
MAT 552: Lie groups and Lie algebras
Fall 2004

Lecture 1: (8/31) Introduction. Definition of a Lie group; C1 implies analytic. Examples:
Rn, S1,SU(2). Theorem about closed subgroup (no proof). Connected component and
universal cover. G/H.

Lecture 2: (9/2) Action of G on manifolds; homogeneous spaces. Action on functions, vector
fields, etc. Left, right, and adjoint action. Representations.

Lecture 3: (9/7) Classical groups: GL,SL, SU, SO, Sp – definition. Exponential and loga-
rithmic mapping for matrix groups. Proof that classical groups are smooth; calculation of
the corresp. Lie algebra and dimension. Topological information (connectedness, π1).

Lecture 4: (9/9) Lie algebra of a Lie groups: g = TeG = right-invariant vector fields =
1-parameter subgroups. Exponential and logarithmic maps. Morphisms f : G1 → G2 are
determined by f∗ : g1 → g2. Adjoint action of G on g. Example: elements Jx, Jy, Jz ∈ so(3).

Lecture 5: (9/14) Commutator, exey = ex+y+ 1
2
[x,y]+.... Relation with group commutator and

commutator of vector fields. [x, y] = xy − yx for matrix groups. Example: so(3). Jacobi
identity. Abstract Lie algebras and morphisms. Campbell–Hausdorff formula (without
proof).

Lecture 6: (9/21) Hom(G1, G2) ↪→ Hom(g1, g2). If G1 is simply-connected, then Hom(G1, G2) =
Hom(g1, g2). Analytic subgroups and Lie subalgebras. Ideals in g and normal subgroups in
G.

Lecture 7: (9/23) Lie’s third theorem (no proof). Corollary: category of connected, s.c. Lie
groups is equivalent to the category of Lie algebras. Representations of G = representations
of g. Action by vector fields. Example: representations of SO(3), SU(2). Complexification;
su(n) and sl(n).

Lecture 8: (9/28) Universal enveloping algebra. Poincare-Birkhoff-Witt theorem. Casimir
element in Usl(2).

Lecture 9: (9/30) Group and algebra representations. Subrepresentations, direct sums,
V1 ⊗ V2, V ∗, action on EndV . Irreducibility. Intertwining operators. Schur lemma.
Semisimplicity.

Lecture 10: (10/5) Unitary representations. Complete reducibility of representation for a
group with invariant integral. Invariant integral for finite group and for compact Lie groups;
Haar measure.

Lecture 11: (10/7) Examples: representations of Zn, S3, R and S1; Fourier series as decom-
position of a representation into irreducibles.

Lecture 12: (10/12) Characters and Peter–Weyl theorem.

Lecture 13: (10/14) Solvable and nilpotent Lie algebras: equivalent definitions. Example:
upper triangular matrices.

Lecture 14: (10/19) Lie theorem (about representations of a solvable Lie algebra). Engel’s
theorem (without proof). Commutant and radical. Semisimple Lie algebras. Levi theorem
(without proof).
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Lecture 15: (10/21) Invariant bilinear forms. Example: trace in a representation. Cartan’s
criterion of solvability (without proof) and semisimplicity. Example: semisimplicity of sl(2).

Lecture 16: (10/26) Semisimple Lie algebra is a direct sum of simple. Reductive Lie algebras.
Reductivity of Lie algebra of a compact Lie group. Semisimplicity of classical Lie algebras.

Lecture 17: (10/28) Casimir element and complete reducibility of representations of a semisim-
ple Lie algebra.

Lecture 18: (11/2) Representations of sl(2).

Lecture 19: (11/4) Semisimple and nilpotent elements; Jordan decomposition. Toral subal-
gebras. Definition of Cartan (a.k.a. maximal toral) subalgebra. Theorem: conjugacy of
Cartan subalgebras (no proof).

Lecture 20: (11/9) Root decomposition and root system for semisimple Lie algebra. Basic
properties. Example: sl(n).

Lecture 21: (11/11) Properties of root system for s.s. Lie algebra continued. Definition of
an abstract root system. Irreducible root systems and simple Lie algebras. Example: so(4).

Lecture 22: (11/16) Classification of rank 2 root systems. Simple roots and their properties.
Cartan matrix.

Lecture 23: (11/18) Dynkin diagrams. Classification of Dynkin diagrams (partial proof).
Definition of Weyl group.

Lecture 24: (11/23) Simple reflections and Weyl group. Weyl chambers. Reconstructing root
system from set of simple roots. Transitivity of action of W on the set of Weyl chambers.
Length l(w) and its geoemtric interpretation as number of separating hyperplanes.

Lecture 25: (11/30) Constructing a semisimple Lie algebra from a root system. Serre rela-
tions and Serre theorem (no proof). Classification of simple Lie algebras.

Lecture 26: (12/2) Finite-dimensional representations of a semi-simple Lie algebra. Weights;
symmetry under Weyl group. Example: sl(3). Singular vectors.

Lecture 27: (12/7) Verma modules and irreducible highest weight modules. Dominant weights
and classification of finite-dimensional highest weight modules (without proof)

Lecture 28: (12/9) Example: representations of sl(n).
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