MAT 534: HOMEWORK 5 DUE WED, OCT. 24

Problems marked by asterisk (*) are optional.

- **1.** Let $L \subset \mathbb{Z}^n$ be the subgroup generated by rows of an $n \times n$ matrix A with integer entries. Show that if det A = 0, then \mathbb{Z}^n/L is infinite, and if det $A \neq 0$, then $|\mathbb{Z}^n/L| = |\det A|$.
- **2.** Let $V' \subset V$ be a subspace.
 - (a) Show that there is a canonical isomorphism

$$(V/V')^* = \{ f \in V^* \mid f(w) = 0 \ \forall w \in V' \}$$

thus, $(V/V')^*$ is naturally a subspace (not a quotient!) of V^* .

- (b) More generally, show that for any vector space W, one has $\operatorname{Hom}(V/V', W) = \{f \in \operatorname{Hom}(V, W) \mid f(w) = 0 \ \forall w \in V'\}.$
- **3.** Let $B: V \times V \to \mathbb{K}$ be a symmetric bilinear form
 - (a) Define, for $v \in V$, $f_v \in V^*$ by $f_v(w) = B(v, w)$. Show that $v \mapsto f_v$ is a linear map.
 - (b) Assume that B non-degenerate: if B(v, w) = 0 for all w, then v = 0. Prove that then the map $V \to V^*$ constructed in the previous part is an isomorphism.
- 4. Let T be a linear operator on the finite-dimensional space V. Suppose there is a linear operator U on V such that TU = I. Prove that T is invertible, i.e. has both left and right inverse, and $U = T^{-1}$. Show that this is false when V is not finite-dimensional. (Hint: Let T = D be the differentiation operator on the space of polynomials.)
- **5.** Let U and V be subspaces of the same vector space W. Verify that $U \cap V$ and $U + V = \{u + v \mid u \in U; v \in V\}$ are also subspaces. Prove that

 $\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$

6. Let $A: V \to V$ be a linear operator on a finite-dimensional space such that $A^2 = A$. Prove that then one can write $V = V_1 \oplus V_2$ so that $A|_{V_1} = \text{id}$, $A_{V_2} = 0$, so A is the projection operator. (Hint: take $V_1 = \text{Im } A$, $V_2 = \text{Ker } A$.)