MAT 534: HOMEWORK 8

DUE WED, NOV 14

Throughout this assignment, \mathbb{F} is an arbitrary field.

1. Which of the following rings are fields? integral domains? In each case, find all invertible elements (also called units)
(a) $R=\mathbb{F}[x]$
(b) $R=\mathbb{Z}[\omega]$, where $\omega \in \mathbb{C}$ is a primitive cubic root of unity.
(c) $R=\mathbb{R}[A]$ where $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(d) $R=\mathbb{R}[A]$ where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(e) $R=\mathbb{Z} / n \mathbb{Z}$
2. For each of the quotient rings below, answer the following questions: is it a field? is it finite? is it isomorphic to any ring of Problem 1?
(a) $\mathbb{Z}[i] /(2)$
(b) $\mathbb{Z}[i] /(i+1)$
(c) $\mathbb{R}[x] /(x-1)^{2}$
(d) $\mathbb{R}[x] /\left(x^{2}+1\right)$
(e) $\mathbb{Z}[x] /(2, x)$
(f) $\mathbb{R}[x, y] /(x y)$
3. Let $d \in \mathbb{Z}, d>1$ be squarefree (i.e., d is not divisible by a square of any prime number).
(a) Show that $\mathbb{Q}[\sqrt{d}]=\{a+b \sqrt{d}, a, b \in \mathbb{Q}\}$ is a field.
(b) Show that $\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d}, a, b \in \mathbb{Q}\}$ is a an integral domain.
(c) Define "conjugation" $: \mathbb{Q}[\sqrt{d}] \rightarrow \mathbb{Q}[\sqrt{d}]$ by $a+b \sqrt{d}=a-b \sqrt{d}$. Prove that then $\overline{x+y}=\bar{x}+\bar{y}, \overline{x y}=\bar{x} \cdot \bar{y}$.
(d) Show that $u \in \mathbb{Z}[\sqrt{d}]$ is a unit (i.e., has a multiplicative inverse in $\mathbb{Z}[\sqrt{d}]$) iff $u \bar{u}= \pm 1$.
4. Using the previous problem, show that the set of all solutions of the Pell equation $a^{2}-d b^{2}=1, a, b \in \mathbb{Z}$, has a structure of an abelian group. Prove that equation $a^{2}-5 b^{2}=1$ has infinitely many integer solutions. (Hint: one solution is (9,4).)
5. Let $\mathbb{F}[[x]]$ be the set of all formal power series in variable x with coefficients in a field \mathbb{F}. Prove that $\mathbb{F}[[x]]$ is a ring, and that $a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ is a unit in this ring iff $a_{0} \neq 0$.
6. Let \mathbb{F}_{p} be the finite field with p elements (p is prime). Compute
(a) the number of one-dimensional subspaces in \mathbb{F}_{p}^{n}
(b) $\left|G L_{2}\left(\mathbb{F}_{p}\right)\right|$
