1. Let the universe be the set of all real numbers. Let \(A = [3, 8), \ B = [2, 6], \ C = (5, \infty) \).
 Find
 (a) \(A \cap B \)
 (b) \(A \cup B \)
 (c) \(A \cup (B \cap C) \)
 (d) \(A - B \)
 (e) \(A^c \)

2. Prove that \(A \cup B = B \) iff \(A \subseteq B \)

3. Prove that \((A - B) \cap (A - C) = A - (B \cup C) \).

4. Give a counterexample to the following statement:
 If \((A \cap B) \subseteq (C \cap B) \), then \(A \subseteq C \).

5. Let the family of sets \(A_n, n \in \mathbb{N} \), be defined by \(A_n = \left(-n, \frac{1}{n} \right) \) (here \(\mathbb{N} = \{1, 2, \ldots \} \) is the set of positive integers).
 Find \(\bigcup_{n=1}^{\infty} A_n, \bigcap_{n=1}^{\infty} A_n \).

6. Prove that if \(A_i, i \in I \) is a family of sets indexed by \(i \in I \), then for any set \(B \), we have
 \[
 B \cap \left(\bigcup_{i \in I} A_i \right) = \bigcup_{i \in I} (B \cap A_i).
 \]

7. Give an example of a family of subsets \(A_i \subset \mathbb{Z} \) indexed by \(i \in \mathbb{N} \) such that intersection of any finite collection of them is nonempty, but intersection \(\bigcap A_i \) over all \(i \) is empty.