Problems marked by asterisk (*) are optional.

For some problems might need the following basic result from number theory (we will prove it later): an integer \(k \) is invertible modulo \(n \) if and only if \(k, n \) are relatively prime.

1. Do the problem discussed in class: if \(x \in G \) is an element of order \(n \), then the subgroup generated by \(x \) is isomorphic to \(\mathbb{Z}_n \).

2. Construct a bijection between the coset space \(S_n/S_k \times S_{n-k} \) and the set \(B \) of all sequences of \(k \) zeroes and \(n-k \) ones. (The map was discussed in class; you need to show that it is a bijection).

3. Prove that any subgroup of index 2 is normal.

4. Describe all subgroups of symmetric group \(S_3 \). For each of them, say whether it is normal; if it is, describe the quotient.

5. Prove that any subgroup in \(\mathbb{Z} \) must be of the form \(H = a \cdot \mathbb{Z} \) for some \(a \in \mathbb{Z} \).

6. Let \(p \) be a prime number and \(\mathbb{Z}_p^x \)— the group of all non-zero remainders modulo \(p \) (with respect to multiplication). Deduce from Lagrange theorem that for any integer \(a \) not divisible by \(p \), we have \(a^{p-1} \equiv 1 \mod p \).

7. (a) Prove that an element \(k \in \mathbb{Z}_n \) is a generator of \(\mathbb{Z}_n \) if and only if \(k \) is relatively prime with \(n \).

(b) A complex number \(\zeta \) is called a primitive root of unity of order \(n \) if \(\zeta^n = 1 \), but for all \(k = 1, 2, \ldots n-1 \), we have \(\zeta^k \neq 1 \). How many primitive roots of unity of order 15 are there? Describe them all.