1. Prove the identity: \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \).

2. Consider the function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = x^2 - x \)
 (a) Graph it.
 (b) Find \(f(A) \) where \(A \) is the open interval \((0, 4)\).
 (c) Find \(f^{-1}(B) \) where \(B = [1, 4] \).
 (d) Find two subsets \(C, D \) of \(\mathbb{R} \) such that \(f(C) \cap f(D) \neq f(C \cap D) \).

3. Let \(f : A \to B \) be a function and suppose that \(C \subseteq A \) and \(D \subseteq B \). Are the following statements true or false (for every choice of \(f, C, D \))? Justify your answers by a brief proof or a counterexample.
 (a) \(f(A \setminus C) \subseteq f(A) \setminus f(C) \).
 (b) \(f^{-1}(B \setminus D) = f^{-1}(B) \setminus f^{-1}(D) \).
 Hint: as in question 2, try some examples. You can try functions \(f : \mathbb{R} \to \mathbb{R} \) or you can try functions \(f : A \to B \) where \(A \) and \(B \) are finite sets.

4. Suppose that \(f : A \to B \) and \(g : B \to C \) are functions such that the composition \(g \circ f \) is surjective. Is \(g \) necessarily surjective? What about \(f \)? Give brief proofs or counterexamples.

5. Prove that for any positive integer \(n \),
 \[
 1^2 + 3^2 + \cdots + (2n-1)^2 = \frac{4n^3-n}{3}
 \]

6. Prove by induction that for any \(n \geq 5, n^2 < 2^n \). [Hint: prove first that \((n+1)^2 < 2n^2\).]

7. Guess a general formula for the product
 \[
 \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{9}\right) \cdots \left(1 - \frac{1}{n^2}\right)
 \]
 and prove it by induction.

8. Let the Fibonacci sequence be defined by \(F_1 = F_2 = 1, F_{n+1} = F_n + F_{n-1} \) for \(n > 1 \).
 Prove that then
 \[
 F_n F_{n+1} = F_1^2 + F_2^2 + \cdots + F_n^2
 \]