
MAT 552: Lie groups and Lie algebras
Fall 2004

Lecture 1: (8/31) Introduction. Definition of a Lie group; C1 implies analytic. Examples:
Rn, S1,SU(2). Theorem about closed subgroup (no proof). Connected component and
universal cover.

Lecture 2: (9/2) G/H. Action of G on manifolds; homogeneous spaces. Action on functions,
vector fields, etc. Left, right, and adjoint action. Left, right, and bi-invariant vector fields
(forms, etc).

Lecture 3: (9/7) Classical groups: GL,SL, SU, SO, Sp – definition. Exponential and log-
arithmic mapping for matrix groups. Proof that classical groups are smooth; calculation
of the corresp. Lie algebra and dimension. Topological information (connectedness, π1).
One-parameter subgroups in a Lie group: existence and uniqueness.

Lecture 4: (9/9) Lie algebra of a Lie groups: g = TeG = right-invariant vector fields =
1-parameter subgroups. Exponential and logarithmic maps and their properties. Mor-
phisms f : G1 → G2 are determined by f∗ : g1 → g2. Example: elements Jx, Jy, Jz ∈ so(3).
Definition of commutator: exey = ex+y+ 1
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[x,y]+....

Lecture 5: (9/14) Properties of commutator. Relation with group commutator; Ad and ad.
Jacobi identity. Abstract Lie algebras and morphisms. [x, y] = xy − yx for matrix groups.
Relation with commutator of vector fields. Campbell–Hausdorff formula (without proof).

Lecture 6: (9/21) If G1 is simply-connected, then Hom(G1, G2) = Hom(g1, g2). Immersed
subgroups and Lie subalgebras. Ideals in g and normal subgroups in G.

Lecture 7: (9/23) Lie’s third theorem (no proof). Corollary: category of connected, s.c. Lie
groups is equivalent to the category of Lie algebras. Representations of G = representations
of g. Action by vector fields. Example: representations of SO(3), SU(2). Complexification;
su(n) and sl(n).

Lecture 8: (9/28) Representations of Lie groups and Lie algebras. Subrepresentations, direct
sums, V1 ⊗ V2, V ∗, action on EndV . Irreducibility. Intertwining operators. Schur lemma.
Semisimplicity.

Lecture 9: (9/30) Unitary representations. Complete reducibility of representation for a
group with invariant integral. Invariant integral for finite group and for compact Lie groups;
Haar measure. Example: representations of S1 and Fourier series.

Lecture 10: (10/5) Characters and Peter–Weyl theorem.

Lecture 11: (10/7) Universal enveloping algebra. Central element J2
x +J2

y +J2
z ∈ U so(3,R).

Statement of PBW theorem.

Lecture 12: (10/12) Structure theory of Lie algebras: generalitites. Commutant. Solvable
and nilpotent Lie algebras: equivalent definitions. Example: upper triangular matrices. Lie
theorem (about representations of a solvable Lie algebra).

Lecture 13: (10/14) Engel’s theorem (without proof). Radical. Semisimple Lie algebras.
Example: semisimplicity of sl(2). Levi theorem (without proof). Statement of Cartan’s
criterion of solvability and semisimplicity.

Lecture 14: (10/19) Jacobi decomposition (into semisimple and nilpotent element). Proof
of Cartan criterion.
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Lecture 15: (10/21) Corollaries: every semisimple algbera is direct sum of simple ones; ideal,
quotient of a s.s. is semisimple; [g, g] = g; every derivation is inner. Relation between s.s.
Lie algberas and compact groups.

Lecture 16: (10/26) Complete reducibility of representations

Lecture 17: (10/28) Representations of sl(2). Semisimple elements in a Lie algebra.

Lecture 18: (11/2) Semisimple and nilpotent elements; Jordan decomposition. Toral subal-
gebras. Definition of Cartan (a.k.a. maximal toral) subalgebra. Theorem: conjugacy of
Cartan subalgebras (no proof).

Lecture 19: (11/4) Root decomposition and root system for semisimple Lie algebra. Basic
properties. Example: sl(n).

Lecture 20: (11/9) Definition of an abstract root system. Classification of rank 2 root sys-
tems. Positive roots and simple roots.

Lecture 21: (11/11) Weyl chambers and Weyl group. Transitivity of action of W on the set
of Weyl chambers. Reconstructing root system from set of simple roots.
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