,
\]

where the \(a_0, a_1, a_2, a_3 \) are the real number coefficients for the 3rd degree polynomial \(f(x) \), then

\[
\begin{align*}
f^{(1)}(x) &= a_1 + 2a_2 x + 3a_3 x^2 \\
f^{(2)}(x) &= 2a_2 + 6a_3 x
\end{align*}
\]
\[f^{(3)}(x) = 6a_3. \]

If we set \(x = 0 \) in these last four equations we get
\[
\begin{align*}
 f(0) &= a_0 \\
 f^{(1)}(0) &= a_1 \\
 f^{(2)}(0) &= 2a_2 \\
 f^{(3)}(0) &= 6a_3.
\end{align*}
\]

Now comparing these last four equations to the four equalities given in the statement of problem #5 we can solve for the \(a_i \) as follows:
\[
\begin{align*}
 a_0 &= 1 \\
 a_1 &= 2 \\
 a_2 &= \frac{3}{2} \\
 a_3 &= \frac{2}{3}.
\end{align*}
\]

Thus
\[f(x) = 1 + 2x + \frac{3}{2}x^2 + \frac{2}{3}x^3. \]