MAT 534: HOMEWORK 6 DUE WED, OCT. 31

Problems marked by asterisk (*) are optional.

1. For a vector $v \in V$ and $f \in V^*$, denote $\langle f, v \rangle := f(v) \in \mathbb{K}$. Define, for a linear operator $L: V_1 \to V_2$, the *adjoint* operator $L^t: V_2^* \to V_1^*$ by

$$\langle L^t(f), v \rangle = \langle f, L(v) \rangle$$

- (a) Prove that $(AB)^t = B^t A^t$.
- (b) Without using bases, show that $\operatorname{Ker} L^t = (V_2 / \operatorname{Im} L)^*$. Can you describe $\operatorname{Im} L^t$ in terms of $\operatorname{Im} L$, $\operatorname{Ker} L$?
- (c) Assume that V_1, V_2 are finite-dimensional; choose bases $v_i \in V_1, w_j \in V_2$ and dual bases $v^i \in V_1^*, w^j \in V_2^*$. Let A be the matrix of L in the basis v_i, w_i , and let B be the matrix of L^t in the basis v^i, w^j . Prove that B is the transpose of A: $b_{ij} = a_{ji}$.
- 2. Prove the formula for Vandermonde determinant (discussed in class). (Hint: use induction and elementary row and column transformations.)
- **3.** Find all eigenvectors of the operator A on \mathbb{C}^2 with the following matrix in the standard basis:

$$A = \begin{pmatrix} 6 & -1\\ 16 & -2 \end{pmatrix}$$

What is its Jordan form? Give an example of a basis in \mathbb{C}^2 such that the matrix of A in this basis is the Jordan form

4. Let A be an operator on a finite-dimensional vector space V. Define the exponent e^A by the following power series:

$$e^A = 1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

(you can use without proof that this sum is absolutely convergent in the natural topology on the space $\operatorname{End}(V)$.)

- (a) Let P be an invertible operator on V. Prove that $Pe^{A}P^{-1} = e^{PAP^{-1}}$
- (b) Prove that if A and B commute, then $e^{A+B} = e^A e^B$
- (c) Compute the exponent of the matrix

$$\begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$$

- (d) Prove that if A is antisymmetric (i.e. $A + A^t = 0$), then e^A is orthogonal (i.e. $AA^t = 1$).
- **5.** Let $A, B: V \to V$ be commuting operators AB = BA.
 - (a) Show that if $V_{(\lambda)}$ is the generalized eigenspace for A (that is, $V_{(\lambda)} = \text{Ker}(A \lambda)^N$ for $N \gg 0$), then $B(V_{(\lambda)}) \subset V_{(\lambda)}$.
 - (b) Show that if A, B are both diagonalizable, then they can be diagonalized simultaneously: there is a basis in which both A, B are diagonal.

*(c) Diagonalize the operator $A \colon \mathbb{C}^n \to \mathbb{C}^n$ defined by

$$A\begin{bmatrix} x_1\\x_2\\\vdots\\x_n\end{bmatrix} = \begin{bmatrix} \frac{x_n+x_2}{2}\\\frac{x_1+x_3}{2}\\\vdots\\\frac{x_{n-1}+x_1}{2}\end{bmatrix}$$

(hint: this operator commutes with the cyclic permutation of x_i).