MAT 552: PROBLEM SET 1 DUE TUESDAY 9/14

INSTRUCTOR: ALEXANDER KIRILLOV

- **1.** Let G be a Lie group and H a Lie subgroup.
 - (a) Let \overline{H} be the closure of H in G. Show that \overline{H} is a subgroup in G.
 - (b) Show that each coset $Hx, x \in \overline{H}$, is open and dense in \overline{H} .
 - (c) Show that $\overline{H} = H$, that is, every Lie subgroup is closed.
- 2. (a) Show that every discrete normal subgroup of a Lie group is central (hint: consider the map $G \to N : g \mapsto ghg^{-1}$ where h is a fixed element in N).
 - (b) By applying part (a) to kernel of the map $\widetilde{G} \to G$, show that for any Lie group G, the fundamental group $\pi_1(G)$ is commutative.
- **3.** Let $G_{n,k}$ be the set of all dimension k subspaces in \mathbb{R}^n (usually called the Grassmanian). Show that $G_{n,k}$ is a homogeneous space for the group O(n) and thus can be identified with coset space O(n)/H for appropriate H. Use it to prove that $G_{n,k}$ is a manifold and find its dimension.
- **4.** Describe explicitly the tangent space $\mathfrak{sp}(4) \subset \mathfrak{gl}(4)$. Find dimension of Sp(4).

The next series of problems is about the group SU(2) and its adjoint representation, i.e. its action on the tangent space at identity: T_e SU(2) = $\mathfrak{su}(2) = \{a \in \operatorname{Mat}(2 \times 2, \mathbb{C}) \mid a = -\overline{a}^t\}$ (which implies that $\mathfrak{su}(2)$ is a 3-dimensional real vector space). Recall that the adjoint action is given by Ad $g: a \mapsto gag^{-1}$.

- 5. Define a bilinear form on $\mathfrak{su}(2)$ by $(a,b) = \operatorname{tr}(a\overline{b}^t)$. Show that this form is symmetric and positive definite.
- 6. Show that this form is invariant under the adjoint action of SU(2). Choose an orthonormal basis in $\mathfrak{su}(2)$ and write explicitly the matrix describing the action of $g \in SU(2)$ in this basis. Show that this defines a Lie group homomorphism $\varphi \colon SU(2) \to SO(3)$.
- 7. Let $\mathfrak{so}(3) = T_e SO(3)$. Let $\varphi_* : \mathfrak{su}(2) \to \mathfrak{so}(3)$ be the map of tangent spaces induced by φ . Show that φ_* is an isomorphism.
- 8. Deduce from the previous problem that φ is a diffeomorphism of a neighborhood of 1 in SU(2) to a neighborhood of 1 in SO(3). Show that ker φ is a discrete normal subgroup in SU(2), and that Im φ is an open subgroup in SO(3).
- **9.** Prove that φ establishes an isomorphism $\mathrm{SU}(2)/\mathbb{Z}_2 \to \mathrm{SO}(3)$ and thus, since $\mathrm{SU}(2) \simeq S^3$ (proved in class), $\mathrm{SO}(3) \simeq \mathbb{R}\mathrm{P}^3$.