MAT 534: HOMEWORK 5

DUE WED, OCT. 24

Problems marked by asterisk (*) are optional.

1. Let $L \subset \mathbb{Z}^{n}$ be the subgroup generated by rows of an $n \times n$ matrix A with integer entries. Show that if $\operatorname{det} A=0$, then \mathbb{Z}^{n} / L is infinite, and if $\operatorname{det} A \neq 0$, then $\left|\mathbb{Z}^{n} / L\right|=$ $|\operatorname{det} A|$.
2. Let $V^{\prime} \subset V$ be a subspace.
(a) Show that there is a canonical isomorphism

$$
\left(V / V^{\prime}\right)^{*}=\left\{f \in V^{*} \mid f(w)=0 \forall w \in V^{\prime}\right\}
$$

thus, $\left(V / V^{\prime}\right)^{*}$ is naturally a subspace (not a quotient!) of V^{*}.
(b) More generally, show that for any vector space W, one has $\operatorname{Hom}\left(V / V^{\prime}, W\right)=$ $\left\{f \in \operatorname{Hom}(V, W) \mid f(w)=0 \forall w \in V^{\prime}\right\}$.
3. Let $B: V \times V \rightarrow \mathbb{K}$ be a symmetric bilinear form
(a) Define, for $v \in V, f_{v} \in V^{*}$ by $f_{v}(w)=B(v, w)$. Show that $v \mapsto f_{v}$ is a linear map.
(b) Assume that B non-degenerate: if $B(v, w)=0$ for all w, then $v=0$. Prove that then the map $V \rightarrow V^{*}$ constructed in the previous part is an isomorphism.
4. Let T be a linear operator on the finite-dimensional space V. Suppose there is a linear operator U on V such that $T U=I$. Prove that T is invertible, i.e. has both left and right inverse, and $U=T^{-1}$. Show that this is false when V is not finite-dimensional. (Hint: Let $T=D$ be the differentiation operator on the space of polynomials.)
5. Let U and V be subspaces of the same vector space W. Verify that $U \cap V$ and $U+V=\{u+v \mid u \in U ; v \in V\}$ are also subspaces. Prove that

$$
\operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)
$$

6. Let $A: V \rightarrow V$ be a linear operator on a finite-dimensional space such that $A^{2}=A$. Prove that then one can write $V=V_{1} \oplus V_{2}$ so that $\left.A\right|_{V_{1}}=\mathrm{id}, A_{V_{2}}=0$, so A is the projection operator. (Hint: take $V_{1}=\operatorname{Im} A, V_{2}=\operatorname{Ker} A$.)
