MAT 534: MIDTERM

TU, OCT 14, 2014

Your name:_____

(please print)

	1	2	3	Total
Grade				

- **1.** Classify all groups of order $5 \times 7 \times 11$
- **2.** Let $X \subset \mathbb{Z}^n$ be a subgroup of free rank n.
 - (a) Prove that \mathbb{Z}^n/X is finite.
 - (b) Let $X^{\vee} = \{\lambda \in \mathbb{R}^n \mid \lambda \cdot x \in \mathbb{Z} \text{ for any } x \in X\}$. Prove that then X^{\vee} is a free abelian group of rank n, and X^{\vee}/\mathbb{Z}^n is finite.
 - (c) (Optional do only after you have completed the other problems) Prove that $\mathbb{Z}^n/X \simeq X^{\vee}/\mathbb{Z}^n$.
- **3.** Let \mathbb{F} be a field; denote $R = \{\frac{f}{g} \mid f, g \in \mathbb{F}[x]\}$ the fraction field of $\mathbb{F}[x]$. Choose an element $a \in \mathbb{F}$ and set

$$R_a = \left\{ \frac{f}{g} \in R \mid g(a) \neq 0 \right\}.$$

- (a) Show that the set I of all non-invertible elements $x \in R_a$ is a maximal ideal. Describe the quotient R_a/I .
- (b) Show that R_a is a principal ideal domain and describe all ideals of R_a .