MAT 534: HOMEWORK 8 DUE THURSDAY, NOV 17

Throughout this assignment, R is an arbitrary ring with unit (not necessarily commutative), and \mathbb{F} is a field.

1. Let $R = \operatorname{Mat}_{n \times n}(\mathbb{F})$ be the ring of $n \times n$ matrices with coefficients in \mathbb{F} . Let $M = \mathbb{F}^n$ (column vectors), considered as a left module over R.

Consider R as left module over itself. Prove that then $R \simeq M \oplus M \oplus \cdots \oplus M$ (direct sum of n copies of M).

- **2.** (a) Show that if M is an R-module and N a submodule such that N, M/N are finitely generated, then M is also finitely generated.
 - (b) Recall that a commutative ring R is called Noetherian if every ideal is finitely generated. Show that for such a ring, any submodule in R^n is finitely generated. [Hint: consider morphism of R-modules $R^n \to R$: $(a_1, \ldots, a_n) \mapsto a_1$.]
 - (c) Show that if M is a finitely generated module over a Noetherian ring, then any submodule of M is also finitely generated.
- **3.** A module M over a (not necessarily commutative) unital ring R is called *simple* if it has no nonzero proper submodules.
 - (a) Prove that every simple module is generated by a single element.
 - (b) Prove that every simple module is isomorphic to a module of the form R/I, where $I \subset R$ is a maximal left ideal.
 - (c) Describe all simple modules over $\mathbb{C}[x]$; over $\mathbb{R}[x]$.
- 4. Dummit and Foote, p. 344, exercise 8.
- 5. Dummit and Foote, p. 344, exercise 9.
- **6.** Let *M* be a module over a PID *R* and $a \in R$ annihilates *M*: am = 0 for any $m \in M$. Assume that $a = a_1 \dots a_n$, where a_i are pairwise relatively prime. Prove that then

$$M = M_1 \oplus \cdots \oplus M_n, \qquad M_i = \{m \in M \mid a_i M = 0\}$$

[Hint: first prove it for n = 2 and then use induction.]

- 7. Dummit and Foote, p. 469, exercise 11.
- 8. Dummit and Foote, p. 469, exercise 12.