Throughout this assignment, \(\mathbb{F} \) is an arbitrary field.

1. Which of the following rings are fields? integral domains? In each case, find all invertible elements (also called \textit{units})

 (a) \(R = \mathbb{F}[x] \)

 (b) \(R = \mathbb{Z}[\omega] \), where \(\omega \in \mathbb{C} \) is a primitive cubic root of unity.

 (c) \(R = \mathbb{R}[A] \) where \(A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \)

 (d) \(R = \mathbb{R}[A] \) where \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)

 (e) \(R = \mathbb{Z}/n\mathbb{Z} \)

2. For each of the quotient rings below, answer the following questions: is it a field? is it finite? is it isomorphic to any ring of Problem 1?

 (a) \(\mathbb{Z}[i]/(2) \)

 (b) \(\mathbb{Z}[i]/(i+1) \)

 (c) \(\mathbb{R}[x]/(x-1)^2 \)

 (d) \(\mathbb{R}[x]/(x^2+1) \)

 (e) \(\mathbb{Z}[x]/(2,x) \)

 (f) \(\mathbb{R}[x,y]/(xy) \)

3. Let \(d \in \mathbb{Z}, d > 1 \) be squarefree (i.e., \(d \) is not divisible by a square of any prime number).

 (a) Show that \(\mathbb{Q}[^{\sqrt{d}}] = \{ a + b\sqrt{d}, a, b \in \mathbb{Q} \} \) is a field.

 (b) Show that \(\mathbb{Z}[^{\sqrt{d}}] = \{ a + b\sqrt{d}, a, b \in \mathbb{Q} \} \) is an integral domain.

 (c) Define “conjugation” \(\overline{x+y} = x+y \in \mathbb{Q}[^{\sqrt{d}}] \) by \(\overline{a + b\sqrt{d}} = a - b\sqrt{d} \). Prove that \(\overline{x+y} = \overline{x} + \overline{y} \).

 (d) Show that \(u \in \mathbb{Z}[\sqrt{d}] \) is a unit (i.e., has a multiplicative inverse in \(\mathbb{Z}[\sqrt{d}] \)) iff \(u\overline{u} = \pm 1 \).

4. Using the previous problem, show that the set of all solutions of the \textit{Pell equation} \(a^2 - db^2 = 1, a, b \in \mathbb{Z} \), has a structure of an abelian group. Prove that equation \(a^2 - 5b^2 = 1 \) has infinitely many integer solutions. (Hint: one solution is \((9, 4) \).)

5. Let \(\mathbb{F}[[x]] \) be the set of all formal power series in variable \(x \) with coefficients in a field \(\mathbb{F} \). Prove that \(\mathbb{F}[[x]] \) is a ring, and that \(a_0 + a_1x + a_2x^2 + \ldots \) is a unit in this ring iff \(a_0 \neq 0 \).

6. Let \(\mathbb{F}_p \) be the finite field with \(p \) elements (\(p \) is prime). Compute

 (a) the number of one-dimensional subspaces in \(\mathbb{F}_p^n \)

 (b) \(|GL_2(\mathbb{F}_p)| \)