1. Use Intermediate Value Theorem to show that \(p(x) = x^4 + 7x^3 - 9 \) has at least 2 real roots. Between which integers do they lie?

2. Show that the equation \(x = \cos x \) has a solution on \([0, \pi]\).

3. Let \(f(x) \) be a continuous function on \(\mathbb{R} \) such that \(\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f(x) = 0 \). Show that then \(f(x) \) is bounded on \(\mathbb{R} \).

4. Determine where each of the functions is differentiable.
 (a) \(|x| + |x + 1|\)
 (b) \(|\sin x|\)
 (c) \(\frac{1}{1 - e^x}\)

5. Show that the function \(f(x) = x^2 \cos(1/x) \) is differentiable everywhere, including \(x = 0 \). Show that the derivative is not continuous at \(x = 0 \).

6. Compute the derivatives of the following functions
 (a) \((x + 1)^{10}\)
 (b) \(\sqrt{1 - x^2}\)
 (c) \(\frac{1}{1 + x^2}\)
 (d) \(\sin(1 + 2x)\)

7. Given that \(h(x) = x^3 + 2x + 1 \) has an inverse function \(h^{-1}(x) \) defined everywhere on \(\mathbb{R} \), compute \((h^{-1})'(y)\) for \(y = h(0) \) and for \(y = h(2) \).

8. Use Mean Value Theorem to show that \(|\sin x - \sin y| \leq |x - y| \) for all \(x, y \in \mathbb{R} \).