MAT 534: HOMEWORK 4

DUE WED, OCT. 10

Problems marked by asterisk (*) are optional.

1. Classify all groups of order 75 .
2. Classify all groups of order 20.
3. Prove that $\operatorname{Aut}\left(\mathbb{Z}_{8}\right) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and use it to describe all semidirect products $\mathbb{Z}_{2} \ltimes \mathbb{Z}_{8}$. (One of them is the dihedral group - which one?)
4. Show that the groups S_{3}, S_{4} are solvable.
5. Let Q be the subgroup in \mathbb{R}^{n} generated by elements of the form $e_{i}-e_{j}, i \neq j$, and let $P=\left\{\lambda \in \mathbb{R}^{n} \mid \sum \lambda_{i}=0, \lambda \cdot \alpha \in \mathbb{Z} \forall \alpha \in Q\right\}$. (Here e_{i} are the standard generators of $\mathbb{Z}^{n}: e_{i}=(0, \ldots, 1, \ldots 0)$, with 1 in the $i^{\text {th }}$ place, and $\lambda \cdot \alpha=\sum \alpha_{i} \lambda_{i}$ is the usual dot product in \mathbb{R}^{n}.)

Show that P, Q are free abelian groups of rank $n-1$. Show that $Q \subset P$ and describe the quotient P / Q.
6. Let G be the abelian group generated by three elements x, y, z with defining relations $x^{3}=x y^{2} z^{3}=1$. Write this group in the canonical form (i.e., as a product of cyclic groups).
7. Let G be a finitely generated abelian group. By the classification theorem, it can be written as a direct product of a finite group and a free one: there exist subgroups $K, F \leq G$ such that K is finite, F is free (i.e. $F \simeq \mathbb{Z}^{r}$) and $G=K \times F$. Show that K is defined canonically but F is not: if K^{\prime}, F^{\prime} are two other subgroups with the same properties (K^{\prime} is finite, F^{\prime} is free and $G=K^{\prime} \times F^{\prime}$), then $K=K^{\prime}$ but it is possible that $F \neq F^{\prime}$. (Of course, F must be isomorphic to F^{\prime}, but they may be different as subgroups of G.)

