MAT 534: HOMEWORK 1
 DUE WED, SEPT. 19

Problems marked by asterisk $\left(^{*}\right)$ are optional.

1. Let G be a group. Prove that if $x^{2}=1$ for every $x \in G$, then G is abelian.
2. For each pair of positive integers m and n find all homomorphisms from \mathbb{Z}_{n} to \mathbb{Z}_{m}.
3. Prove that any subgroup in \mathbb{Z} must be of the form $H=a \cdot \mathbb{Z}$ for some $a \in \mathbb{Z}$.
4. Find the cycle decompositon of the following permutation from S_{9} :

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 8 & 5 & 9 & 7 & 4 & 1 & 2 & 6
\end{array}\right)
$$

What is the order of σ ?
5. (a) Prove that the group of symmetries of an equilateral triangle is isomorphic to S_{3}.
(b) Prove that the group of rotations of a cube is isomorphic to S_{4}. Describe the stabilizer of a vertex; of an edge.
(c) For each pair of parallel faces of a cube consider the line passing through the centers of the faces. Using that all rotations of a cube permute these lines, construct an epimorphism $S_{4} \rightarrow S_{3}$.
6. Let $H \leq K \leq G$ be subgroups. Prove that then $|G: H|=|G: K| \cdot|K: H|$.
7. Let p be a prime number and \mathbb{Z}_{p}^{\times}- the group of all non-zero remainders modulo p (with respect to multiplication). Deduce from Lagrange theorem that for any integer a not divisible by p, we have $a^{p-1} \equiv 1 \bmod p$.
*8. How many ways are there to group numbers $\{1 \ldots 2 n\}$ into pairs? Order of pairs and order inside each pair is not important. For example, for $n=2$, there are three ways:
(Hint: first show that one can define a transitive action of $S_{2 n}$ on the set of all such pairings.)

