SOLUTIONS TO MIDTERM I; MAT 131 (SPRING, 08)

Instructions: Please complete each of the following 5 problems on the sheet of paper on which it appears. Answers given without any work shown or any reasons given will receive 0 credit.

(1) Set $f(x) = \sqrt{x-2}$ and $g(x) = \sqrt{2-x}$. Find a formula for each of the following functions and find its domain.

(a) $f \circ g$.

Solution: $f \circ g(x) = \sqrt{\sqrt{2-x}-2}$; for x to be in the domain of $f \circ g$ we need both $2-x \ge 0$ and $2-x \ge 4$. Thus domain $(f \circ g) = (-\infty, -2]$. (b) $g \circ g$.

Solution: $g \circ g(x) = \sqrt{2 - \sqrt{2 - x}}$; for x to be in the domain of $g \circ g$ we need both $2 - x \ge 0$ and $4 \ge 2 - x$. Thus $domain(g \circ g) = [-2, 2]$.

(2) Set
$$f(x) = 2x^2 + 6x + 4$$
.

- (a) Sketch the graph of f(x), indicating its itersection with the y-axis and the coordinates of the lowest point on the graph.
 Solution: Note that 2x² + 6x + 4 = 2(x² + 3x + 2) = 2((x + 3/2)² 1/4). Thus the graph is an upward shaped bowl with its lowest point equal to (-3/2, -1/2)). The y-intercept of this graph is (0, 4).
- (b) Where is the function increasing? And where is the function decreasing.

Solution: The function is increasing on $\left[-\frac{3}{2},\infty\right)$ and is decreasing on $\left(-\infty,\frac{3}{2}\right]$.

(3) Compute the following limits.

(a) $limit_{x\to 2} \quad \frac{x^2 - 2x}{x^2 - x - 2}$. **Solution:** $\frac{x^2 - 2x}{x^2 - x - 2} = \frac{x}{x+1}$ if $x \neq 2$. Thus the limit is equal to $lim_{x\to 2} \quad \frac{x}{x+1} = \frac{lim_{x\to 2}}{lim_{x\to 2}} \frac{x}{x+1} = \frac{2}{3}$. (b) $limit_{x\to -\infty} \quad \frac{x^2 - 2x}{x^2 - x - 2}$. **Solution:** $\frac{x^2 - 2x}{x^2 - x - 2} = \frac{1 - 2/x}{1 - 1/x - 2/x^2}$. Thus the limit is equal to $lim_{x\to \infty} \frac{1 - 2/x}{1 - 1/x - 2/x^2} = \frac{lim_{x\to -\infty} 1 - 2/x}{lim_{x\to -\infty} 1 - 1/x - 2/x^2} = \frac{1}{1}$. (4) Compute the tangent line to the graph of $f(x) = \frac{x-1}{x-2}$ at the point (3,2). Solution: The slope of this tangent line is equal to $limit_{x\to 3}\frac{\frac{x-1}{x-2}-2}{x-3} = limit_{x\to 3}\frac{\frac{-x+3}{x-2}}{(x-2)(x-3)} = limit_{x\to 3}\frac{-1}{x-2} = \frac{limit_{x\to 3}}{limit_{x\to 3}}\frac{-1}{(x-2)} = \frac{-1}{1} = -1$. Thus the equation for the tangent line at (3,2) is $\frac{y-2}{x-3} = -1$.

(5) A ball is thrown straight up. Its height above the ground t seconds later is $40t - 16t^2$ feet.

- (a) Find the (verical) velocity of the ball when t=1 seconds. Is the ball moving up or down at t=1? **Solution:** Let v(t) denote the velocity at time t. Then $v(1) = limit_{t\to 1} \frac{40t-16t^2-24}{t-1} = limit_{t\to 1} \frac{8(t-1)(-2t+3)}{t-1} = limit_{t\to 1} - 8(-2t+3) = 8(-2+3) = 8$. Since v(1) > 0 the ball is traveling up at t=1.
- (b) Find the (vertical) velocity of the ball when t=2 seconds. Is the ball moving up or down at t=2? **Solution:** $v(2) = limit_{t\rightarrow 2} \frac{40t-16t^2-16}{t-2} = limit_{t\rightarrow 2} \frac{8(t-2)(-2t+1)}{t-2} = limit_{t\rightarrow 2} 8(-2t+1) = 8(-4+1) = -24$. Since v(2) < 0 the ball is traveling down at t=2.