MAT 534: FINAL EXAM

TH, DEC 14, 2023

Your name: \qquad
(please print)

	1	2	3	4	5	Total
Grade						

1. Describe all semidirect products $\mathbb{Z}_{4} \ltimes \mathbb{Z}_{11}$, writing each of of them by generators and relations. Which of them are isomorphic?
2. Let G be a finite group and let $p \in \mathbb{Z}$ be the smallest divisor (greater than 1) of $n=|G|$. Let $H \subset G$ be a subgroup of index p. Consider the coset space $X=G / H$ and let H act on this space by multiplication on the left: $h \cdot(x H)=h x H$.
(a) Show that for any orbit S of this action, either $|S|=1$ or $|S| \geq p$.
(b) Show that every orbit consists of a single element. Deduce from this that H is normal in G.
3. Consider the ring $R=\mathbb{F}_{17}[x] /\left(x^{3}-3 x^{2}+4\right)$, where $\mathbb{F}_{17}=\mathbb{Z} /(17)$ is the field of 17 elements.
(a) Describe all ideals in R. Which of them are maximal? Is it true that R is a direct sum of fields?
(b) Find R-modules M_{1}, M_{2}, M_{3} such that any finitely generated module over R is isomorphic to direct sum of copies of M_{1}, M_{2}, M_{3}.
4. A module M over a ring R is called Noetherian if every increasing chain of submodules $M_{1} \subset M_{2} \subset \cdots \subset M$ stabilizes after finitely many steps. (This is very similar to the definition of a Noetherian ring - but here we are talking about modules over arbitrary rings).
(a) Prove that any PID, considered as a module over itself, is Noetherian.
(b) Prove that if M is a Noetherian module, and $f: M \rightarrow M$ is surjective, then it is also injective.
5. Let V be a finite-dimensional vector space over \mathbb{C}. Recall that a linear operator $L: V \rightarrow V$ is called nilpotent if $L^{k}=0$ for some k.

Show that any operator $A: V \rightarrow V$ can be written as a sum $A=A_{s}+A_{n}$, where A_{s} is diagonalizable, A_{n} is nilpotent, and A_{s}, A_{n} commute. Moreover, show that if B is another operator which commutes with A, then B also commutes with A_{s}, A_{n}.

