MAT 534: HOMEWORK 6

DUE WED, OCT. 31

Problems marked by asterisk $\left(^{*}\right)$ are optional.

1. For a vector $v \in V$ and $f \in V^{*}$, denote $\langle f, v\rangle:=f(v) \in \mathbb{K}$. Define, for a linear operator $L: V_{1} \rightarrow V_{2}$, the adjoint operator $L^{t}: V_{2}^{*} \rightarrow V_{1}^{*}$ by

$$
\left\langle L^{t}(f), v\right\rangle=\langle f, L(v)\rangle
$$

(a) Prove that $(A B)^{t}=B^{t} A^{t}$.
(b) Without using bases, show that $\operatorname{Ker} L^{t}=\left(V_{2} / \operatorname{Im} L\right)^{*}$. Can you describe $\operatorname{Im} L^{t}$ in terms of $\operatorname{Im} L$, Ker L ?
(c) Assume that V_{1}, V_{2} are finite-dimensional; choose bases $v_{i} \in V_{1}, w_{j} \in V_{2}$ and dual bases $v^{i} \in V_{1}^{*}, w^{j} \in V_{2}^{*}$. Let A be the matrix of L in the basis v_{i}, w_{i}, and let B be the matrix of L^{t} in the basis v^{i}, w^{j}. Prove that B is the transpose of A : $b_{i j}=a_{j i}$.
2. Prove the formula for Vandermonde determinant (discussed in class). (Hint: use induction and elementary row and column transformations.)
3. Find all eigenvectors of the operator A on \mathbb{C}^{2} with the following matrix in the standard basis:

$$
A=\left(\begin{array}{cc}
6 & -1 \\
16 & -2
\end{array}\right)
$$

What is its Jordan form? Give an example of a basis in \mathbb{C}^{2} such that the matrix of A in this basis is the Jordan form
4. Let A be an operator on a finite-dimensional vector space V. Define the exponent e^{A} by the following power series:

$$
e^{A}=1+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots
$$

(you can use without proof that this sum is absolutely convergent in the natural topology on the space $\operatorname{End}(V)$.)
(a) Let P be an invertible operator on V. Prove that $P e^{A} P^{-1}=e^{P A P^{-1}}$
(b) Prove that if A and B commute, then $e^{A+B}=e^{A} e^{B}$
(c) Compute the exponent of the matrix

$$
\left(\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right)
$$

(d) Prove that if A is antisymmetric (i.e. $A+A^{t}=0$), then e^{A} is orthogonal (i.e. $\left.A A^{t}=1\right)$.
5. Let $A, B: V \rightarrow V$ be commuting operators $A B=B A$.
(a) Show that if $V_{(\lambda)}$ is the generalized eigenspace for A (that is, $V_{(\lambda)}=\operatorname{Ker}(A-\lambda)^{N}$ for $N \gg 0$), then $B\left(V_{(\lambda)}\right) \subset V_{(\lambda)}$.
(b) Show that if A, B are both diagonalizable, then they can be diagonalized simultaneously: there is a basis in which both A, B are diagonal.
*(c) Diagonalize the operator $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by

$$
A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{n}+x_{2}}{2} \\
\frac{x_{1}+x_{3}}{2} \\
\vdots \\
\frac{x_{n-1}+x_{1}}{2}
\end{array}\right]
$$

(hint: this operator commutes with the cyclic permutation of x_{i}).

