MAT 511: HOMEWORK 7 DUE TH, OCT 27

- 1. Which of the following relations on the set \mathbb{R} are equivalence relations? For each realtion that is an equivalence relation, describe the equivalence class $\sqrt{2}$.
 - (a) $x \sim y$ if $xy \geq 0$
 - (b) $x \sim y$ if x + y = 1
 - (c) $x \sim y$ if $x y \in \mathbb{Q}$ (here \mathbb{Q} is the set of rational numbers)
 - (d) $x \sim y$ if $x^2 = y^2$.
 - (e) $x \sim y$ if (x = y or xy = 1).
- **2.** Recall the equivalence relation on the set \mathbb{Z} defined by

$$a \equiv b \mod n$$
 if $n|a-b$

(it is called "congruence modulo n").

- (a) Prove that if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$ (in other words, congruences can be added).
- (b) Prove that if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $ac \equiv bd \mod n$ (in other words, congruences can be multiplied).
- (c) Show that it is possible that $ab \equiv 0 \mod n$, but $a \not\equiv 0 \mod n$, $b \not\equiv 0 \mod n$.
- **3.** Let $A = \mathbb{R} \times \mathbb{R} \{(0, 0)\}$ be the plane with the origin removed. Consider the following relation on A:

$$(x_1, y_1) \sim (x_2, y_2)$$
 if $\exists t \in \mathbb{R}_{>0} \colon x_2 = tx_1, y_2 = ty_1$

- (a) Prove that this is an equivalence relation.
- (b) Describe and plot on the coordinate plane the equivalence class [(1,1)].
- **4.** Let $A = \mathbb{Z} \times \mathbb{Z}$. Consider the following relation on A:

 $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 - x_2$ is even, $y_1 - y_2$ is even.

- (a) Prove that this is an equivalence relation.
- (b) Describe the equivalence class [(1,1)].
- (c) How many equivalence classes are there?