MAT 534: HOMEWORK 9

DUE WED, NOV 21

Throughout this assignment, \mathbb{F} is an arbitrary field.

1. Let $I \subset R$ be an ideal; let $\pi: R \rightarrow \bar{R}=R / I$ be the canonical homomorphism.
(a) Show that the formula $J=\pi^{-1}(\bar{J})$ defines a bijection between ideals $J \supset I$ in R and ideals $\bar{J} \subset \bar{R}$.
(b) Show that if $J=\pi^{-1}(\bar{J})$ are as in the previous problem, then $R / J \simeq \bar{R} / \bar{J}$.
2. Let $p \in \mathbb{R}[x]$ be a quadratic polynomial which has no real roots. Define $R=\mathbb{R}[x] /(p)$.
(a) Show that $R \simeq \mathbb{C}$.
(b) Show that $R \simeq \mathbb{R}\left[x, x^{-1}\right] /(p)$
3. Let $I=(x-y), J=(x+y)$ be ideals in $\mathbb{C}[x, y]$.
(a) Describe explicitly the rings $\mathbb{C}[x, y] / I, \mathbb{C}[x, y] / J, \mathbb{C}[x, y] / I+J, \mathbb{C}[x, y] / I J$. (Hint: you may make change of variables $\left.x^{\prime}=x+y, y^{\prime}=x-y\right)$. Describe each of these rings as polynomial functions on a certain subset in \mathbb{C}^{2}.
(b) Which of the ideals $I, J, I+J, I J$ is maximal? prime?
4. From the textbook: problem 17 on p. 258
5. (a) From the textbook: problem 37 on p. 258.
(b) Show that the ring $\mathbb{F}[[x]]$ of formal power series is local. Describe the maximal ideal.
(c) Let $R \subset \mathbb{Q}$ be the set of all fractions which can be written in the form p / q, $p, q \in \mathbb{Z}, q$ is odd. Prove that it is a local ring, with maximal ideal (2).
6. Let $a, b \in \mathbb{F}, a \neq b$. Prove that then ideals $(x-a)$ and $(x-b)$ in $\mathbb{F}[x]$ are comaximal. Deduce from this and Chinese remainder theorem that for any collection $a_{1}, \ldots, a_{n} \in \mathbb{F}$ with $a_{i} \neq a_{j}$ and any collection $c_{1}, \ldots, c_{n} \in \mathbb{F}$, there exists a polynomial $p \in \mathbb{F}[x]$ such that $p\left(a_{i}\right)=c_{i}$, and that such a polynomial is unique up to adding a multiple of $\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)$.
